\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small 2004-Fez conference on Differential Equations and Mechanics \newline {\em Electronic Journal of Differential Equations}, Conference 11, 2004, pp. 81--93.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2004 Texas State University - San Marcos.} \vspace{9mm}} \setcounter{page}{81} \begin{document} \title[\hfilneg EJDE/Conf/11 \hfil An infinite-harmonic analogue] {An infinite-harmonic analogue of a Lelong theorem and infinite-harmonicity cells} \author[Mohammed Boutaleb\hfil EJDE/Conf/11 \hfilneg] {Mohammed Boutaleb} \address{D\'{e}p. de Math\'{e}matiques. Fac de Sciences F\`{e}s D. M, B.P. 1796 Atlas Maroc} \email{mboutalebmoh@yahoo.fr} \date{} \thanks{Published October 15, 2004.} \subjclass[2000]{31A30, 31B30, 35J30} \keywords{Infinite-harmonic functions; holomorphic extension; harmonicity cells; p-Laplace equation; stationary plane flow} \begin{abstract} We consider the problem of finding a function $f$ in the set of $\infty$-harmonic functions, satisfying \[ \lim_{w\to \zeta } |\widetilde{f}(w)| =\infty,\quad w\in \mathcal{H}(D),\quad \zeta \in \partial \mathcal{H}(D) \] and being a solution to the quasi-linear parabolic equation \[ u_x^2u_{xx}+2u_xu_yu_{xy}+u_y^2u_{yy}=0\quad \mbox{in } D\subset \mathbb{R}^2\,, \] where $D$ is a simply connected plane domain, $\mathcal{H}(D)\subset \mathbb{C}^2$ is the harmonicity cell of $D$, and $\widetilde{f}$ is the holomorphic extension of $f$. As an application, we show a $p$-harmonic behaviour of the modulus of the velocity of an arbitrary stationary plane flow near an extreme point of the profile. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{example}[theorem]{Example} \section{Introduction} The complexification problems for partial differential equations in a domain $\Omega \subset \mathbb{R}^n$ include the introduction of a common domain $\widetilde{\Omega }\supset \Omega $ in $\mathbb{C}^n$ to which all the solutions of a specified p.d.e. extend holomorphically. The complex domains in question are the so-called harmonicity cells $\mathcal{H}(\Omega )$, in \cite{a4}, for the following set of $2m$-order elliptic operators: \begin{equation} \Delta ^mu=\sum_{|\alpha |=m} \frac{m!}{\alpha !} \frac{\partial ^{2|\alpha |}u}{\partial x_1^{2\alpha _1}\dots\partial x_n^{2\alpha _n}}=0,\quad m=1,2,3\dots \label{e2} \end{equation} They often describe properties of physical processes which are governed by such a p.d.e \cite{o1}. The operator $\Delta ^2$ has been widely studied in the literature, frequently in the contexts of biharmonic functions \cite{a3}. \subsection*{Motivation} Our objective is to introduce the complex domain $\widetilde{D}$, and the adequate solution $f=f_\zeta$ in the space of $\infty$-harmonic functions ${\bf H}_\infty (D)$ , for equation \eqref{e6}, below. In view of Theorem \ref{thm2.5}, part 2, we assign a domain $\widetilde{D}\subset \mathbb{C}^2$, denoted by $\mathcal{H}_\infty (D)$, to the class ${\bf H}_\infty (D)$. The definition of $\mathcal{H}_\infty (D)$, is similar to the definition of $\mathcal{H}(D)$, although less explicit. Equation \eqref{e6} is actually the formal limit, as $p\to +\infty $, of the $p$-harmonic equation in $D\subset \mathbb{R}^2$ \begin{equation} \Delta _pu=\mathop{\rm div}(|\nabla u|^{p-2}\Delta u)=0,\quad 11$, the hodograph method transforms $\Delta_pu=0$ into a linear elliptic p.d.e. in the hodograph plane. Due to \cite{b1}, the pull-back operation is possible from $\mathbb{R}^2(u_x,u_y)$ to the physical plane. Although linear, the obtained equation is not easily computed since its limit conditions become more complicated. \subsection*{Preliminaries} Let $\Omega $ be a domain in $\mathbb{R}^n$, $n\geq 2$, $\Omega \neq \emptyset$, $\partial \Omega \neq \emptyset $. In 1935, Aronszajn \cite{a3} introduced the notion of harmonicity cells in order to study the singularities of $m$-polyharmonic functions. These functions, used in elasticity calculus of plates, are $C^\infty $-solutions in $\Omega $ of \eqref{e2}. Recall that $\mathcal{H}(\Omega )$ is the domain of $\mathbb{C}^n$, whose trace $\mathop{\rm Tr}\mathcal{H}(\Omega )$ on $\mathbb{R}^n$ is $\Omega $, and represented by the connected component containing $\Omega $ of the open set $\mathbb{C}^n-\cup_{t\in \partial \Omega }\Gamma (t)$, where $\Gamma (t)=\{z\in \mathbb{C}^n:(z_1-t_1)^2+\dots+(z_n-t_n)^2=0\}$ is the isotropic cone of $\mathbb{C}^n$, with vertex $t\in \mathbb{R}^n$. Lelong \cite{l1} proved that $\mathcal{H}(\Omega )$ coincides with the set of points $z\in \mathbb{C}^n$ such that there exists a path $\gamma $ satisfying: $\gamma (0)=z$, $\gamma (1)\in \Omega $ and $T[\gamma (\tau )]\subset \Omega $ for every $\tau $ in $[0,1]$, where $T$ is the Lelong transformation, mapping points $z=x+iy\in \mathbb{C}^n$ to Euclidean $(n-2)$-spheres $S^{n-2}(x,\|y\|)$ of the hyperplane of $\mathbb{R}^n$ defined by: $\langle t-x,y\rangle =0$. If $\Omega $ is starshaped at $a_0\in \Omega ,\mathcal{H}(\Omega )=\{z\in \mathbb{C}^n;T(z)\subset \Omega \}$ is also starshaped at $a_0$. Furthermore, for bounded convex domains $\Omega $ of $\mathbb{R}^n$, we get \begin{equation} \mathcal{H}(\Omega )=\big\{z=x+iy\in \mathbb{C}^n: \max_{t\in T( iy)}{\max } \big[ \max_{\xi \in S^{n-1}}\big( \langle x+t,\xi \rangle- \max_{s\in \Omega }\langle \xi ,s\rangle \big) \big] <0\big\} \end{equation} \label{e4} where $S^{n-1}$ is the Euclidean unit sphere of $\mathbb{R}^n$ \cite{a4,b2}. The harmonicity cell of the Euclidean unit ball $B_n$ of $\mathbb{R}^n$ gives a central example, since $\mathcal{H}(B_n)$ coincides with the Lie ball $LB=\{z\in \mathbb{C}^n;L(z)=[\|z\|^2+\sqrt{\| z\|^4-|z_1^2+\dots+z_n^2|^2}]^{1/2}<1\}$, where $\|z\|=(|z_1|^2+\dots+|z_n|^2)^{1/2}$. Besides, representing also the fourth type of symmetric bounded homogenous irreducible domains of $\mathbb{C}^n$, $\mathcal{H}(B_n)$ has been studied (specially in dimension $n=4)$ by theoretical physicits interested in a variety of different topics: particle physics, quantum field theory, quantum mechanics, statistical mechanics, geometric quantization, accelerated observers, general relativity and even harmony and sound analysis (For more details, see \cite{c1,m1,o1,p1}. From the point of view of complex analysis, Jarnicki \cite{j1} proved that if $D_1$ and $D_2$ are two analytically homeomorphic plane domains of $\mathbb{C}\simeq \mathbb{R}^2$ then their harmonicity cells $\mathcal{H}(D_1)$ and $\mathcal{H}(D_2)$ are also analytically homeomorphic in $\mathbb{C}^2$. A generalization in $\mathbb{C}^n,n\geq 2$, of this Jarnicki Theorem is established by the author \cite{b4}, as well as a characterization of polyhedric harmonicity cells in $\mathbb{C}^2$ \cite{b6}. Furthermore, recall that if ${\bf A}(\Omega )$ and ${\bf Ha}(\Omega )$ denote the spaces of all real analytic and harmonic functions (respectively) in $\Omega $, then $\mathcal{H}(\Omega )$ is characterized by the following feature \begin{equation} [ \cap_{f\in {\bf Ha}(\Omega )} \Omega ^f]^0=\mathcal{H} (\Omega ), \label{e5} \end{equation} while $[\cap \Omega ^f]^0=\emptyset $, when $f$ runs through ${\bf A}(\Omega )$, where $\Omega ^f$ is the greatest domain of $\mathbb{C}^n$ to which $f$ extends holomorphically. We emphasize that in \eqref{e5}, $\Omega $ is actually required to be star-shaped at some point $a_0$, or a $C$-domain (that is, $\Omega $ contains the convex hull $\mathop{\rm Ch}(S^{n-2})$ of any $(n-2)$-Euclidean sphere $S^{n-2}$ included in $\Omega $) or $\Omega \subset \mathbb{R}^{2p}$ with $2p\geq 4$, or $\Omega $ is a simply connected domain in $\mathbb{R}^2$ (cf. \cite{a4}). The technique of holomorphic extension, used for harmonic functions in \cite{s1}, has been generalized for solutions of partial differential equations with constant coefficients by Kiselman \cite{k1}. In a recent paper, Ebenfelt \cite{e1} considers the holomorphic extension to the so-called kernel $\mathcal{NH}(\Omega )$ of $\Omega $'s harmonicity cell, for solutions in simply connected domains $\Omega $ in $\mathbb{R}^n$, of linear elliptic partial differential equations of type: $\Delta ^ku+\sum_{|\alpha |<2k} a_\alpha (x)D^\alpha u=g$, where $\mathcal{NH}(\Omega )=\{z\in \mathcal{H}(\Omega ); \mathop{\rm Ch}[T(z)]\subset \Omega \}$. It can be observed that one of the central results in the theory of harmonicity cells is the following Lelong theorem (stated here in the harmonic case) \begin{theorem} \label{thmA} Let $\Omega$ be a non empty domain in $\mathbb{R}^n$, $n\geq 2$, with non empty boundary and $\mathcal{H}(\Omega )$ its harmonicity cell in $\mathbb{C}^n$. For every $\zeta \in\partial \mathcal{H}(\Omega )$ there exists $f=f_\zeta $, a harmonic function in $\Omega$, which is the restriction to $\Omega=\mathcal{H}(\Omega )\cap \mathbb{R}^n$ of a (unique) holomorphic function $\widetilde{f_\zeta }$ defined in $\mathcal{H}(\Omega )$ such that $\widetilde{f_\zeta }$ can not be extended holomorphically in any open neighborhood of $\zeta $. \end{theorem} \subsection*{Statement of the problem} In this paper we consider the simpler case of a non-empty plane domain $D$ (with $\partial D\neq \emptyset$) which we set to be simply connected and look for a suitable $\infty$-harmonic function $f_\zeta $ in $D$. We state the problem as follows: Let $\zeta $ be a boundary point of $\mathcal{H}(D)$ and put $T(\zeta )=\{\zeta_1+i\zeta _2,\bar{\zeta}_1+i\bar{\zeta}_2\}$. We will assume first that $\zeta $ belongs to $\Gamma (\zeta _1+i\zeta _2)$. The problem is to find a solution $f_\zeta$ in the classical sense, i.e. $f_\zeta \in C^2(D)$ and $f_\zeta $ a.e. continuous on $\partial D$ of the quasi-elliptic system: \begin{gather} u_{x_1}^2u_{x_1x_1}+2u_{x_1}u_{x_2}u_{x_1x_2}+u_{x_2}^2u_{x_2x_2}=0\quad \mbox{in} D \label{e6}\\ \frac \partial {\partial \bar{w}_j}\widetilde{u}=0\quad j=1,2\quad \quad \mbox{in }\mathcal{H}(D) \label{e6.1}\\ \lim_{w\to \zeta ,\; w\in \mathcal{H}(D)} |\widetilde{u}(w)|=\infty \,.\label{e6.2} \end{gather} This problem has already been considered in \cite{l1} in the harmonic case, and in \cite{b3} in the $p$-polyharmonic case. It has also been solved in the (non linear) $p$-harmonic case with $11$) and to {\it real valued} $p$-harmonic functions. Our main result in the present paper consists of introducing infinite-harmonicity cells and proving an existence theorem for the $\infty$-Laplace equation. In Theorem \ref{thm2.5}, we prove that to $\zeta \in \partial \mathcal{H}(D) $ corresponds a $f_\zeta \in {\bf H}_\infty (D)$ such that $\widetilde{f_\zeta }$ is holomorphic in $\mathcal{H}(D)$ and satisfies $|\widetilde{f_\zeta }(w)|\to \infty $, when $w\to \zeta $ with $w$ inside $\mathcal{H}(D)$. \section{Infinite-harmonicity cells} The next four propositions are used in this work and their proofs are found in the references as cited. \begin{proposition}[\cite{l1}] \label{prop2.1} Let $\Omega$ be a domain in $\mathbb{R}^n$, $n\geq 2$, $\Omega \neq \emptyset$, $\partial \Omega \neq \emptyset$, and $\mathcal{H}(\Omega )\subset \mathbb{C}^n$ be its harmonicity cell. For every point $\zeta \in \partial \mathcal{H}(\Omega )$, the topological boundary of $\mathcal{H}(\Omega )$, one can associate a point $t\in \partial \Omega$, the topological boundary of $\Omega$, such that $\zeta \in \Gamma (t)$, the isotropic cone of $\mathbb{C}^n$ with vertex $t$. \end{proposition} \begin{proposition}[\cite{a2,l2}] \label{prop2.2} A classical solution $u=u(x_1,x_2)\in \mathbf{C}^2$ of the partial differential equation $$ \Delta _\infty u=u_{x_1}^2u_{x_1x_1}+2u_{x_1}u_{x_2}u_{x_1x_2}+u_{x_2}^2u_{x_2x_2}=0, $$ in every non-empty domain $D\subset \mathbb{R}^2$, is real analytic in $D$, and cannot have a stationary point without being constant \end{proposition} \begin{proposition}[\cite{a4}] \label{prop2.3} To every couple $(\Omega ,f)$, where $\Omega $ is an open set of $\mathbb{R}^n=\{x+iy\in \mathbb{C}^n;y=0\}$ (equipped with the induced topology from $\mathbb{C}^n$), $f$ is a real analytic function on $D$, one can associate a couple $(\widetilde{\Omega },\widetilde{f})$ such that $\widetilde{\Omega }$ is an open set of $\mathbb{C}^n$ whose trace $\widetilde{\Omega }\cap \mathbb{R}^n$ with $\mathbb{R}^n$ is the starting domain $\Omega$, and $\widetilde{f}$ is a holomorphic function in $\widetilde{\Omega }$ whose restriction $\widetilde{f}|\Omega $ to $\Omega $ coincides with $f$. Furthermore, (i) if $\Omega $ is connected, so is $\widetilde{\Omega }$; (ii) Among all the $\widetilde{\Omega }$'s above, there exists a unique domain, denoted $\Omega ^f$, which is maximal in the inclusion meaning. \end{proposition} \begin{proposition}[\cite{h1}] \label{prop2.4} Let $A\subset \mathbb{C}^n$ be a connected open set, $f$ and $g$ be two holomorphic functions in $A$ with values in a complex Banach space $E$. If there exists an open subset $U$ of $A$ such that $f(z)=g(z)$ for every $z$ in $U\cap \mathbb{R}^n$, then $f(z)=g(z)$ for every $z$ in $A$. \end{proposition} \begin{theorem} \label{thm2.5} Let $D$ be a simply connected domain of $\mathbb{R}^2\simeq \mathbb{C}$, with $D\neq \emptyset$, and $\partial D\neq \emptyset $. Let $\mathcal{H}(D)=\{z\in \mathbb{C}^2;z_1+iz_2\in D \mbox{ and }\bar{z}_1+i\bar{z}_2\in D\}$ be the harmonicity cell of $D$. Then \noindent (1) For every $\zeta \in \partial \mathcal{H}(D)$, and every open neighbourhood $V_\zeta $ of $\zeta $ in $\mathbb{C}^2$, there exists a classical ($\in C^2$) $\infty $-harmonic function $f_\zeta $ on $D$, whose complex extension is holomorphic in $\mathcal{H}(D)$, but cannot be analytically continued through $V_\zeta $. \noindent(2) For the given domain $D$, let us denote by $\mathcal{H}_\infty (D)$ the interior in $\mathbb{C}^2$ of $\cap \{D^u;u\in {\bf H}_\infty (D)\}$. The set $\mathcal{H}_\infty (D)$ which may be called the infinite-harmonicity cell of $D$, satisfies: \begin{itemize} \item[(a)] The trace of $\mathcal{H}_\infty (D)$ with $\mathbb{R}^2$ is $D$, under the hypothesis that $\mathcal{H}_\infty (D)\neq \emptyset $ \item[(b)] $\mathcal{H}_\infty (D)$ is a connected open of $\mathbb{C}^2$ \item[(c)] The inclusion $\mathcal{H}_\infty (D)\subset \mathcal{H}(D)$ always holds \item[(d)] If $D$ is such that every $u\in {\bf H}_\infty (D)$ extends holomorphically to $\mathcal{H}(D)$ then $\mathcal{H}_\infty (D)\neq \emptyset$, and both the cells $\mathcal{H}(D)$ and $\mathcal{H}_\infty (D)$ coincide. \item[(e)] Suppose $D$ is bounded and covered by a finite union of open rectangles $P_2^r(a_j;\rho _{j1},\rho _{j2})$, centered at $a_j\in D$, $j=1,\dots,m$, such that for every $u\in {\bf H}_\infty (D)$ \[ \limsup_{n_k\to +\infty } \big[\frac 1{(n_k)!} \big|\frac{\partial ^{n_k}u}{\partial x_k^{n_k}}(a_j)\big|\big]^{1/n_k} \leq \frac 1{\rho _{jk}},\quad k=1,2,\; 1\leq j\leq m\,. \] Then $\mathcal{H}_\infty (D)\supset \cup_{j=1}^m P_2^c(a_j,\rho _j)$, and therefore $\mathcal{H}_\infty (D)\neq \emptyset $. \end{itemize} \end{theorem} In the proof of Theorem \ref{thm2.5}, we will use the following two lemmas. \begin{lemma} \label{lem2.6} In every sector $-\pi <\theta <\pi $, the $\infty$-Laplace equation $\Delta _\infty u=0$ has a solution in the form $u=\frac{v(\theta )}\rho $, where $\theta=\mathop{\rm Arg}z$, $\rho =|z|$, and $v$ satisfies the ordinary differential equation (not containing $\theta $) \begin{equation} (v')^2v"+3v(v')^2+2v^3=0\label{e7} \end{equation} \end{lemma} \begin{proof} It is clear that we have to use polar coordinates. With $x_1=\rho \cos \theta $, $x_2=\rho \sin \theta $ in \eqref{e6}, we get by a simple calculation: $u_{x_1}=u_\rho \cos \theta -\frac 1\rho u_\theta \sin \theta $, $u_{x_2}=u_\rho \sin \theta +\frac 1\rho u_\theta \cos \theta $, $u_{x_1x_1}=u_{\rho \rho }\cos ^2\theta +\frac 1{\rho ^2}u_{\theta \theta }\sin ^2\theta -\frac 1\rho u_{\theta \rho }\sin 2\theta +\frac 1\rho u_\rho \sin \theta +\frac 1{\rho ^2}u_\theta \sin 2\theta $, $u_{x_2x_2}=u_{\rho \rho }\sin ^2\theta +\frac 1{\rho ^2}u_{\theta \theta }\cos ^2\theta +\frac 1\rho u_{\theta \rho }\sin 2\theta +\frac 1\rho u_\rho \cos ^2\theta -\frac 1{\rho ^2}u_\theta \sin 2\theta $, $u_{x_1x_2}=\frac 12u_{\rho \rho }\sin 2\theta -\frac 1{2\rho ^2}u_{\theta \theta }\sin 2\theta +\frac 1\rho u_{\theta \rho }\cos 2\theta -\frac 1{2\rho }u_\rho \sin 2\theta -\frac 1{\rho ^2}u_\theta \cos 2\theta $. Finally, after expanding the terms and rearranging, the $\infty $-Laplace equation \eqref{e6} takes the form (in polar coordinates) \begin{equation} \Delta _\infty u=u_\rho ^2u_{\rho \rho } +\frac{2u_\rho u_\theta u_{\rho\theta }}{\rho ^2} +\frac{u_\theta ^2u_{\theta \theta }}{\rho ^4} -\frac{u_\rho u_\theta ^2}{\rho ^3}=0 \label{e8} \end{equation} Putting $u=\frac{v(\theta )}\rho$ in \eqref{e8} we find that $v$ satisfies the non-linear o.d.e. \eqref{e7}. \end{proof} \begin{lemma} \label{lem2.7} Let $D$ be a simply connected domain in $\mathbb{C}$, $D\neq \emptyset$, $\partial D\neq \emptyset$. For every $t\in \partial D$, there exists a complex valued $\infty$-harmonic function in $D$ which cannot be extended continuously in any given open neighborhood of $t$. \end{lemma} \begin{proof} Let us look for a solution of \eqref{e6} in $D$ in the form $u(z)=\frac{v(\theta )}{|z-t|}$ , where the argument $\theta $ is the unique angle in $]-\pi ,\pi [$ satisfying $z-t=e^{i\theta }|z-t|,v$ is assumed to be $C^2$ in $]-\pi ,\pi [$. Note here that the simple connexity of $D$ guarantees that $u$ is uniform in $D$. As it can be shown that the $\infty -$Laplacien operator: $\Delta _\infty u=u_{x_1}^2u_{x_1x_1}+2u_{x_1}u_{x_2}u_{x_xx_2} +u_{x_2}^2u_{x_2x_2}$ is invariant under translations $\tau _a$ of $\mathbb{C\simeq R}^2$, $z=x_1+ix_2$, $a=a_1+ia_2$ - that is $\Delta _\infty (u\circ \tau _a)=(\Delta _\infty u)\circ \tau _a$ - we may assume without loss of generality that $t=0$. Insertion of $v=e^{\gamma \theta }$, where $\gamma\in \mathbb{C}$ is a constant, in \eqref{e7} gives: $\gamma ^4+3\gamma ^2+2=0$ or $(\gamma ^2+1)(\gamma ^2+2)=0$. Take $\gamma =i$ and consider the $\infty $-harmonic function in $D$ defined by: $u(z)=\frac{e^{i\theta }}{|z-t|}$ , or more explicitly: \[ u(z)=\begin{cases} \frac 1{|z-t|}\exp (i\arcsin \frac{x_2-t_2}{|z-t|}) &\mbox{if }x_1\geq t_1 \\ \frac \pi {|z-t|}-\frac 1{|z-t|}\exp (i\arcsin \frac{x_2-t_2}{|z-t|}) & \mbox{if }x_1t_2 \\ \frac{-\pi }{|z-t|}-\frac 1{|z-t|}\exp(i\arcsin \frac{x_2-t_2}{|z-t|}) & \mbox{if }x_1t_2 \\ \frac{-\pi }{h(w)}-\frac 1{h(w)}\exp(i\arcsin \frac{w_2-t_2}{h(w)}) &\mbox{if }\mathop{\rm Re}w_1\mathop{\rm Im}(\zeta _1+i\zeta _2) \\[3pt] \frac{-\pi }{g(w)}-\frac 1{g(w)}\exp(i\arcsin \frac{w_2-\mathop{\rm Im}(\zeta _1+i\zeta _2)}{g(w)}) &\mbox{if }\mathop{\rm Re}w_1<\mathop{\rm Re}(\zeta _1+i\zeta _2),\\ &\mathop{\rm Re}w_2<\mathop{\rm Im}(\zeta _1+i\zeta _2), \end{cases} \] where $g(w)=\sqrt{[(w_1+iw_2)-(\zeta _1+i\zeta _2)][(\bar{w}_1 +i\bar{w}_2)-(\zeta _1+i\zeta _2)]}$, and the branches are chosen as in $\widetilde{u}(w)$. Seeing that by \cite{l1}, $\mathcal{H}(D)=\{w\in \mathbb{C}^2;T(w)\subset D\}$, and noting that $g(w)=0$ if and only if $w\in \Gamma(t) $ with $t\in \partial D$, the function $F(w)$ is well defined in some open $A_2\supset\mathcal{H}(D)$. Observe that $\widetilde{u}$ and $F$ are both holomorphic in $A=A_1\cap A_2$ - since $\frac{\partial \widetilde{u}}{\partial \bar{w}_j} =\frac{\partial F}{\partial \bar{w}_j}=0$ in $A\supset \mathcal{H}(D)$, $w_j=x_j+iy_j$ , $j=1,2$- having the same restriction on $D=U\cap \mathbb{R}^2$, with $U=\mathcal{H}(D)$: $\widetilde{u}|_D(z)=F|_D(z)=u(z)$, with $z=x_1+ix_2$. By Proposition \ref{prop2.4}, we deduce that $\widetilde{u}=F$ in $\mathcal{H}(D)$. Furthermore, since $\zeta $ and $t$ satisfies $(\zeta _1-t_1)^2+(\zeta _2-t_2)^2=0$, one has by letting $w\in \mathcal{H}(D)$ tend to $\zeta$: $|\widetilde{u}(w)|=|h(w)^{-1}|\to \infty $; consequently the function $\widetilde{u} (w)$ cannot be extended holomorphically across $\zeta \in \partial \mathcal{H}(D)$. \noindent 1.b\quad If $t=\bar{\zeta}_1+i\bar{\zeta}_2$, the function $G(w)$ defined in the same way by substituting $\bar{\zeta}_1+i \bar{\zeta}_2$ to $\zeta _1+i\zeta _2$ in $F(w)$ (with similar branches) satisfies: (i) $G(w)$ exists for every $w$ $\in \mathcal{H}(D)$, (ii) $G(w)$ is holomorphic in $\mathcal{H}(D)$, (iii) $G(w)$ cannot be extended holomorphically to any open neighborhood of $\zeta $ in $\mathbb{C}^2$ (since $|G(w)|\to \infty $ when $w\in \mathcal{H}(D)\to \zeta $), (iv) The restriction of $G(w)$ on $D$ is an infinite-harmonic function on $D$. \noindent 2) It might happen that the set $\cap \{D^u;u\in {\bf H}_\infty (D)\}$ reduces to only the starting domain $D$, we would obtain thus an empty $\infty $-harmonicity cell, and consequently (b), (c) are held to be true if this eventual case occur. \noindent (a) Suppose the above intersection is of non empty interior in $\mathbb{C}^2$. Since $D$ is considered as a relative domain in $\mathbb{R}^2$, with respect to the induced topology from $\mathbb{C}^2$, and since $D^u\cap \mathbb{R}^2=D $ for every $u\in {\bf \ H}_\infty (D)$, we have: $\cap \{D^u;u\in {\bf H}_\infty (D)\}\cap \mathbb{R}^2 =\cap \{D^u\cap \mathbb{R}^2;u\in {\bf H}_\infty (D)\}=D;$ so $\mathop{\rm Tr}\mathcal{H}_\infty (D)=\mathcal{H}_\infty (D)\cap \mathbb{R}^2\subset D$. On the other hand, since $D\subset D^u $ for every $u\in {\bf H}_\infty (D)$, we have $D\subset (\cap_{u\in {\bf H}_\infty (D)} D^u)\cap \mathbb{R}^2$. Moreover, from the real analyticity of a function $u\in $ ${\bf H}_\infty (D)$ in $D$, we deduce that for every point $a\in D$, there exist radius $\rho _j^u=\rho_j^u(a)>0,j=1,2$, small enough such that $u(z)=\sum_{\alpha \in \mathbb{N}^2} a_\alpha (z-a)^\alpha $, for all $z$ in the rectangle $P_2^r(a,\rho _j^u(a))=\{x\in \mathbb{R}^2;|x_j-a_j|<\rho _j^u(a)$, $j=1,2\}\subset D$, where $(z-a)^\alpha =(x_1-a_1)^{\alpha_1}(x_2-a_2)^{\alpha _2}$. Substituting $w\in \mathbb{C}^2$ to $z$, we obtain $\widetilde{u}(w)=\sum_{\alpha \in \mathbb{N}^2} a_\alpha(w-a)^\alpha $ which is of course holomorphic in the complex bidisk $P_2^c(a,\rho _j^u(a))=\{w\in \mathbb{C}^2;|w_j-a_j|<\rho_j^u(a),j=1,2\}\subset \mathbb{C}^2$, where $(w-a)^\alpha =(w_1-a_1)^{\alpha_1}(w_2-a_2)^{\alpha _2}$, the chosen branch being such that the restriction of $(w-a)^\alpha $ to $\mathbb{R}^2$ is $>0$. Thus the domain of holomorphic extension of $u$ is nothing else but the union of all the $P_2^c(a,\rho_j^u(a))$ 's with $a$ running through $D$. The above construction involves $D\subset [\cap \{D^u;u\in {\bf H}_\infty (D)\}]^0 \cap \mathbb{R}^2$; so one has $\mathop{\rm Tr}\mathcal{H}_\infty (D)=D$. \noindent (b) Let $w,w'$ be two arbitrary points in $B=\cap \{D^u;u\in {\bf H}_\infty (D)\}$. By (a), $B=\cap_{u\in {\bf H}_\infty (D)}\cup_{a\in D} P_2^c(a,\rho _j^u(a))$, where $\rho _j^u(a)$, $j=1,2$, are the greatest radius corresponding to the power series expansion of $u$ at $a$. Note that the set $B$ is connected in case the above intersection reduces to $D$. Suppose then $B\neq D$ and take $w,w'$ in $B$. Since $w,w'$ are in $D^u$ for every $u\in{\bf H}_\infty (D)$, there exist, by construction of $D^u$, $a,a'\in D$, such that $w\in P_2^c(a,\rho _j^u(a))$, and $w'\in P_2^c(a',\rho _j^u(a'))$. Putting $\rho _j(a)=\inf \{\rho_j^u(a);u\in {\bf H}_\infty (D)\},\rho _j(a')=\inf \{\rho _j^u(a');u\in {\bf H}_\infty (D)\}$, we obtain $w\in P_2^c(a,\rho_j(a))$, $w'\in P_2^c(a',\rho _j(a'))$, with $\rho _j(a)\geq 0$ and $\rho _j(a')\geq 0$. Let then $\beta $ denote a path in $D$ joining $\mathop{\rm Re}w\in P_2^r(a,\rho _j(a))\subset D$ to $\mathop{\rm Re}w'\in P_2^r(a',\rho_j(a'))\subset D$. The path $\gamma $, constituted successively with the paths $[w,\mathop{\rm Re}w]$, $\beta $, and $[\mathop{\rm Re}w',w']$ joins $w$ to $w'$ and is included into the union $P_2^c(a,\rho _j(a))\cup D\cup P_2^c(a',\rho _j(a'))\subset D^u$. We conclude that $\gamma \subset B$, $B$ is connected and therefore so is $\mathcal{H}_\infty (D)=B^0$. \noindent (c) By contradiction, suppose that $\mathcal{H}(D)$ does not contain $\mathcal{H}_\infty (D)$. Take $w_0\in \mathcal{H}_\infty (D)$ with $w_0\notin \mathcal{H }(D)$. Since $\mathcal{H}_\infty (D)$ is connected and $D\subset \mathcal{H}_\infty (D)$, there would exist a continuous path $\gamma _{w_0,a}$ joining $w_0$ to some point $a\in D$, with $\gamma _{w_0,a}\subset \mathcal{H}_\infty (D)$. Next, due to the inclusion $D\subset \mathcal{H}(D)$, we ensure the existence of a point $\zeta _0$ belonging to $\gamma _{w_0,a}\cap \partial \mathcal{H}(D)$. Due to Part 1 above, to the boundary point $\zeta _0$ of $\mathcal{H}(D)$ corresponds some function $f_{\zeta _0}$ which is $\infty$-harmonic in $D$ and whose extension $\widetilde{f_{\zeta _0}}$ in $\mathbb{C}^2 $ is a holomorphic function in $\mathcal{H}(D)$ which can not be holomorphically continued beyond $\zeta _0$. Now, the $\infty $-harmonicity cell $\mathcal{H}_\infty (D)$ is characterized by: (i) Every $u\in {\bf H}_\infty (D)$ is the restriction on $D$ of a holomorphic function $\widetilde{u}:\mathcal{H}_\infty (D)\to \mathbb{C}$; (ii) $\mathcal{H}_\infty (D)$ is the maximal domain of $\mathbb{C}^2$, in the inclusion sense, whose trace on $\mathbb{R}^2$ is $D$, and satisfying (i). Then $\widetilde{f_{\zeta _0}}$ is not holomorphic at $\zeta _0$ with $\zeta _0$ inside $\mathcal{H}_\infty (D)$, which contradicts the property (i). Consequently, the inclusion $\mathcal{H}_\infty (D)\subset \mathcal{H}(D)$ always holds. \noindent (d) By Proposition \ref{prop2.3}, given $u\in {\bf H}_\infty (D)$, there exists a maximal domain $D^u\subset \mathbb{C}^2$ to which $u$ extends holomorphically. The domain $D^u$ is then a domain of holomorphy of $\widetilde{u}$ (also called domain of holomorphy of $u$). Suppose that every $u\in {\bf H}_\infty (D)$ extends holomorphically to $\mathcal{H}(D)$. One has then $\mathcal{H}(D)\subset D^u$, for every $u\in {\bf H}_\infty (D)$; therefore, $\mathcal{H}(D)=\mathcal{H}(D)^0\subset [\cap_{u\in {\bf H}_\infty (D)}D^u]^0= \mathcal{H}_\infty (D)$. The result follows by (c). \noindent (e) Due to Proposition \ref{prop2.2}, every $\infty $-harmonic function $u$ in $D$ is in particular real analytic in $D$, and thereby partially real analytic in $D $. Since $D\subset \cup_{j=1}^m P_2^r(a_j,\rho_j)$, there exist open rectangles $P_2^r(a_j,\rho _j^u)\subset D$ in which $u$ writes as the sum of a power series in $(x_1-a_{j1})(x_2-a_{j2})$. More, the convergence radius $\rho _{j1}^u,\rho _{j2}^u$ corresponding to the development of $x_1\mapsto u(x_1,a_{j2})$ and $x_2\mapsto u(a_{j1},x_2)$ at $a_{j1}$ and $a_{j2}$ (respectively) are given by $\rho _{jk}^u=\{\limsup_{n_k\to +\infty } [\frac 1{(n_k)!}| \frac{\partial ^{n_k}u}{\partial x_k^{n_k}}(a_j)|]^{1/n_k}\}^{-1}$ $k=1,2$, $1\leq j\leq m$. By assumption, the given covering of $D$ satisfies $\inf_{u\in {\bf H}_\infty (D)}\rho_{jk}^u\geq \rho _{jk}$, that is for every $x\in P_2^r(a_j,\rho _j)$: \[ u(x)=\sum_{n_1\in \mathbb{N}} \sum_{n_2\in \mathbb{N}} \frac 1{n_1!\; n_2!}\frac{\partial ^{n_1+n_2}u} {\partial x_1^{n_1}\; \partial x_2^{n_2}}(a_j) (x_1-a_{j1})^{n_1}(x_2-a_{j2})^{n_2}, \] where $x=(x_1,x_2)$, $a_j=(a_{j1},a_{j2})$ and $\rho _j=(\rho _{j1,}\rho _{j2})$. It is clear that the complex series obtained by substituting $w_1,w_2\in \mathbb{C}$ to $x_1,x_2\in \mathbb{R}$ is convergent on every complex bidisk $P_2^c(a_j,\rho_j)=\{w\in \mathbb{C}^2;|w_1-a_{j1}|<\rho _{j1}$ and $|w_2-a_{j2}|<\rho _{j2}\}$. Due to the maximality of $D^u$, we have $\cup_{j=1}^m P_2^c(a_j,\rho _j)\subset D^u$ for every $u\in {\bf H}_\infty (D)$, and thereby $\cup_{j=1}^m P_2^c(a_j,\rho _j) \subset \cap \{D^u;u\in {\bf H}_\infty (D)\}$. The last union being an open set, one deduces that $\mathcal{H}_\infty (D)\supset \cup_{j=1}^m P_2^c(a_j,\rho _j)$; this mean in particular that $\mathcal{H}_\infty (D)\neq \emptyset$. \end{proof} \begin{remark} \label{rmk2.8} \rm The significant fact of the inclusion $\mathcal{H}_\infty(D)\subset \mathcal{H}(D)$ is that the common complex domain $\widetilde{D}$, denoted $\mathcal{H}_\infty (D)$, for the whole class ${\bf H}_\infty (D)$, cannot pass beyond $\mathcal{H}(D)$. Nevertheless, given a specified $\infty - $harmonic function $u$ in $D$, we may have: $D^u \supset \mathcal{H}(D)$ with $D^u\neq \mathcal{H}(D)$\,. \end{remark} \begin{example} \label{ex2.9}\rm Consider $D=\{(x_1,x_2)\in \mathbb{R}^2;x_1>0,x_2>0\}$, and look for a $C^2$ solution $u$ in $D$ of $\Delta _\infty u=0$ in the form $u=Ax_1^\alpha +Bx_2^\beta $ (where $A,B,\alpha ,\beta $ are constant). Since $\Delta _\infty u=A^3\alpha ^3(\alpha -1)x_1^{3\alpha -4}+B^3\beta ^3(\beta -1)x_2^{3\beta -4}$, we deduce that $u=x_1^{\frac43}-x_2^{\frac 43}$ is a classical $\infty $-harmonic function $u$ in $D$. Putting $w_j=x_j+iy_j$, $j=1,2$ and $\widetilde{u}(w_1,w_2)=w_1^{\frac43}-w_2^{\frac 43}$, where the branch is chosen such that the restriction of $\widetilde{u}$ to $D\subset \mathbb{R}^2$ is a real valued function, we observe that $\widetilde{u}$ is holomorphic in $\mathbb{C}^2-(L_1\cup L_2)$, where $L_1=\mathbb{C}\times \{0\}$, $L_2=\{0\}\times \mathbb{C}$, and $\widetilde{u}|D=u$. Since $\mathbb{C}^2-(L_1\cup L_2)=\mathbb{C}^{*}\times \mathbb{C}^{*}$ is a domain (connected open) in $\mathbb{C}^2$, we deduce that $D^u=\mathbb{C}^{*}\times \mathbb{C}^{*}$. The harmonicity cell of $D$ is given explicitly by the set of all $w\in \mathbb{C}^2$ satisfying: $w_1+iw_2=x_1-y_2+i(x_2+y_1)\in D$ and $\bar{w}_1+i\bar{w}_2 =x_1+y_2+i(x_2-y_1)\in D$ (here $\mathbb{R}^2\simeq \mathbb{C}$ ). Thus $\mathcal{H}(D)=\{w\in \mathbb{C}^2;$ $x_1>|y_2|$ and $x_2>|y_1|\}\subset D^u$, and $\mathcal{H}(D)\neq D^u$. \end{example} \begin{remark} \label{rmk2.10}\rm The inclusion $\mathcal{H}_\infty (D)\subset \mathcal{H}(D)$ can be strengthened. Indeed, let $D\subset \mathbb{C}$ be a simply connected domain, with smooth boundary, and let ${\bf H}_{qr}{\bf (}D{\bf )}$ denote the sub-class of all $\infty $-harmonic functions which are quasi-radial with respect to some boundary point of $D$. A function $u\in {\bf H}_{qr} {\bf (}D{\bf )}$ if there exists $t\in \partial D$ such that $u(z)=\rho ^mf(\theta )$, where $z=t+\rho e^{i\theta }\in D$, $f$ is a real or complex-valued $C^2$ function in $]-\pi ,\pi [$, and $m$ is a constant (no restriction on $m$ also). Note that by Aronsson \cite{a2}, ${\bf H}_{qr}{\bf (}D {\bf )}$ is not empty. For instance, for $m>1$, one can find functions $Z=f(\theta )$ in parametric representation: $Z=\frac Cm(1-\frac 1m\cos ^2\tau )^{\frac{m-1}2}\cos \tau$, $\theta =\theta _0+\int_{\tau _0}^\tau \frac{\sin ^2\tau '}{m-\cos ^2\tau '}d\tau '$, $\tau _1<\tau <\tau _2$ ($C$, $\theta _0$, $\tau _0$, $\tau _1$, $\tau _2$ are constants). Similarly, let $\mathcal{H}_{qr}(D)$ denote the complex domain $\widetilde{D}$ corresponding to ${\bf H}_{qr}(D)$. Since $\mathcal{H}_{qr}(D)=[\cap_{u\in {\bf H}qr(D)} D^u]^0$ , ${\bf H}_{qr}{\bf (}D{\bf )\subset H}_\infty (D)$, and the constructed function $f_\zeta $ in the proof of Theorem \ref{thm2.5} is quasi-radial, we have: $\mathcal{H}_\infty (D)\subset \mathcal{H}_{qr}(D)\subset \mathcal{H}(D)$. \end{remark} \begin{remark} \label{rmk2.11} \rm To see that the property: $\lim_{w\to \zeta}|\widetilde{f}(w)|=\infty$, ($w\in \mathcal{H}(D)$, $\zeta \in \partial \mathcal{H}(D)$) may fail, we give the following example. \end{remark} \begin{example} \label{ex2.12}\rm Let $D$ be an arbitrary simply connected plane domain, $D\neq \emptyset$, $\partial D\neq \emptyset$. For a fixed $\zeta \in \partial\mathcal{H}(D)$, take $t=\zeta _1+i\zeta _2\in T(\zeta )$ and consider \[ F(w)=\sqrt{(w_1-t_1)^2+(w_2-t_2)^2}\exp (\frac 12\arctan\frac{w_2-t_2}{w_1-t_1}), \] where the branches are taken such that their restriction to $D\subset \mathbb{R}^2$ is positive for the square root and in $]-\frac \pi 2,\frac \pi 2[$ for $arctg)$. This function verifies: $F(w)$ is well defined and holomorphic on $\mathcal{H}(D)$, its restriction $f$ to $D$ is $\infty$-harmonic in $D$ since $f(z)=\sqrt{\rho }e^{\theta /2}$ where $z-t=\rho e^{i\theta }$; nevertheless $\lim_{w\to \zeta }|F(w)|=0$. Indeed, if $\zeta $ is assumed in $\partial \mathcal{H}(D)-\partial D$, one has $w_1+iw_2\to \zeta _1+i\zeta _2$, so that $(w_1-t_1)^2+(w_2-t_2)^2=[(w_1+iw_2)-(\zeta _1+i\zeta _2)][(\bar{w}_1+i \bar{w}_2)-(\zeta _1+i\zeta _2)]$ $\to 0$; on the other hand, by definition of $T(\zeta )$, $(\zeta _1-t_1)^2+(\zeta _2-t_2)^2=0$, thus $\arctan\frac{w_2-t_2}{w_1-t_1}\to \arctan\frac{\zeta _2-t_2}{\zeta _1-t_1 }=\arctan\pm i=\pm i\infty $, and $|\exp (\frac 12arctg\frac{w_2-t_2}{w_1-t_1})|\to 1$. Otherwise, the result is immediate if $\zeta \in \partial D\subset \partial \mathcal{H}(D)$. \end{example} section{Holomorphic extension in Fluids dynamic} %sec 3 In this section, we consider two general examples where the above techniques, of complexification and analytic continuation to $\mathbb{C}^n$, are used for the study of some physical problems. The main application we are interested in is the problem of the behaviour of a flow near an extreme point. In the following, ${\bf H}_p(D)$ denotes the class of all $p$-harmonic functions on $D$. \begin{proposition} \label{prop3.1} Let $D\subset \mathbb{C}$ be an arbitrary profile limited by a connected closed curve $C$, and consider a stationary plane flow round $D$ defined by the data of a vanishing point and its velocity $V_{\infty }$ at the infinite. Suppose that $C$ contains two straight segments $[a,z_1]$, $[a,z_2]$ originated at $a=a_1+ia_2$ and forming an angle $\nu \pi ,0<\nu <1$. Then there exist a suitable real $p>1$ and an open simply connected neighborhood $U$ of $a$, such that the quasi-linear p.d.e: $\Delta _pu=|\nabla u|^2\Delta u+(p-2)\Delta _\infty u=0$, has a radial (with respect to $a $) positive solution $\varphi $ in $U$, which approximates the modulus of the velocity $V(z)$ of the fluid. More precisely: \begin{itemize} \item[(i)] $|V(z)|\sim \varphi (z)$ as $z\to a$, ($z\in U$). \item[(ii)] $\varphi \in {\bf H}_{(3\nu -4)/(2\nu -2)}(U)$. \item[(iii)] Let $C>0$ be a constant, and put $\delta =(\frac{2-\nu }\nu C)^{(\nu -2)/(2\nu -2)}$; then a stream function $\varphi _c$ associated with a function $\varphi $ of the form $C|z-a|^{\nu/(2-\nu)}$ is given by \[ \varphi _c(x_1+ix_2)=\begin{cases} \delta \arcsin \frac{x_2-a_2}{|z-a|} &\mbox{if } x_1\geq a_1 \\ \delta \pi -\delta \arcsin \frac{x_2-a_2}{|z-a|} &\mbox{if } x_1a_2 \\ -\delta \pi -\delta \arcsin \frac{x_2-a_2}{|z-a|} &\mbox{if } x_1r$. The values of $r$ and $\psi $ are such that $\lim_{z\to \infty } g(z)=\infty $, $\lim_{z\to \infty } g'(z)=1$, $\mu _0=g(a)=re^{i\psi }$ and $V_\infty =Re^{i\theta }$ is the velocity at the infinite. The holomorphic bijection $f_3=f_1^{-1}\circ g^{-1}$ maps $\{|\mu |\geq r\}$ onto $P^{-}-\{-i\}$. Thus \eqref{e9} gives \begin{equation} f_1\circ f_3(\mu )-f_1\circ f_3(\mu _0) \sim B_0[f_3(\mu )-f_3(\mu _0)]^{2-\nu }\quad \mbox{as } \mu \to \mu _0\,. \label{e10} \end{equation} Since $f_3'(\mu _0)\neq 0$ one has $f_3(\mu)-f_3(\mu _0) \sim f_3'(\mu _0)(\mu -\mu _0)$ as $\mu \to \mu _0$, so that \eqref{e10} implies $g^{-1}(\mu )-g^{-1}(\mu _0)\sim C_0(\mu -\mu _0)^{2-\nu }$, where $$ C_0=B_0 f_3'(\mu _0)^{2-\nu }=[\frac{g_1'(\beta_0).g'(a)}{f_1'(\beta _0)}]^{2-\nu }; $$ that is, $g(z)-g(a)\sim C_0^{1/(\nu -2)}(z-a)^{1/(2-\nu)}$ as $z\to a$. Consequently, near the vanishing point $a$ of the flow, the derivative of $g$ satisfies \begin{equation} g'(z) \sim \frac{g(z)-g(a)}{z-a} \sim C_0^{1/(\nu-2)}(z-a)^{1/(2-\nu)-1} =C_0^{1/(\nu -2)}(z-a)^{(\nu -1)/(2-\nu)} \label{e11} \end{equation} as $z\to a$. On the other hand, putting $\mu =g(z)$, we obtain \begin{equation} \frac{df}{d\mu }=R\text{ }e^{-i\theta }-R\text{ }e^{i\theta }\frac{r^2}{\mu ^2}-\frac{2irR}\mu \sin (\psi -\theta ) \label{e12} \end{equation} Since the velocity satisfies $V(z)=\bar{f'(z)}$, for $z\in D^c$, Equality \eqref{e12} at $\mu _0$ gives \[ Re^{-i\theta }-Re^{i\theta }\frac{r^2}{\mu _0^2}-\frac{2irR}{\mu _0}\sin (\psi -\theta )=0 %\eqref{e13} \] From the above equation and \eqref{e12}, we get for $|\mu |\geq r:\frac{df}{d\mu }(\mu )-\frac{df}{d\mu }(\mu _0) =(\mu -\mu _0)h(\mu )$, with $h(\mu )=r^2R$ $e^{i\theta }\frac{\mu +\mu _0}{\mu _{}^2\mu _0^2} +\frac{2irR}{\mu\mu _0}\sin (\psi -\theta )$. By a simple calculus, $\lim_{\mu\to \mu _0} h(\mu )=\frac{2R}re^{-2i\psi }\cos (\theta -\psi)\neq 0$, here we will have to suppose that $V_\infty $ is such that $\theta \neq \psi \pm \frac \pi 2$ (otherwise, if $\theta =\psi \pm \frac \pi 2$, a direct calculus will do). Hence, \begin{equation} \frac{df}{d\mu } \sim D_0(z-a)^{1/(2-\nu)} \quad \mbox{as } \mu \to \mu _0\,, \label{e14} \end{equation} with $D_0=2C_0^{1/(\nu -2)}R\cos (\theta -\psi )/(re^{2i\psi })$. Writing $\frac{df}{dz}=\frac{df}{d\mu }.\frac{d\mu }{dz}$ and combining \eqref{e11} and \eqref{e14}, we obtain the equivalence $\frac{df}{dz}\sim C_0^{1/(\nu-2)}D_0(z-a)^{1/(2-\nu)}(z-a)^{\frac{\nu -1}{2-\nu }}$ as $z\to a$. Consequently $|V(z)| \sim C|z-a|^{\nu/(2-\nu)}$, where $$ C=\frac{2R|\cos (\theta -\psi )|}r|\frac{f_1'(\beta _0)}{g_1'(\beta _0).g'a)}|. $$ Therefore, (i) and (ii) may be obtained by taking $p=\frac{3\nu -4}{2\nu -2}$, $\eta =0$, $\varepsilon =\frac{\nu C}{2-\nu }$ in the following lemma. \end{proof} \begin{lemma} \label{lem3.2} For every real $p>1$ and fixed complex point $z_0\in \mathbb{C}$, the $p$-Laplace equation $\eqref{e3}$ has radial solutions (with respect to the origin point $z_0$) defined in any sharpened disk $X^{*}$ at $z_0$: $X^{*}=\{z\in \mathbb{C}$; $0<|z-z_0|0$. \end{proposition} \begin{proof} Due to Propositions \ref{prop2.3} and \ref{prop2.4} above, we can extend holomorphically in $\mathbb{C}^2$ the velocity function $V:\Omega =(\bar{D})^c\to \mathbb{C}$, $(x_1,x_2)\mapsto V(x_1+ix_2)$, which is real analytic (in fact even antiholomorphic) in $\Omega $. Using the same technique above, and putting: $w=(w_1,w_2)=(x_1+iy_1,x_2+iy_2)\in \mathbb{C}^2$, we find a maximal domain $\Omega ^V$ in $\mathbb{C}^2$ whose trace with $\mathbb{R}^2$ is $\Omega $, and to which $V$ extends holomorphically. Let then $\widetilde{V}$ denote the unique complexified function of $V$ with $\widetilde{V}|_\Omega =V$ and $\widetilde{V}$ is holomorphic in $\Omega^V$. Since $\widetilde{V}:\Omega ^V\to \mathbb{C}$ satisfies also $\widetilde{V}(a)=V(a)=0$, $\widetilde{V}(a_1,a_2+\gamma)=V(a_1,a_2+\gamma )$ is $\neq 0$ for some $(a_1,a_2+\gamma )\in \Omega \subset \Omega ^V$ with $\gamma \neq 0$, and $\frac{\partial ^r\widetilde{V}}{\partial w_2^r}(a)\neq 0$ -seing that $\frac{\partial ^r\widetilde{V}}{\partial w_2^r}(a) =\frac{\partial ^r\widetilde{V}}{\partial w_2^r}|_\Omega (a) =\frac{\partial ^rV}{\partial x_2^r}(a)$ - there exist, owing to Weierstass' preparation Theorem in $\mathbb{C}^n$ \cite[p.290]{r1} with $n=2$, $r$ functions $H_1(w_1),\dots,H_r(w_1)$ which are holomorphic in some open neighborhood $\widetilde{\Omega }_1$ of $a_1$ in $\mathbb{C}$, and a function $H(w)$ which is holomorphic in some open neighborhood $\widetilde{\Omega }\subset \Omega^V$ of $a$ in $\mathbb{C}^2$ with $H(w)\neq 0$ in $\widetilde{\Omega }$, such that \begin{equation} \widetilde{V}(w)=[(w_2-a_2)^r+(w_2-a_2)^{r-1}H_1(w_1)+\dots+H_r(w_1)]H(w) \label{e18} \end{equation} for every $w$ in some open neighborhood $(\widetilde{\Omega })'$ of $a$ in $\mathbb{C}^2$ with $(\widetilde{\Omega })'\subset $ $\widetilde{\Omega }\subset \Omega^V$. Taking now the restriction of Equality \eqref{e18} to $\mathbb{R}^2$, and seeing that the restriction $h_1,\dots,h_r $ of each holomorphic function $H_1(w_1),\dots,H_r(w_1)$ is (real) analytic in $\widetilde{\Omega }_1\cap \mathbb{R}$, we find the announced result \eqref{e17} by putting $H_j|_{\mathbb{R}^2}=h_j$, $H|_{\mathbb{R}^2}=h$, and $(\widetilde{\Omega })'\cap \mathbb{R}^2=U\subset \Omega $. Note also that the restriction $h$ is analytic in $U$. \end{proof} Some concrete examples and physical interpretations of the above results will be discussed in a further paper; nevertheless, the determination of the $h_j$ 's rests heavily upon an identification process and a residue formula. These functions stand for the analytic coefficients of what we will call the Weierstrass polynomial associated to the velocity of the flow in a neighborhood of a vanishing point. Following Lelong's method who introduced the transformation $T$ in 1954 (which was useful for constructing the harmonicity cells defined by Aronszajn in 1936), it seems advisable now that an analogue $T_\infty $ of $T$ must be precise in order to give explicitly some infinite-harmonicity cells. \begin{thebibliography}{00} \bibitem{a1} G. Aronsson, P. Lindqvist; \emph{On $p$-harmonic functions in the plane and their stream functions}, J. Differential Equations 74.1, 157-178 (1988). \bibitem{a2} G. Aronsson; \emph{On certain singular solutions of the partial differential equation $u_x^2u_{xx}+2u_xu_yu_{xy}+u_y^2u_{yy}=0$}, manuscripta math. 47, p. 133-151 (1984). \bibitem{a3} N. Aronszajn; \emph{Sur les d\'{e}compositions des fonctions analytiques uniformes et sur leurs applications}, Acta. math. 65 1-156 (1935). \bibitem{a4} V. Avanissian; \emph{Cellule d'harmonicit\'{e} et prolongement analytique complexe}, Travaux en cours, Hermann, Paris (1985). \bibitem{b1} \ L. Bers; \emph{Mathematical Aspects of Subsonic and Transonic Gaz Dynamics}. Surveys in Applied Mathematics III.\quad Wiley New-York (1958). \bibitem{b2} M. Boutaleb; \emph{Sur la cellule d'harmonicit\'{e} de la boule unit\'{e} de $\mathbb{R}^n$}, Publications de L'I.R.M.A. Doctorat de 3$^0 $cycle, U.L.P. Strasbourg France (1983). \bibitem{b3} M. Boutaleb; \emph{A polyharmonic analogue of a Lelong theorem and polyhedric harmonicity cells}, Electron. J. Diff. Eqns, Conf. 09 (2002), pp. 77-92. \bibitem{b4} M. Boutaleb; \emph{G\'{e}n\'{e}ralisation \`{a} $\mathbb{C}^n$ d'un th\'{e}or\`{e}me de M. Jarnicki sur les cellules d'harmonicit\'{e}}, \`{a} para\^{\i}tre dans un volume of the Bulletin of Belgian Mathematical Society Simon Stevin (2003). \bibitem{b5} M. Boutaleb; \emph{On the holomorphic extension for $p$-harmonic functions in plane domains}, submitted for publication (2003). \bibitem{b6} M. Boutaleb; \emph{On polyhedric, and topologically homeomorphic, harmonicity cells in $\mathbb{C}^n$}, submitted for publication (2003). \bibitem{c1} R. Coquereaux , A. Jadczyk; \emph{Conformal Theories, Curved phase spaces, Relativistic wavelets and the Geometry of complex domains}, Centre de physique th\'{e}orique, Section 2, Case 907. Luminy, 13288. Marseille. France.(1990). \bibitem{e1} P. Ebenfelt; \emph{Holomorphic extension of solutions of elliptic partial differential equations and a complex Huygens' principle}, Trita Math 0023, Royal Institute of Technology, S-100 44 Stockholm, Sweden (1994). \bibitem{h1} M. Herv\'{e}; \emph{Les fonctions analytiques Presses Universitaires de France}, 1982. \bibitem{j1} M. Jarnicki; \emph{Analytic Continuation of harmonic functions}, Zesz. Nauk.U J, Pr. Mat 17, 93-104 (1975). \bibitem{k1} C. O. Kiselman; \emph{Prolongement des solutions d'une \'{e}quation aux d\'{e}riv\'{e}es partielles \`{a} coefficients constants}, Bull. Soc. Math. France 97 (4) 328-356 (1969). \bibitem{l1} P. Lelong; \emph{Prolongement analytique et singularit\'{e}s complexes des fonctions harmoniques}, Bull. Soc. Math. Belg.710-23 (1954-55). \bibitem{l2} J. L. Lewis; \emph{Regularity of the derivatives of solutions to certain degenerate elliptic equations}, Indiana Univ. Math. J. 32, 849-858 (1983). \bibitem{m1} \ Z. Moudam; \emph{Existence et R\'{e}gularit\'{e} des solutions du $p$-Laplacien avac poids dans $\mathbb{R}^n$}, D. E. S. Univ. S. M. Ben Abdellah, Facult\'{e} des Sciences Dhar Mehraz (1996). \bibitem{o1} E. Onofri; \emph{SO(n,2)- Singular orbits and their quantization}. Colloques Internationaux C.N.R.S. No. 237. G\'{e}om\'{e}trie symplectique et Physique math\'{e}matique. Instituto di Fisica de l'Universita. Parma. Italia (1976). \bibitem{p1} M. Pauri; \emph{Invariant Localization and Mass-spin relations in the Hamiltonian formulation of Classical Relativistic Dynamics}, University of Parma, IFPR-T 019, (1971). \bibitem{r1} W. Rudin; \emph{Function theory in the unit ball of $\mathbb{C}^n$}, Springer-Verlag New -York Heidelberg Berlin (1980). \bibitem{s1} J. Siciak; \emph{Holomorphic continuation of harmonic functions}, Ann. Pol. Math. XXIX 67-73 (1974). \end{thebibliography} \end{document}