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AN INFINITE-HARMONIC ANALOGUE OF A LELONG
THEOREM AND INFINITE-HARMONICITY CELLS

MOHAMMED BOUTALEB

Abstract. We consider the problem of finding a function f in the set of

∞-harmonic functions, satisfying

lim
w→ζ

|f̃(w)| = ∞, w ∈ H(D), ζ ∈ ∂H(D)

and being a solution to the quasi-linear parabolic equation

u2
xuxx + 2uxuyuxy + u2

yuyy = 0 in D ⊂ R2 ,

where D is a simply connected plane domain, H(D) ⊂ C2 is the harmonicity

cell of D, and f̃ is the holomorphic extension of f . As an application, we
show a p-harmonic behaviour of the modulus of the velocity of an arbitrary
stationary plane flow near an extreme point of the profile.

1. Introduction

The complexification problems for partial differential equations in a domain Ω ⊂
Rn include the introduction of a common domain Ω̃ ⊃ Ω in Cn to which all the
solutions of a specified p.d.e. extend holomorphically. The complex domains in
question are the so-called harmonicity cells H(Ω), in [4], for the following set of
2m-order elliptic operators:

∆mu =
∑
|α|=m

m!
α!

∂2|α|u

∂x2α1
1 . . . ∂x2αn

n

= 0, m = 1, 2, 3 . . . (1.1)

They often describe properties of physical processes which are governed by such a
p.d.e [19]. The operator ∆2 has been widely studied in the literature, frequently in
the contexts of biharmonic functions [3].

Motivation. Our objective is to introduce the complex domain D̃, and the ade-
quate solution f = fζ in the space of ∞-harmonic functions H∞(D) , for equation
(1.5), below. In view of Theorem 2.5, part 2, we assign a domain D̃ ⊂ C2, denoted
by H∞(D), to the class H∞(D). The definition of H∞(D), is similar to the defini-
tion of H(D), although less explicit. Equation (1.5) is actually the formal limit, as
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p→ +∞, of the p-harmonic equation in D ⊂ R2

∆pu = div(|∇u|p−2∆u) = 0, 1 < p < +∞, (1.2)

For every finite real p > 1, the hodograph method transforms ∆pu = 0 into a linear
elliptic p.d.e. in the hodograph plane. Due to [5], the pull-back operation is possible
from R2(ux, uy) to the physical plane. Although linear, the obtained equation is
not easily computed since its limit conditions become more complicated.

Preliminaries. Let Ω be a domain in Rn, n ≥ 2, Ω 6= ∅, ∂Ω 6= ∅. In 1935, Aron-
szajn [3] introduced the notion of harmonicity cells in order to study the singularities
of m-polyharmonic functions. These functions, used in elasticity calculus of plates,
are C∞-solutions in Ω of (1.1). Recall that H(Ω) is the domain of Cn, whose trace
TrH(Ω) on Rn is Ω, and represented by the connected component containing Ω of
the open set Cn−∪t∈∂ΩΓ(t), where Γ(t) = {z ∈ Cn : (z1−t1)2+· · ·+(zn−tn)2 = 0}
is the isotropic cone of Cn, with vertex t ∈ Rn. Lelong [16] proved that H(Ω) co-
incides with the set of points z ∈ Cn such that there exists a path γ satisfying:
γ(0) = z, γ(1) ∈ Ω and T [γ(τ)] ⊂ Ω for every τ in [0, 1], where T is the Lelong
transformation, mapping points z = x + iy ∈ Cn to Euclidean (n − 2)-spheres
Sn−2(x, ‖y‖) of the hyperplane of Rn defined by: 〈t− x, y〉 = 0. If Ω is starshaped
at a0 ∈ Ω,H(Ω) = {z ∈ Cn;T (z) ⊂ Ω} is also starshaped at a0. Furthermore, for
bounded convex domains Ω of Rn, we get

H(Ω) =
{
z = x+ iy ∈ Cn : max

t∈T (iy)
max

[
max
ξ∈Sn−1

(
〈x+ t, ξ〉−max

s∈Ω
〈ξ, s〉

)]
< 0

}
(1.3)

where Sn−1 is the Euclidean unit sphere of Rn [4, 6]. The harmonicity cell of
the Euclidean unit ball Bn of Rn gives a central example, since H(Bn) coincides
with the Lie ball LB = {z ∈ Cn;L(z) = [‖z‖2 +

√
‖z‖4 − |z2

1 + · · ·+ z2
n|2]1/2 < 1},

where ‖z‖ = (|z1|2 + · · · + |zn|2)1/2. Besides, representing also the fourth type of
symmetric bounded homogenous irreducible domains of Cn, H(Bn) has been stud-
ied (specially in dimension n = 4) by theoretical physicits interested in a variety
of different topics: particle physics, quantum field theory, quantum mechanics, sta-
tistical mechanics, geometric quantization, accelerated observers, general relativity
and even harmony and sound analysis (For more details, see [11, 18, 19, 20].

From the point of view of complex analysis, Jarnicki [14] proved that ifD1 andD2

are two analytically homeomorphic plane domains of C ' R2 then their harmonicity
cells H(D1) and H(D2) are also analytically homeomorphic in C2. A generalization
in Cn, n ≥ 2, of this Jarnicki Theorem is established by the author [8], as well as a
characterization of polyhedric harmonicity cells in C2 [10]. Furthermore, recall that
if A(Ω) and Ha(Ω) denote the spaces of all real analytic and harmonic functions
(respectively) in Ω, then H(Ω) is characterized by the following feature

[∩f∈Ha(Ω)Ωf ]0 = H(Ω), (1.4)

while [∩Ωf ]0 = ∅, when f runs through A(Ω), where Ωf is the greatest domain of
Cn to which f extends holomorphically. We emphasize that in (1.4), Ω is actually
required to be star-shaped at some point a0, or a C-domain (that is, Ω contains the
convex hull Ch(Sn−2) of any (n− 2)-Euclidean sphere Sn−2 included in Ω) or Ω ⊂
R2p with 2p ≥ 4, or Ω is a simply connected domain in R2 (cf. [4]). The technique
of holomorphic extension, used for harmonic functions in [22], has been generalized
for solutions of partial differential equations with constant coefficients by Kiselman
[15]. In a recent paper, Ebenfelt [12] considers the holomorphic extension to the
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so-called kernel NH(Ω) of Ω’s harmonicity cell, for solutions in simply connected
domains Ω in Rn, of linear elliptic partial differential equations of type: ∆ku +∑
|α|<2k aα(x)Dαu = g, where NH(Ω) = {z ∈ H(Ω); Ch[T (z)] ⊂ Ω}. It can be

observed that one of the central results in the theory of harmonicity cells is the
following Lelong theorem (stated here in the harmonic case)

Theorem 1.1. Let Ω be a non empty domain in Rn, n ≥ 2, with non empty
boundary and H(Ω) its harmonicity cell in Cn. For every ζ ∈ ∂H(Ω) there exists
f = fζ , a harmonic function in Ω, which is the restriction to Ω = H(Ω) ∩ Rn of a
(unique) holomorphic function f̃ζ defined in H(Ω) such that f̃ζ can not be extended
holomorphically in any open neighborhood of ζ.

Statement of the problem. In this paper we consider the simpler case of a non-
empty plane domain D (with ∂D 6= ∅) which we set to be simply connected and
look for a suitable ∞-harmonic function fζ in D. We state the problem as follows:

Let ζ be a boundary point of H(D) and put T (ζ) = {ζ1 + iζ2, ζ̄1 + iζ̄2}. We
will assume first that ζ belongs to Γ(ζ1 + iζ2). The problem is to find a solution
fζ in the classical sense, i.e. fζ ∈ C2(D) and fζ a.e. continuous on ∂D of the
quasi-elliptic system:

u2
x1
ux1x1 + 2ux1ux2ux1x2 + u2

x2
ux2x2 = 0 inD (1.5)

∂

∂w̄j
ũ = 0 j = 1, 2 in H(D) (1.6)

lim
w→ζ, w∈H(D)

|ũ(w)| = ∞ . (1.7)

This problem has already been considered in [16] in the harmonic case, and in [7]
in the p-polyharmonic case. It has also been solved in the (non linear) p-harmonic
case with 1 < p < +∞ and n = 2 [9]. We used in [9] radial p-harmonic functions
and their stream functions, centered at points of ∂D; but this approach limited our
results to finite real p (with p > 1) and to real valued p-harmonic functions. Our
main result in the present paper consists of introducing infinite-harmonicity cells
and proving an existence theorem for the ∞-Laplace equation. In Theorem 2.5, we
prove that to ζ ∈ ∂H(D) corresponds a fζ ∈ H∞(D) such that f̃ζ is holomorphic
in H(D) and satisfies |f̃ζ(w)| → ∞, when w → ζ with w inside H(D).

2. Infinite-harmonicity cells

The next four propositions are used in this work and their proofs are found in
the references as cited.

Proposition 2.1 ([16]). Let Ω be a domain in Rn, n ≥ 2, Ω 6= ∅, ∂Ω 6= ∅, and
H(Ω) ⊂ Cn be its harmonicity cell. For every point ζ ∈ ∂H(Ω), the topological
boundary of H(Ω), one can associate a point t ∈ ∂Ω, the topological boundary of Ω,
such that ζ ∈ Γ(t), the isotropic cone of Cn with vertex t.

Proposition 2.2 ([2, 17]). A classical solution u = u(x1, x2) ∈ C2 of the partial
differential equation

∆∞u = u2
x1
ux1x1 + 2ux1ux2ux1x2 + u2

x2
ux2x2 = 0,

in every non-empty domain D ⊂ R2, is real analytic in D, and cannot have a
stationary point without being constant
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Proposition 2.3 ([4]). To every couple (Ω, f), where Ω is an open set of Rn =
{x + iy ∈ Cn; y = 0} (equipped with the induced topology from Cn), f is a real
analytic function on D, one can associate a couple (Ω̃, f̃) such that Ω̃ is an open set
of Cn whose trace Ω̃∩Rn with Rn is the starting domain Ω, and f̃ is a holomorphic
function in Ω̃ whose restriction f̃ |Ω to Ω coincides with f . Furthermore, (i) if Ω
is connected, so is Ω̃; (ii) Among all the Ω̃’s above, there exists a unique domain,
denoted Ωf , which is maximal in the inclusion meaning.

Proposition 2.4 ([13]). Let A ⊂ Cn be a connected open set, f and g be two
holomorphic functions in A with values in a complex Banach space E. If there
exists an open subset U of A such that f(z) = g(z) for every z in U ∩ Rn, then
f(z) = g(z) for every z in A.

Theorem 2.5. Let D be a simply connected domain of R2 ' C, with D 6= ∅, and
∂D 6= ∅. Let H(D) = {z ∈ C2; z1 + iz2 ∈ D and z̄1 + iz̄2 ∈ D} be the harmonicity
cell of D. Then
(1) For every ζ ∈ ∂H(D), and every open neighbourhood Vζ of ζ in C2, there
exists a classical (∈ C2) ∞-harmonic function fζ on D, whose complex extension
is holomorphic in H(D), but cannot be analytically continued through Vζ .
(2) For the given domain D, let us denote by H∞(D) the interior in C2 of ∩{Du;u ∈
H∞(D)}. The set H∞(D) which may be called the infinite-harmonicity cell of D,
satisfies:

(a) The trace of H∞(D) with R2 is D, under the hypothesis that H∞(D) 6= ∅
(b) H∞(D) is a connected open of C2

(c) The inclusion H∞(D) ⊂ H(D) always holds
(d) If D is such that every u ∈ H∞(D) extends holomorphically to H(D) then

H∞(D) 6= ∅, and both the cells H(D) and H∞(D) coincide.
(e) Suppose D is bounded and covered by a finite union of open rectangles

P r2 (aj ; ρj1, ρj2), centered at aj ∈ D, j = 1, . . . ,m, such that for every
u ∈ H∞(D)

lim sup
nk→+∞

[ 1
(nk)!

∣∣∂nku

∂xnk

k

(aj)
∣∣]1/nk ≤ 1

ρjk
, k = 1, 2, 1 ≤ j ≤ m.

Then H∞(D) ⊃ ∪mj=1P
c
2 (aj , ρj), and therefore H∞(D) 6= ∅.

In the proof of Theorem 2.5, we will use the following two lemmas.

Lemma 2.6. In every sector −π < θ < π, the ∞-Laplace equation ∆∞u = 0 has a
solution in the form u = v(θ)

ρ , where θ = Arg z, ρ = |z|, and v satisfies the ordinary
differential equation (not containing θ)

(v′)2v” + 3v(v′)2 + 2v3 = 0 (2.1)

Proof. It is clear that we have to use polar coordinates. With x1 = ρ cos θ, x2 =
ρ sin θ in (1.5), we get by a simple calculation: ux1 = uρ cos θ − 1

ρuθ sin θ, ux2 =
uρ sin θ + 1

ρuθ cos θ, ux1x1 = uρρ cos2 θ + 1
ρ2uθθ sin2 θ − 1

ρuθρ sin 2θ + 1
ρuρ sin θ +

1
ρ2uθ sin 2θ, ux2x2 = uρρ sin2 θ+ 1

ρ2uθθ cos2 θ+ 1
ρuθρ sin 2θ+ 1

ρuρ cos2 θ− 1
ρ2uθ sin 2θ,

ux1x2 = 1
2uρρ sin 2θ− 1

2ρ2uθθ sin 2θ+ 1
ρuθρ cos 2θ− 1

2ρuρ sin 2θ− 1
ρ2uθ cos 2θ. Finally,

after expanding the terms and rearranging, the ∞-Laplace equation (1.5) takes the
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form (in polar coordinates)

∆∞u = u2
ρuρρ +

2uρuθuρθ
ρ2

+
u2
θuθθ
ρ4

− uρu
2
θ

ρ3
= 0 (2.2)

Putting u = v(θ)
ρ in (2.2) we find that v satisfies the non-linear o.d.e. (2.1). �

Lemma 2.7. Let D be a simply connected domain in C, D 6= ∅, ∂D 6= ∅. For every
t ∈ ∂D, there exists a complex valued ∞-harmonic function in D which cannot be
extended continuously in any given open neighborhood of t.

Proof. Let us look for a solution of (1.5) in D in the form u(z) = v(θ)
|z−t| , where

the argument θ is the unique angle in ] − π, π[ satisfying z − t = eiθ|z − t|, v is
assumed to be C2 in ]−π, π[. Note here that the simple connexity of D guarantees
that u is uniform in D. As it can be shown that the ∞−Laplacien operator:
∆∞u = u2

x1
ux1x1 + 2ux1ux2uxxx2 + u2

x2
ux2x2 is invariant under translations τa of

C ' R2, z = x1 + ix2, a = a1 + ia2 - that is ∆∞(u ◦ τa) = (∆∞u) ◦ τa - we may
assume without loss of generality that t = 0. Insertion of v = eγθ, where γ ∈ C is
a constant, in (2.1) gives: γ4 + 3γ2 + 2 = 0 or (γ2 + 1)(γ2 + 2) = 0. Take γ = i

and consider the ∞-harmonic function in D defined by: u(z) = eiθ

|z−t| , or more
explicitly:

u(z) =


1

|z−t| exp(i arcsin x2−t2
|z−t| ) if x1 ≥ t1

π
|z−t| −

1
|z−t| exp(i arcsin x2−t2

|z−t| ) if x1 < t1 and x2 > t2
−π
|z−t| −

1
|z−t| exp(i arcsin x2−t2

|z−t| ) if x1 < t1 and x2 < t2

The result follows immediately by taking the principal argument z 7→ Arg z ∈
] − π, π[; here for δ ∈ [−1, 1], arcsin δ signifies the unique number β in [−π

2 ,
π
2 ]

satisfying sinβ = δ. �

Proof of Theorem 2.5. For ζ ∈ ∂H(D) there exists, due to Proposition 2.1, a
boundary point t of D, such that ζ ∈ Γ(t) (which is equivalent to t ∈ T (ζ)).
As T (w) reduces in the two-dimensional case to the pair {w1 + iw2, w̄1 + iw̄2},
we have t = ζ1 + iζ2 or t = ζ̄1 + iζ̄2.
1.a. Suppose at first that t = ζ1 + iζ2. By Lemma 2.6, we deduce that (1.5) has
a solution u(z) in D in the form |z − t|−1eiθ. We conclude then as the solutions
of (1.5) are in particular real analytic in D (Proposition 2.2), that the so-defined
function u(z) (given by Lemma 2.7) has a holomorphic extension ũ to a maximal
domain A1 = Du in C2 (Proposition 2.3). Since H(D) is the connected component
containing D of the open C2 − ∪t′∈∂D{w ∈ C2; (w1 − t′1)

2 + (w2 − t′2)
2}, we have

A1 ⊃ H(D). Substituting in u(z) complex variables w1, w2 to real ones and putting
h(w) =

√
(w1 − t1)2 + (w2 − t2)2, we obtain

ũ(w) =


1

h(w) exp(i arcsin w2−t2
h(w) ) if Rew1 ≥ t1

π
h(w) −

1
h(w) exp(i arcsin w2−t2

h(w) ( if Rew1 < t1 and Rew2 > t2
−π
h(w) −

1
h(w) exp(i arcsin w2−t2

h(w) ) if Rew1 < t1 and Rew2 < t2,

where the branches are taken such that the square root is positive when it is re-
stricted to D, and for arcsin the branch is chosen such that its values are real (in
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] − π, π[) whenever z belongs to D. To see that ũ(w) is holomorphic in H(D), we
consider

F (w) =



1
g(w) exp(i arcsin w2−Im(ζ1+iζ2)

g(w) ) if Rew1 ≥ Re(ζ1 + iζ2)
π

g(w) −
1

g(w) exp(i arcsin w2−Im(ζ1+iζ2)
g(w) ) if Rew1 < Re(ζ1 + iζ2),

Rew2 > Im(ζ1 + iζ2)
−π
g(w) −

1
g(w) exp(i arcsin w2−Im(ζ1+iζ2)

g(w) ) if Rew1 < Re(ζ1 + iζ2),

Rew2 < Im(ζ1 + iζ2),

where g(w) =
√

[(w1 + iw2)− (ζ1 + iζ2)][(w̄1 + iw̄2)− (ζ1 + iζ2)], and the branches
are chosen as in ũ(w). Seeing that by [16], H(D) = {w ∈ C2;T (w) ⊂ D}, and not-
ing that g(w) = 0 if and only if w ∈ Γ(t) with t ∈ ∂D, the function F (w) is well
defined in some open A2 ⊃ H(D). Observe that ũ and F are both holomorphic in
A = A1 ∩A2 - since ∂ũ

∂w̄j
= ∂F

∂w̄j
= 0 in A ⊃ H(D), wj = xj + iyj , j = 1, 2- having

the same restriction on D = U∩R2, with U = H(D): ũ|D(z) = F |D(z) = u(z), with
z = x1 + ix2. By Proposition 2.4, we deduce that ũ = F in H(D). Furthermore,
since ζ and t satisfies (ζ1− t1)2 + (ζ2− t2)2 = 0, one has by letting w ∈ H(D) tend
to ζ: |ũ(w)| = |h(w)−1| → ∞; consequently the function ũ(w) cannot be extended
holomorphically across ζ ∈ ∂H(D).
1.b If t = ζ̄1 + iζ̄2, the function G(w) defined in the same way by substituting
ζ̄1 + iζ̄2 to ζ1 + iζ2 in F (w) (with similar branches) satisfies: (i) G(w) exists for
every w ∈ H(D), (ii) G(w) is holomorphic in H(D), (iii) G(w) cannot be extended
holomorphically to any open neighborhood of ζ in C2 (since |G(w)| → ∞ when
w ∈ H(D) → ζ), (iv) The restriction of G(w) on D is an infinite-harmonic function
on D.
2) It might happen that the set ∩{Du;u ∈ H∞(D)} reduces to only the starting
domain D, we would obtain thus an empty ∞-harmonicity cell, and consequently
(b), (c) are held to be true if this eventual case occur.
(a) Suppose the above intersection is of non empty interior in C2. Since D is
considered as a relative domain in R2, with respect to the induced topology from C2,
and since Du∩R2 = D for every u ∈ H∞(D), we have: ∩{Du;u ∈ H∞(D)}∩R2 =
∩{Du ∩ R2;u ∈ H∞(D)} = D; so TrH∞(D) = H∞(D) ∩ R2 ⊂ D. On the other
hand, since D ⊂ Du for every u ∈ H∞(D), we have D ⊂ (∩u∈H∞(D)D

u) ∩ R2.
Moreover, from the real analyticity of a function u ∈ H∞(D) in D, we deduce that
for every point a ∈ D, there exist radius ρuj = ρuj (a) > 0, j = 1, 2, small enough
such that u(z) =

∑
α∈N2 aα(z − a)α, for all z in the rectangle P r2 (a, ρuj (a)) = {x ∈

R2; |xj − aj | < ρuj (a), j = 1, 2} ⊂ D, where (z − a)α = (x1 − a1)α1(x2 − a2)α2 .
Substituting w ∈ C2 to z, we obtain ũ(w) =

∑
α∈N2 aα(w − a)α which is of course

holomorphic in the complex bidisk P c2 (a, ρuj (a)) = {w ∈ C2; |wj − aj | < ρuj (a), j =
1, 2} ⊂ C2, where (w − a)α = (w1 − a1)α1(w2 − a2)α2 , the chosen branch being
such that the restriction of (w−a)α to R2 is > 0. Thus the domain of holomorphic
extension of u is nothing else but the union of all the P c2 (a, ρuj (a)) ’s with a running
through D. The above construction involves D ⊂ [∩{Du;u ∈ H∞(D)}]0 ∩ R2; so
one has TrH∞(D) = D.
(b) Let w,w′ be two arbitrary points in B = ∩{Du;u ∈ H∞(D)}. By (a),
B = ∩u∈H∞(D) ∪a∈D P c2 (a, ρuj (a)), where ρuj (a), j = 1, 2, are the greatest ra-
dius corresponding to the power series expansion of u at a. Note that the set B
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is connected in case the above intersection reduces to D. Suppose then B 6= D
and take w,w′ in B. Since w,w′ are in Du for every u ∈ H∞(D), there exist, by
construction of Du, a, a′ ∈ D, such that w ∈ P c2 (a, ρuj (a)), and w′ ∈ P c2 (a′, ρuj (a

′)).
Putting ρj(a) = inf{ρuj (a);u ∈ H∞(D)}, ρj(a′) = inf{ρuj (a′);u ∈ H∞(D)}, we ob-
tain w ∈ P c2 (a, ρj(a)), w′ ∈ P c2 (a′, ρj(a′)), with ρj(a) ≥ 0 and ρj(a′) ≥ 0. Let then β
denote a path in D joining Rew ∈ P r2 (a, ρj(a)) ⊂ D to Rew′ ∈ P r2 (a′, ρj(a′)) ⊂ D.
The path γ, constituted successively with the paths [w,Rew], β, and [Rew′, w′]
joins w to w′ and is included into the union P c2 (a, ρj(a))∪D∪P c2 (a′, ρj(a′)) ⊂ Du.
We conclude that γ ⊂ B, B is connected and therefore so is H∞(D) = B0.
(c) By contradiction, suppose that H(D) does not contain H∞(D). Take w0 ∈
H∞(D) with w0 /∈ H(D). Since H∞(D) is connected and D ⊂ H∞(D), there
would exist a continuous path γw0,a joining w0 to some point a ∈ D, with γw0,a ⊂
H∞(D). Next, due to the inclusion D ⊂ H(D), we ensure the existence of a point ζ0
belonging to γw0,a∩∂H(D). Due to Part 1 above, to the boundary point ζ0 of H(D)
corresponds some function fζ0 which is∞-harmonic inD and whose extension f̃ζ0 in
C2 is a holomorphic function in H(D) which can not be holomorphically continued
beyond ζ0. Now, the ∞-harmonicity cell H∞(D) is characterized by: (i) Every
u ∈ H∞(D) is the restriction on D of a holomorphic function ũ : H∞(D) → C; (ii)
H∞(D) is the maximal domain of C2, in the inclusion sense, whose trace on R2 is
D, and satisfying (i). Then f̃ζ0 is not holomorphic at ζ0 with ζ0 inside H∞(D),
which contradicts the property (i). Consequently, the inclusion H∞(D) ⊂ H(D)
always holds.
(d) By Proposition 2.3, given u ∈ H∞(D), there exists a maximal domain Du ⊂
C2 to which u extends holomorphically. The domain Du is then a domain of
holomorphy of ũ (also called domain of holomorphy of u). Suppose that every
u ∈ H∞(D) extends holomorphically to H(D). One has then H(D) ⊂ Du, for
every u ∈ H∞(D); therefore, H(D) = H(D)0 ⊂ [∩u∈H∞(D)D

u]0 = H∞(D). The
result follows by (c).
(e) Due to Proposition 2.2, every ∞-harmonic function u in D is in particular real
analytic in D, and thereby partially real analytic in D. Since D ⊂ ∪mj=1P

r
2 (aj , ρj),

there exist open rectangles P r2 (aj , ρuj ) ⊂ D in which u writes as the sum of a power
series in (x1 − aj1)(x2 − aj2). More, the convergence radius ρuj1, ρ

u
j2 correspond-

ing to the development of x1 7→ u(x1, aj2) and x2 7→ u(aj1, x2) at aj1 and aj2
(respectively) are given by ρujk = {lim supnk→+∞[ 1

(nk)! |
∂nku
∂x

nk
k

(aj)|]1/nk}−1 k = 1, 2,
1 ≤ j ≤ m. By assumption, the given covering of D satisfies infu∈H∞(D) ρ

u
jk ≥ ρjk,

that is for every x ∈ P r2 (aj , ρj):

u(x) =
∑
n1∈N

∑
n2∈N

1
n1! n2!

∂n1+n2u

∂xn1
1 ∂xn2

2

(aj)(x1 − aj1)n1(x2 − aj2)n2 ,

where x = (x1, x2), aj = (aj1, aj2) and ρj = (ρj1,ρj2). It is clear that the complex
series obtained by substituting w1, w2 ∈ C to x1, x2 ∈ R is convergent on every
complex bidisk P c2 (aj , ρj) = {w ∈ C2; |w1 − aj1| < ρj1 and |w2 − aj2| < ρj2}. Due
to the maximality of Du, we have ∪mj=1P

c
2 (aj , ρj) ⊂ Du for every u ∈ H∞(D), and

thereby ∪mj=1P
c
2 (aj , ρj) ⊂ ∩{Du;u ∈ H∞(D)}. The last union being an open set,

one deduces that H∞(D) ⊃ ∪mj=1P
c
2 (aj , ρj); this mean in particular that H∞(D) 6=

∅. �
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Remark 2.8. The significant fact of the inclusion H∞(D) ⊂ H(D) is that the
common complex domain D̃, denoted H∞(D), for the whole class H∞(D), cannot
pass beyond H(D). Nevertheless, given a specified ∞−harmonic function u in D,
we may have: Du ⊃ H(D) with Du 6= H(D) .

Example 2.9. Consider D = {(x1, x2) ∈ R2;x1 > 0, x2 > 0}, and look for a C2

solution u in D of ∆∞u = 0 in the form u = Axα1 + Bxβ2 (where A,B, α, β are
constant). Since ∆∞u = A3α3(α − 1)x3α−4

1 + B3β3(β − 1)x3β−4
2 , we deduce that

u = x
4
3
1 − x

4
3
2 is a classical ∞-harmonic function u in D. Putting wj = xj + iyj ,

j = 1, 2 and ũ(w1, w2) = w
4
3
1 − w

4
3
2 , where the branch is chosen such that the

restriction of ũ toD ⊂ R2 is a real valued function, we observe that ũ is holomorphic
in C2 − (L1 ∪ L2), where L1 = C × {0}, L2 = {0} × C, and ũ|D = u. Since
C2 − (L1 ∪ L2) = C∗ × C∗ is a domain (connected open) in C2, we deduce that
Du = C∗×C∗. The harmonicity cell of D is given explicitly by the set of all w ∈ C2

satisfying: w1+iw2 = x1−y2+i(x2+y1) ∈ D and w̄1+iw̄2 = x1+y2+i(x2−y1) ∈ D
(here R2 ' C ). Thus H(D) = {w ∈ C2; x1 > |y2| and x2 > |y1|} ⊂ Du, and
H(D) 6= Du.

Remark 2.10. The inclusion H∞(D) ⊂ H(D) can be strengthened. Indeed, let
D ⊂ C be a simply connected domain, with smooth boundary, and let Hqr(D)
denote the sub-class of all∞-harmonic functions which are quasi-radial with respect
to some boundary point of D. A function u ∈ Hqr(D) if there exists t ∈ ∂D such
that u(z) = ρmf(θ), where z = t + ρeiθ ∈ D, f is a real or complex-valued C2

function in ] − π, π[, and m is a constant (no restriction on m also). Note that
by Aronsson [2], Hqr(D) is not empty. For instance, for m > 1, one can find
functions Z = f(θ) in parametric representation: Z = C

m (1 − 1
m cos2 τ)

m−1
2 cos τ ,

θ = θ0 +
∫ τ
τ0

sin2 τ ′

m−cos2 τ ′ dτ
′, τ1 < τ < τ2 (C, θ0, τ0, τ1, τ2 are constants). Similarly, let

Hqr(D) denote the complex domain D̃ corresponding to Hqr(D). Since Hqr(D) =
[∩u∈Hqr(D)D

u]0 , Hqr(D) ⊂ H∞(D), and the constructed function fζ in the proof
of Theorem 2.5 is quasi-radial, we have: H∞(D) ⊂ Hqr(D) ⊂ H(D).

Remark 2.11. To see that the property: limw→ζ |f̃(w)| = ∞, (w ∈ H(D), ζ ∈
∂H(D)) may fail, we give the following example.

Example 2.12. Let D be an arbitrary simply connected plane domain, D 6= ∅,
∂D 6= ∅. For a fixed ζ ∈ ∂H(D), take t = ζ1 + iζ2 ∈ T (ζ) and consider

F (w) =
√

(w1 − t1)2 + (w2 − t2)2 exp(
1
2

arctan
w2 − t2
w1 − t1

),

where the branches are taken such that their restriction to D ⊂ R2 is positive for
the square root and in ] − π

2 ,
π
2 [ for arctg). This function verifies: F (w) is well

defined and holomorphic on H(D), its restriction f to D is ∞-harmonic in D since
f(z) =

√
ρeθ/2 where z − t = ρeiθ; nevertheless limw→ζ |F (w)| = 0. Indeed, if ζ is

assumed in ∂H(D)−∂D, one has w1+iw2 → ζ1+iζ2, so that (w1−t1)2+(w2−t2)2 =
[(w1 + iw2) − (ζ1 + iζ2)][(w̄1 + iw̄2) − (ζ1 + iζ2)] → 0; on the other hand, by
definition of T (ζ), (ζ1 − t1)2 + (ζ2 − t2)2 = 0, thus arctan w2−t2

w1−t1 → arctan ζ2−t2
ζ1−t1 =

arctan±i = ±i∞, and | exp( 1
2arctg

w2−t2
w1−t1 )| → 1. Otherwise, the result is immediate

if ζ ∈ ∂D ⊂ ∂H(D).
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sectionHolomorphic extension in Fluids dynamic
In this section, we consider two general examples where the above techniques, of

complexification and analytic continuation to Cn, are used for the study of some
physical problems. The main application we are interested in is the problem of the
behaviour of a flow near an extreme point. In the following, Hp(D) denotes the
class of all p-harmonic functions on D.

Proposition 2.13. Let D ⊂ C be an arbitrary profile limited by a connected closed
curve C, and consider a stationary plane flow round D defined by the data of
a vanishing point and its velocity V∞ at the infinite. Suppose that C contains
two straight segments [a, z1], [a, z2] originated at a = a1 + ia2 and forming an
angle νπ, 0 < ν < 1. Then there exist a suitable real p > 1 and an open simply
connected neighborhood U of a, such that the quasi-linear p.d.e: ∆pu = |∇u|2∆u+
(p − 2)∆∞u = 0, has a radial (with respect to a) positive solution ϕ in U , which
approximates the modulus of the velocity V (z) of the fluid. More precisely:

(i) |V (z)| ∼ ϕ(z) as z → a, (z ∈ U).
(ii) ϕ ∈ H(3ν−4)/(2ν−2)(U).
(iii) Let C > 0 be a constant, and put δ = ( 2−ν

ν C)(ν−2)/(2ν−2); then a stream
function ϕc associated with a function ϕ of the form C|z−a|ν/(2−ν) is given
by

ϕc(x1 + ix2) =


δ arcsin x2−a2

|z−a| if x1 ≥ a1

δπ − δ arcsin x2−a2
|z−a| if x1 < a1 and x2 > a2

−δπ − δ arcsin x2−a2
|z−a| if x1 < a1 and x2 < a2

which is q-harmonic in U , with 1
p + 1

q = 1,; that is, ϕc ∈ H(3ν−4)/(ν−2)(U).

Proof. Since D is connected and simply connected, there exists an injective holo-
morphic transformation f1 sending the closed lower half-plane

P− − {−i} = {β ∈ C : Imβ ≤ 0, β 6= −i},

sharpened at −i, onto the the exterior of D, with a = f1(β0) and Imβ0 = 0. The
composed map γ = g1(β) = [f1(β)−a]1/(2−ν) is holomorphic, injective, and sends an
open simply connected neighborhood V(β0) ⊂ P−−{−i} of β0 onto a neighborhood
V(0) ⊂ P1, where P1 ⊂ C[γ] is one of the half-planes limited by the straight line
passing through γ1 = (z1−a)1/(2−ν) and γ2 = (z2−a)1/(2−ν). Due to the symmetry
principle of Schwartz [13], the function g1 extends as a holomorphic function g̃1 in
some open simply connected neighborhood Ṽ(β0) ⊂ C − {−i}, Ṽ(β0) ⊃ V(β0).
Thus, for every β ∈ Ṽ(β0), one has the absolutely convergent expansion for g̃1 :
g̃1(β) =

∑+∞
j=1 Aj(β − β0)j . Moreover, seeing that g̃1 is holomorphic and injective

in a neighborhood of β0, the first coefficient A1 = [g̃1]′(β0) = g′1(β0) is 6= 0. This
implies in particular: f1(β) = a + (β − β0)2−νf2(β), for β ∈ V(β0), where the
function f2(β) = [

∑+∞
j=1 Aj(β − β0)j−1]2−ν is a holomorphic function in V(β0)

and may be taken uniform (seeing that A1 is 6= 0) and holomorphic in a certain
open neighborhood Ṽ1(β0). Thus, for β ∈ V1(β0), one has f1(β) = a + (β −
β0)2−ν

∑+∞
j=0 Bj(β − β0)j , and

f1(β)− a ∼ B0(β − β0)2−ν as β → β0
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where B0 = A2−ν
1 . Recall that the flow is supposed to be held round a profile

D with an angular point a. Due to the well known Chaplygine condition, the
vanishing point of the current moves under the effect of viscosity and the formation
of whirlpools, to the extreme point a of D̄. As a simple calculus reveals, the complex
potential of the flow round D is given by:

w = f(z) = Re−iθg(z) +
Reiθr2

g(z)
− [2irR sin(ψ − θ)] ln(z),

where µ = g(z) is the bijective holomorphic function from Dc, the exterior of D,
onto the domain |µ| > r. The values of r and ψ are such that limz→∞ g(z) = ∞,
limz→∞ g′(z) = 1, µ0 = g(a) = reiψ and V∞ = Reiθ is the velocity at the infinite.
The holomorphic bijection f3 = f−1

1 ◦ g−1 maps {|µ| ≥ r} onto P− − {−i}. Thus
(2) gives

f1 ◦ f3(µ)− f1 ◦ f3(µ0) ∼ B0[f3(µ)− f3(µ0)]2−ν as µ→ µ0 . (2.3)

Since f ′3(µ0) 6= 0 one has f3(µ)− f3(µ0) ∼ f ′3(µ0)(µ− µ0) as µ→ µ0, so that (2.3)
implies g−1(µ)− g−1(µ0) ∼ C0(µ− µ0)2−ν , where

C0 = B0f
′
3(µ0)2−ν = [

g′1(β0).g′(a)
f ′1(β0)

]2−ν ;

that is, g(z) − g(a) ∼ C
1/(ν−2)
0 (z − a)1/(2−ν) as z → a. Consequently, near the

vanishing point a of the flow, the derivative of g satisfies

g′(z) ∼ g(z)− g(a)
z − a

∼ C
1/(ν−2)
0 (z−a)1/(2−ν)−1 = C

1/(ν−2)
0 (z−a)(ν−1)/(2−ν) (2.4)

as z → a. On the other hand, putting µ = g(z), we obtain

df

dµ
= R e−iθ −R eiθ

r2

µ2
− 2irR

µ
sin(ψ − θ) (2.5)

Since the velocity satisfies V (z) = ¯f ′(z), for z ∈ Dc, Equality (2.5) at µ0 gives

Re−iθ −Reiθ
r2

µ2
0

− 2irR
µ0

sin(ψ − θ) = 0

From the above equation and (2.5), we get for |µ| ≥ r : df
dµ (µ) − df

dµ (µ0) =
(µ − µ0)h(µ), with h(µ) = r2R eiθ µ+µ0

µ2µ2
0

+ 2irR
µµ0

sin(ψ − θ). By a simple calcu-

lus, limµ→µ0 h(µ) = 2R
r e

−2iψ cos(θ − ψ) 6= 0, here we will have to suppose that V∞
is such that θ 6= ψ ± π

2 (otherwise, if θ = ψ ± π
2 , a direct calculus will do). Hence,

df

dµ
∼ D0(z − a)1/(2−ν) as µ→ µ0 , (2.6)

with D0 = 2C1/(ν−2)
0 R cos(θ−ψ)/(re2iψ). Writing df

dz = df
dµ .

dµ
dz and combining (2.4)

and (2.6), we obtain the equivalence df
dz ∼ C

1/(ν−2)
0 D0(z − a)1/(2−ν)(z − a)

ν−1
2−ν as

z → a. Consequently |V (z)| ∼ C|z − a|ν/(2−ν), where

C =
2R| cos(θ − ψ)|

r
| f ′1(β0)
g′1(β0).g′a)

|.

Therefore, (i) and (ii) may be obtained by taking p = 3ν−4
2ν−2 , η = 0, ε = νC

2−ν in the
following lemma. �
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Lemma 2.14. For every real p > 1 and fixed complex point z0 ∈ C, the p-Laplace
equation (1.2) has radial solutions (with respect to the origin point z0) defined in
any sharpened disk X∗ at z0: X∗ = {z ∈ C; 0 < |z−z0| < R0}. All these functions
may be given by: εp−1

p−2 |z− z0|
p−2
p−1 + η, if p 6= 2, and ε ln |z− z0|+ η, if p = 2, where

a, b are arbitrary in R.

Proof of Lemma 2.14. Since ∆p(u◦ τz0) = (∆pu)◦ τz0 , we may assume that z0 = 0.
Firstly, the case p = 2 is well known since a 2-harmonic function u in a domain
Ω of Rn is also harmonic outside the zeros of grad u. If p 6= 2 and if x = ρ cos θ,
y = ρ sin θ is used in the p-Laplace equation

∆pu = (p− 2)[u2
xuxx + 2uxuyuxy + u2

yuyy] + (u2
x + u2

y)(uxx + uyy) = 0 (2.7)

we observe, via a simple substitution of ux, uy, uxx, uyy, uxy, expressed by means
of the polar coordinates (ρ, θ), and taking into account that the usual Laplace
operator ∆, and the gradient of u give in polar form: ∆u = uρρ + ρ−1uρ + ρ−2uθθ
, |∇u|2 = u2

ρ + ρ−2u2
θ, that (2.7) takes the form

∆pu = (p− 2)[u2
ρuρρ+

2uρuθuρθ
ρ2

+
u2
θuθθ
ρ4

− uρu
2
θ

ρ3
] + (u2

ρ+
u2
θ

ρ2
)[uρρ+

uρ
ρ

+
uθθ
ρ2

] = 0

(2.8)
To look for a radial solution u of (2.7), it suffices to put u(x+ iy) = h(ρ) in (2.8).
We obtain ∆pu = (h′)2[(p − 1)h′′ + 1

ρh
′] = 0 which is computed without difficulty

and gives the result stated in Lemma 2.14.
(iii) Writing (2.7) in the divergence form, and seing that U is simply connected,
one can associate to ϕ = C|z − a|ν/(2−ν) a conjugate q-harmonic function ϕc in U ,
defined by (ϕc)x1 = −|∇ϕ|ν/(2−ν)ϕx2 and (ϕc)x2 = |∇ϕ|ν/(2−ν)ϕx1 . �

Remark 2.15. There is a physical interpretation of the p-Laplace equation (1.2)
in terms of the laminar pipe flow of so-called power-law fluids [1]. Using the ter-
minology of non-linear fluid mechanic, one is motivated to call the stream function
v, corresponding to the potential u, the solution of ∆qv = div(|∇v|q−2∆v) = 0,
1 < q < +∞, where 1

p + 1
q = 1. In the language of Potential theory we say that u

and v are conjugate functions.

Proposition 2.16. Under the same hypothesis than proposition above, suppose
that a is a non angular point, V (a+ iγ) 6= 0 for γ real 6= 0 sufficiently small, and
∂rV
∂xr

2
(a) 6= 0 for some integer r ≥ 1. Then in some neighborhood U ′ of a, the velocity

of the fluid writes as

V (z) = [(x2−a2)r+(x2−a2)r−1h1(x1)+ · · ·+hr(x1)]h(z) = W (x2−a2)h(z) (2.9)

where z = x1 + ix2, a = a1 + ia2, h is a real analytic function in some neighborhood
U ′ of a with h(z) 6= 0 for every z ∈ U ′, and h1, . . . , hr, appearing in the Weierstrass’
unitary polynomial in (x2 − a2), are real analytic functions in some interval ]a1 −
ε, a1 + ε[, ε > 0.

Proof. Due to Propositions 2.3 and 2.4 above, we can extend holomorphically in
C2 the velocity function V : Ω = (D̄)c → C, (x1, x2) 7→ V (x1 + ix2), which is real
analytic (in fact even antiholomorphic) in Ω. Using the same technique above, and
putting: w = (w1, w2) = (x1 + iy1, x2 + iy2) ∈ C2, we find a maximal domain ΩV in
C2 whose trace with R2 is Ω, and to which V extends holomorphically. Let then Ṽ
denote the unique complexified function of V with Ṽ |Ω = V and Ṽ is holomorphic in
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ΩV . Since Ṽ : ΩV → C satisfies also Ṽ (a) = V (a) = 0, Ṽ (a1, a2+γ) = V (a1, a2+γ)
is 6= 0 for some (a1, a2 + γ) ∈ Ω ⊂ ΩV with γ 6= 0, and ∂rṼ

∂wr
2
(a) 6= 0 -seing

that ∂rṼ
∂wr

2
(a) = ∂rṼ

∂wr
2
|Ω(a) = ∂rV

∂xr
2
(a) - there exist, owing to Weierstass’ preparation

Theorem in Cn [21, p.290] with n = 2, r functions H1(w1), . . . ,Hr(w1) which are
holomorphic in some open neighborhood Ω̃1 of a1 in C, and a function H(w) which
is holomorphic in some open neighborhood Ω̃ ⊂ ΩV of a in C2 with H(w) 6= 0 in
Ω̃, such that

Ṽ (w) = [(w2 − a2)r + (w2 − a2)r−1H1(w1) + · · ·+Hr(w1)]H(w) (2.10)

for every w in some open neighborhood (Ω̃)′ of a in C2 with (Ω̃)′ ⊂ Ω̃ ⊂ ΩV .
Taking now the restriction of Equality (2.10) to R2, and seeing that the restriction
h1, . . . , hr of each holomorphic function H1(w1), . . . ,Hr(w1) is (real) analytic in
Ω̃1 ∩ R, we find the announced result (2.9) by putting Hj |R2 = hj , H|R2 = h, and
(Ω̃)′ ∩ R2 = U ⊂ Ω. Note also that the restriction h is analytic in U . �

Some concrete examples and physical interpretations of the above results will be
discussed in a further paper; nevertheless, the determination of the hj ’s rests heav-
ily upon an identification process and a residue formula. These functions stand for
the analytic coefficients of what we will call the Weierstrass polynomial associated
to the velocity of the flow in a neighborhood of a vanishing point.

Following Lelong’s method who introduced the transformation T in 1954 (which
was useful for constructing the harmonicity cells defined by Aronszajn in 1936), it
seems advisable now that an analogue T∞ of T must be precise in order to give
explicitly some infinite-harmonicity cells.
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