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THERMISTOR PROBLEM: A NONLOCAL PARABOLIC
PROBLEM

ABDERRAHMANE EL HACHIMI, MOULAY RCHID SIDI AMMI

ABSTRACT. In this paper, we study a nonlocal parabolic problem arising in
Ohmic heating. Firstly, some existence and uniqueness results for the contin-
uous problem are proposed. secondly, a time discretization technique by Euler
forward scheme is proposed and a study of the discrete associated dynamical
system is presented.

1. INTRODUCTION
In this work, we shall deal with the following nonlocal parabolic problem

RN ()
ot o )\(fQ f(u)dx)?’
u=0 on dQx]0;T], (1.1)

u(0) =up in Q,

in Qx]0; 77,

where Q C R? (d > 2) is a bounded regular domain, )\ is a positive parameter and
f is a function with prescribed conditions. Let us recall first that ([L.1]) arises by
reducing the following system of two equations which model a thermistor problem

uy = V.(k(u)Vu) + o(u) |Vl
V(o(u)Vy) =0,

where, u represents the temperature generated by the electric current flowing
through a conductor, ¢ the electric potential, o(u) and k(u) are respectively the
electric and thermal conductivities. For more information, we refer the reader to
[7, @, 10, 15].

In section 2, our gaol concerns the existence and uniqueness of weak solutions to
. Some results have been obtained by many authors in the case where N =1
and f taking particular forms: Montesinos and Gallego [12] proved the existence of
weak solution under

(1.2)

0<o01<0(s) <og,Vs eR. (1.3)
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In [9, [0} 15], major emphasis is placed on cases where the spatial dimension N is
1 or 2 and f is of the form f(u) = exp(u)or exp(—u). In these works, additional
regularity assumptions are made on ug and a combination of usual Lyapounov
functional and a comparison method is the main ingredient. Our purpose is to
extend some of the results therein to problem , where here, the condition
is weakened to (H2) below.

We recall also that the Euler forward method has been used by several authors
in the semi-discretization of non linear parabolic problems, see for example [5] [6].
Concerning the existence and uniqueness of solutions to under particular forms
of f, we refer the reader to [2] and the references therein. On the other hand, little
is known about the solutions to the following discrete problem:

Ut —rAU"=U"""' + ATL)Q, in Q,
U =0 on 09, :
U =wy in Q.

Whereas, semi-discretization has been used for equations of the thermistor problem
in [I3,d]. Our aim here is to continue the study of problem initiated in section
2, where an a priori L*>° —estimate is derived. In addition to the usual existence and
uniqueness questions concerning the solutions of , we shall prove some results
of stability and proceed to error estimates analysis. In [I], the authors derived an
L? and H' norm error by requiring regularity on the solution u, for instance u, u; in
H2(Q)NWhe°(Q). Unfortunately, such smoothness is not always possible since the
function f is non linear. We end this paper by studying the asymptotic behaviour
of the solutions to the discrete dynamical system associated with .

2. EXISTENCE AND UNIQUENESS FOR THE CONTINUOUS PROBLEM

We assume the following hypotheses:

(H1) f:R — R is a locally Lipschitzian function.

(H2) There exist positive constants o, 1, ca and « such that o < d% and for all

EeR
o < f(€) < clg]*t + e
We adopt the following weak formulation for : u is a solution of if and
only if
oo 1 o0 . Ou 2 2
u € L°°(T, 400, Hy(Q) N L*°(Q)) Wltha € L°(r, 400, L*(Q))

for any 7 > 0, and satisfying

Troo T A
/0 /Quagb —VuVedrdt = /0 (W /Q f(u)pdx)dt,
for any ¢ € C*°((0,00), Q).

Now, we state our main result.

Theorem 2.1. Let hypotheses (H1)-(H2) be satisfied. Assume that ug € LFo+2(Q)
with ko such that

)

aN
ko Z max (0, 7 — 2) (21)
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Then, there exists dy > 0 such that if ||uo||ke+2 < do, the problem (1.1} admits a
solution u verifying for all T >0

ki
u e L=(7, 400, L"2(Q)),  |u|"u € L®(7, +o0, H} (), with v = 70

Moreover, if ug € L* (), then u € L= (7, +00, L>(Q)) and is unique.
Remark. The value of dy will be given in the course of the proof.

Proof. We use a Faedo-Galerkin method see [1I]. Let u,, C D() be such that
Ugm — up in Hg(Q) and let (w;); € H() a special basis. We seek u to be the
limit of a sequence (), such that

um(t) = Z;ﬁ:lgjm(t)wjv

where g, is the solution of the following ordinary differential system

A .
W (f(um),wj), 1 <j <m, 22)

U (0) = Uom.-

(U w5) + (tn, wj) =

It is easy to see that has a unique solution u,, according to hypotheses (H1)-
(H2) and Cartan’s existence theorem concerning ordinary differential equation (see
[3]). This solution is shown to exist on a maximal interval [0;¢,,[. The following
estimates enable us to assert that it can be continued on the hole interval [0; 7.
We shall denote by C; different positive constants, depending on data, but not on
m. u

Lemma 2.2. For any 7 > 0, there exists a constant cs(7), ca(T) such that
[t ()| 42 < €3(7), Vit > 7, (2.3)
[um(E)lloo < ca(r),VE = 7. (2.4)

Proof. (i) Multiplying the first equation of (3.2) by |um|*gjm, integrating on €,
adding from j =1 to m and using (H1)-(H2), yields

1 d k 4 E k+a
m@”umﬂkig + WHVWM 2t ||5 < 5[t [|FT0T2 + o (2.5)

By using well-known Sobolev’s and Gagliardo-Nirenberg’s inequalities, we have

i g Tots < erlltmllgy ol Va3, (2.6)

Thus, from (2.5 and (2.6]), we obtain

1 d ko+2 4 9
s [[5015 < (esllumlfy o = g IV [t V20 Y
ko—|—2dt”u kg t2 < (callumlliyso (k0+2)2)” U | YU [|3 + 6 (2.7)

We shall make the following compatibility condition on wg

fuolligre < () = 23)
UQ || ko+2 cs(ko +2)2 = dp. .
Then, there exists a small 7 > 0 such that
[t (8) || kg+2 < do for t €]0,T]. (2.9)
Hence L4
m%numH’;gii + ol Vium|Tum|2 < s ¥V 0<t<T. (2.10)
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By Poincaré’s inequality and after integrating, it follows that
[um ®)[ko+2 < €10, ¥V 0<t<T,

Therefore, relation (3.3)) is achieved by iterating successively the same process with
initial condition calculated at the last one.
(ii) By using Holder’s inequality, we get

k 0
lumlli6t3 < canllumllptollumlly? o lum g, (2.11)

with 61,0 and 603 satisfying
0, n 0 [}
k+2 kog+2

‘We require moreover

=1 and 601+4+60:+603=k+a+2.

61 b5
K2 2(v+1)
Using the boundedness of ||tm|/x,+2, the choice of g, Sobolev’s inequality and
young’s inequality, we have from that

0

3
callum 563 < exa 2|Vt
2
< exsk +2) a5 + gl

where 6, is some positive constant. Hence ([2.5) becomes

1 d
sl + G g Ve 5 < 152 um [£23 + 5.

Therefore, by applying [8, lemma 4] we conclude to (3.4)).

Passage to the limit in (3.2) as m — oo. Multiplying the jth equation of
system by ¢;m(t), adding these equations for j = 1,...,m and integrating
with respect to the time variable, we deduce the existence of a subsequence of u,,
such that

Uy — u  weak star in L(0,T; L*(Q2)),
Uy — u  weak in L2(0,T; HA (),
Ut — u;  weak in L2(0,T; H~1(Q
Uy — u  strongly in L?(0,T; L*(£

mboxanda.einQr.

);

)
)

Straightforward standard compactness arguments allow us to assert that u is a

solution of problem (|1.1]
Uniqueness.  Consider u; and ug two weak solutions of the problem ([1.1)) and

define w = w1 — ug. Substracting the equations verified by u; and ug, we obtain

dw A
ar LAw = m (f(ul) - f(u2))

(fQ flus dx) (fQ 2) + f ul)dﬂc>
(fQ (u1) dx) (Jo f( )

(2.12)

f(uz).
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Taking the inner product of (2.12)) by w and using (H1) and (2.4)), we get

1d
5 s (@)1 < exelluw®)IB,
which implies that w = 0. Hence the solution is unique. 0

3. THE SEMI-DISCRETE PROBLEM

Existence and uniqueness. We consider the Euler scheme (1.3]), with N7 =T,
T > 0 fixed and 1 < n < N. In the sequel, (-,-) will denote the associated inner
product in L?(Q) or the duality product between Hg () and its dual H~1(€).

Theorem 3.1. Assume (H1)-(H2). Then, for each n, there exists a unique solution
U™ of (1.3) in HE(Q) N L®(Q) provided that T is small enough.
Proof. For simplicity, we write U = U™, h(z) = U"~!. Then (1.3) becomes

f(0) :
et in (),
(Jo F(U) d)? (3.1)
U=0 ond,
Existence. Define the map S(u,.) by U = S(u,v), p € [0,1] if
U—-7AU = pg(x,v) in Q,
U=0 ondQ, (3.2)
U = pu,
2
where g(z,v) = h(z) + Af(v)/( [, f(v) dz)".
For a fixed v € H (), has a unique solution U € Hg (). Then, for each

u € [0,1], the operator S(u,.) is well defined. Moreover, S(y,.) is compact from
H () into it self. Indeed, using (H2), we have the estimate

|U|2 4+ 7|VU|2 < c17.

U—7AU = h(z) + A

We can easily see that p — S(u,v) is continuous and that S(0,v) = U, for any v,
if and only if U = 0. From the Leray-Schauder fixed point theorem, there exists
therefore a fixed point U of S(y,.). O

Now, we derive an a priori estimate.
Lemma 3.2. If ug € L>®(Q)), then for alln € {1,...,N}, U™ € L>°(Q).

The proof of the above lemma is similar to the one used by de Thelin in [4] in a
different problem; we shall give here only a sketch. Suppose d > 2 and define

d .
(;: ﬁ 1f2<d7
2a+2) ifd=2.
Let g1 = 9 and let

Q= {(%)’H(a -y)—(2- 7)}%7 k>2.

Then we have

0
Qk+1 = (%4—2—7)5 with vy =a+2, forall k€ N*.
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Lemma 3.3. For k in N*, U™ € L% (Q) and

|U"| oo = limsup |U"|,, < +o0. (3.3)
Proof. We prove by recurrence that U € L% . This property is true for £k = 1,
since H}(Q) C L%(2). Now we show that U € L%+, Let m € N, 1 < m < k.
Multiplying (2.1]) by |U|%~7U, using (H2) and Young’s inequality, we get
(@n =7 +1) [ [VOPIUI™ " do < cxslUlg5 +ean
Q
On the other hand,
Ulg 2 < e+ 22202 [ UPUp - da.
Q
Therefore,
U[&m 277 < (ea1 + coa|U[Em) (gm + 2 = 7).
Thus,
([U[2841)27% < (a1 + ca2|U18) (g + 2 — ).
The rest of the proof follows the same lines as in [4, p. 383-384]. O

Uniqueness. Consider U and V two different solutions of (2.1) and define w =
U — V. Then, we have

AT
W(f(U) — f(V))
(Jo F(U) = F(V)dz) (fo F(V) + f(U) dz)
(Jo F(U) da)?(fo, f(V) dz)?

Multiplying (3.4) by w, integrating on Q and using the L° —estimate obtained in
lemma |3.2, we obtain

w— 1AW =
(3.4)

+ AT f).

w3 + 7|Vw|3 < csorwl3.

Therefore, w = 0 when 7 < 1/¢30.

4. STABILITY

Theorem 4.1. Assume (H1)-(H2). Then, there exists c¢(T,up) > 0 depending on
the data but not on N such that for any n € {1,...,N}

|U™ | Lo () < (T, up),

U3+ 7Y |VU* < (T, ug),
k=1

Z |UF —UP 12 < (T, u).
k=1

Proof. (i) Multiplying (T.3) by |U*|™UF for some integer m > 1, using lemma
and Holder’s inequality, we obtain after simplification

|Uk|m+2 < |Uk_1‘m+2 +c317. (41)
By induction and taking the limit in the resulting inequality as m — +oo, we get

|Uk|Loc(Q) S C(T, Uo).
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(ii) Multiplying the first equation of (1.3) by U* and using the hypotheses on f,
one easily has

(UF — U1 UR) + 7|VU* 3 < c3o 7|U"5.
Using the elementary identity 2a(a — b) = a? — b? + (a — b)? and summing from
k =1 to n, we obtain

U3+ DI = UM S+ 7 ) [VUME < fuol3 +7ess ) U
k=1 k=1 k=1
Then, the inequalities(b) and (c) of the lemma hold by using relation (3.3 and
(a). O

5. ERROR ESTIMATES FOR SOLUTIONS

We shall adopt the following notation concerning the time discretization for
problem . Let us denote the time step by 7 = %, t" =n7 and I, = (t",t"71)
forn =1,...,N. If z is a continuous function (respectively summable), defined
n (0,T) with values in H=1(Q) or L?(Q) or H}(Q), we define 2" = 2(t",.), 2" =
% fln 2(t,.)dt, 2° = 20 = 2(0,.); the error e,, = u(t) — U™ for all t € I,, and the local
errors el and e” defined by e’ =u"(¢t) — U™, e” =u" — U™.

Theorem 5.1. Let (H1)-(H2) hold. Then, the following error bounds are satisfied

T
lenllFee 0,7, 11 (2 +/ len|?dt < caa,

lle™ |1 Q)<C35T1/2

‘V/ 6n(t)dt|2 §0367’1/4.
0
Proof. We consider the following variational formulation of discrete problem (|1.3)):

(U U™ 0) + 7(VU" V) = —2T — (f(U™).),  (5.1)

(Jo fCU™ daz)
for all o € H}(Q). Integrating the continuous problem (1.1)) over I,,, we get

(u" —u"1, @) + (V" Vi) = Ar / T fam o)’ Un.9) - voem@ (52

Jo fum) dz)
Subtracting (5.2)) from (5.1) and adding from n = 1 to m with m < N, we obtain
> (en - )+ Z en, V)
=t (5.3)

<037T|Z |+038T‘Z

Let (—A)~! the green operator satisfying
(V(=2)"%, V) = (4, 0) -1(0), 12 (@)

for all v € H=Y(Q),p € H}(Q). Choosing ¢ = (—A)71(e") as test function, we
then obtain
L+ <I3+ 1, (54)
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where
L= (""" (~0) N e), L=1Y (e,
n=1 n=1

3 < eorr] S (F@)” = FU™), (=) (e,
L = exs7) Y (SO (~A) ().

With the aid of the elementary identity 2a(a — b) = a® — b* + (a — b)? and the
property of (—A)~1, I; reduces after straightforward calculations to

1 m 1 - n n—
L=l qu—l(n)JFgZH@ — " i1 )

n=1
On the other hand
L=r1 Z(ez, e™)
n=1
- Z/ (u(t) — U™, u(t) — U™ dt + Z/ (ult) — U™, u™ — u(t)) dt
n=1 I n=1 I,
= Iy + I2o
Iy = Z/ (u(t), u™ — u(t)) di — Z/ (U™ — u(t)) dt
n=1 I, n=1 In
=13+ I3,.

We now estimate I3,.

m

1| = ';/1,,,(““)’ t

" " Hu
< [ 15 ) o
n=1 n

u
< 7l 520, m-1) Ul L200,6m 11 ()
0s 0

" ou

SngT.

In the same manner,

ou N e
|1222| < 7'||£||L2(07tm,H—1(Q))(7' Z ||U Hi{&(g)))lm < caoT.

n=1
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Next, we estimate the first term on the right-hand side of (5.4) by using Holder’s
and Young’s inequalities and (H1)

1 <132 17060 = 70, (-0 )

<ent/?y / |f(w) — F(U™)[3dt) (||| sr-1.0r)

I

<n§j/ ) — FU™) B de) +—TZ\\e“||H
<C43nZ/ eal2 dt) +—TZHe 210

n=1
Moreover, we have

m
i <caam+casT Y e 1310y

n=1

Choosing suitably 7, we conclude that

m m
le™ 1 F-10) + > €™ — e -1y + Z/J len3 dt
n=1 n=1""n

m
ScaT +C477'Z e 172

n=1
On the other hand, setting y™ = 377", [le"[|3;-1 (q), from (5.5), we get

m m—1 m
Yy -y < a6 T+ Car TY

By applying the discrete Gronwall inequality, we deduce that y™ < ¢(7T").Therefore,

lle™ [ -1 Q)<C4871/2

On the other hand, we have

¢ B _ 1/2 < n _
up len(®llzz-1(@) — cas™ /™ < max flen ()10 = max "1 ().
Thus,

lenllzoe 0,7, 21 () — cag 7'/? <1£nna<x ™[ ir-1(02)-

From the last inequality, we obtain
T
2 2
lenllzoe 0,7, m-1(0)) +/0 lenl3dt < cag T,

m
> et — e i) S ca T
n=1
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Choosing p =7y ", (@" — U™) in (5.3)) , we obtain
T/ Z a" — U") dx) +T2|Zv " —U")3
Q2 = n=1

< csor?] / Z o) (> (@ — U™))da|

n=1
m

tean (U Y@ -

n=1 n=1

This implies

m tm
S V@ U=V [ et <o) [0S @ - U
n=1 0 Q n=

+esor?] [ ST = O @~ U
n=1 n=1
Fen | SO, S @ -
n=1 n=1
<IT+II+III
Clearly
1< |\em||H_1(Q)(Z/I ()| 30y dt+7 > 10" a3 (e)
n=1 n n=1
< csalle™ | -1 () < es3T/2
We get also

/ Z/ FU™)) dt)? dz) /2 x / Z/ U de)? da)
< T Z/ |f(u) = FU™3dt)/? x Z/ lu(t) — U2 dt)V/?

<723 / () = FUB 8] x 220 ey + 27 D U B2

< C54T

The last inequality follows by using simultaneously the L>°—estimate of u(t) , U™
and the error bound given in . ). Arguing as in the previous estimate, we get

m

1T < T2( Z/ FO BN x CllulZaq02.53(60) —I—27‘Z|U” )i/2,

n=1

Using again the hypothesis (H1) and the estimates above, we obtain
ITT < c55 72,
Finally collecting these results, it follows that

T
|V/ en dt|2 < cse 71/
0
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This completes the proof. ([

Corollary 5.2. Under hypotheses (H1)-(H2), problem (1.3|) generates a continuous
semi-group S, defined by S, U1 =U".

6. THE SEMI-DISCRETE DYNAMICAL SYSTEM

The aim here is to study the discrete dynamical system (1.3]) via the concepts of
absorbing sets and global attractors (see Temam [14]).

Theorem 6.1. The semi-group associated with (1.3) possesses a compact attractor
A, which is bounded in H}(Q) N L (Q) for 7 small enough.

Proof. We begin by showing the existence of an absorbing set in H{(2) N L>(12).
(i) Denoting y;), = [U" |y y2 and y" = [U"| 1 (q), then from (4.1)), we have

yp, < sty 4 cssT.
Letting m approach infinity, we deduce that
y" < sty A+ essT.
On the other hand, we have
no+N
TY Y <a, Vng>n,
n=no

for some positive real number a; which do not depend on ng.
Applying the discrete uniform Gronwall’s lemma ([I4]), we get

|U™ L) < cs09, Y 2>ng,

which implies the existence of absorbing sets in L>((2).
(ii) To obtain existence of absorbing sets in H} (), multiply (1.3) by U™ — U™~ L.
By using Holder’s and Poincaré’s inequalities, we have

VU3 < |VU" 2 4+ coor, V> n,.
Using again the relation (b) and the discrete uniform Gronwall’s lemma, we get
U™ ) < c61, VN> nr.

Therefore, the existence of absorbing sets in Hg () is proved. Applying Temam
[14, Theorem 1.1], we therefore get the result. O
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