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ON THE SOLVABILITY OF DEGENERATED QUASILINEAR
ELLIPTIC PROBLEMS

YOUSSEF AKDIM, ELHOUSSINE AZROUL, MOHAMED RHOUDAF

ABSTRACT. In this article, we study the quasilinear elliptic problem
Au = —div(a(z,u, Vu)) = f(z,u, Vu) in D'(Q)
u=0 on 0,

where A is a Leray-Lions operator from I/Vol’p(Q7 w) to its dual w1 (Q,w*).
We show that there exists a solution in Wol’p(Q, w) provided that

N
s
F@,r &) < oM/ g(@) + Ir"e™ T+ Y wiP (@)l6il),
i=1
where g(z) is a positive function in Lq'(Q) and o(x) is weight function and
0<n<min(p—-1,4-1),0<5<(p-1)/q"

1. INTRODUCTION

Let © be a bounded open set in RY, N > 2. and p be a real number such that
1 <p< oo Let w={wiz), 0 <i< N} bea vector weight functions on ;
i.e., each w;(x) is a measurable a.e. strictly positive function on 2, satisfying some
integrability conditions (see section2). Let us consider the problem

Au = f(x,u,Vu) in D'(Q)

u=0 on 0, (1.1)

where A is a Leray-Lions operator Au = — div(a(z,u, Vu)) and f(z,r,£) : @ x R x
RM — R is a Carathéodory function. Boccardo, Murat and Puel in [3] studied the
problem ([1.1]) in the non weighted case, with f satisfying the condition

[f (@, ) < h(Ir) (1 + [€]7),

where h is increasing function from R* into R*. The existence result is proved
assuming the existence of the subsolution and supersolution in W1°°(£2), which
play an important roll in their work. Further in [2] the author’s studied the problem
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with f satisfies the hypotheses
(@, )] < Blg(a) + [rP~ +[¢[P71], (1.2)
flar, Or = alrl. (1.3)

Recently, Tsang-Hai Kuo and Chiung-Chion Tsai [§] proved an existence result
under the assumption

[, &) < e(L+]r|° + €]

Our objective in this paper, is to study the problem (1.1} in weighted Sobolev
spaces where f satisfying only the growth condition

1F (2,7, )| < a9[g(x) + |r"0d + Zw‘”” &),
=1

where g(x) is a positive function in L7 (Q), o is a weight function, and
—1
0<n<min(p—1,g—1), 0<d< pf/
q

Note that we obtain the existence result without assuming the condition (1.3]) and
without knowing a priori the existence of subsolutions and supersolutions. Let us
point out that this work can be see as a generalization of the work in [2] and [§].

2. PRELIMINARIES AND BASIC ASSUMPTIONS

Let Q be a bounded open set of RY, p be a real number such that 1 < p < oo,
and w = {w;(x), 0 <i < N} be a vector of weight functions; i.e. every component
w;i(z) is a measurable function which is strictly positive a.e. in €. Further, we
suppose in all our considerations that

w; € Lio (), (2.1)

w7 € Loe(9), (2:2)

for any 0 < i < N. We denote by W1P(Q,w) the space of real-valued functions
u € LP(Q, wp) such that their derivatives in the sense of distributions satisfies

ou

Lq

€ LP(Qw;) fori=1,...,N.

Which is a Banach space under the norm

ull 1.0 /|u )P dm+2/|8u @] 3

The condition implies that C§°(Q) is a subspace of W1P(Q,w) and conse-
quently, we can introduce the subspace Wol’p(Q, w) of WHP(Q,w) as the closure of
C§° () with respect to the norm . Moreover, the condition implies that
WLP(Q,w) as well as W, P (9, w) are reflexive Banach spaces.

We recall that the dual space of weighted Sobolev spaces I/VO1 P(Q,w) is equivalent
to WP (Q, w* ) where w* = {w} = w, ~ Poi=1,... ,N} and p’ is the conjugate
of p,ie. p/ = . For more details we refer the reader to [5]. We start by stating
the following assumptions:
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(H1) The expression

el = ( Z / (e de) (24)

is a norm defined on Wy *(Q, w) and its equivalent to the norm (2.3). And
there exist a weight function o on € and a parameter 0 < ¢ < oo, such that
the Hardy inequality

([ o ar) " <

holds for every u € T/VO1 P(Q,w) with a constant ¢ > 0. Moreover, the
imbedding

ou 1/p
152 -(x)dx) , (2.5)

Wy? (Q,w) —— LI(Q,0), (2.6)
is compact.
Let A be a nonlinear operator from Wy (Q, w) into its dual W~=1#"(Q, w*) defined
b
’ A(u) = —div(a(z,u, Vu)),
where a(z,7,£) : Q@ x R x RN — R¥ is a Carathéodory vector-valued function that
satisfies the following assumption:
(H2) Fori=1,...,N,

N 1
jai(z,7,€)| < Buw/?(@)[k(z) + o7 [r[97 + 3 w? |7 (2.7)
j=1
[a(z,r, &) —alx,r,m](E—n) >0 forall{ £ne€ RY, (2.8)
N
a(gc, r, 5)5 Z azwi|§i‘p7 (29)

i=1
where k(z) is a positive function in LPI(Q) and «, (3 are strictly positive
constants.
Let f(z,r &) is a Carathéodory function satisfying the following assumptions:
(H3)

o
091 < Mgl + ot + 3 o)l (2.10)
i=1
where g(z) is a positive function in L7 (£2), and
-1
0<n<min(p—1,q—1), 0§5<p7. (2.11)

3. MAIN RESULT

Consider the problem
—div a(z,u, Vu) = f(z,u,Vu) in D'(Q)

u=0 onOfN. (3.1)

Theorem 3.1. Under hypotheses (H1)-(H3), there ezist at least one solution to

B1).
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We first give some definition and some lemmas that will be used in the proof of
this theorem.
Definition Let Y be a separable reflexive Banach space, the operator B from Y
to its dual Y* is called of the calculus of variations type, if B is bounded and is of
the from,

B(u) = B(u,u), (3.2)
where (u,v) — B(u,v) is an operator ¥ x Y into Y* satisfying the following prop-
erties:

For u € Y, the mapping v — B(u,v) is bounded and hemicontinuous

3.3
from Y to Y* and (B(u,u) — B(u,v),u —v) > 0; (3:3)
for v € Y, the mapping u — B(u,v) is bounded and hemicontinuous from Y to Y*;
If u, — w weakly in Y and if (B(up, un) — B(un, u), uy — u) — 0,
then B(uy,v) = B(u,v) weakly in Y*, for all v € Y;
If w, — u weakly in Y and if B(u,,v) — ¢ weakly in Y*,
then (B(up,v),u,) — (¥, u).
Lemma 3.2 ([I]). Let g € L1, %), gn € LYU(Q,7), and ||gnllgy < ¢ (1 < g < 00).
If gn(z) — g(x) a.e. in Q, then g, — g weakly in LI(8, ), where v is a weight
function on .
Lemma 3.3. If u, — u in Wy P(Q,w) and v € Wy P(Q,w), then a;(z, u,, Vv) —
ai(z,u, Vo) in LP (Q,w?).
Proof. From (H2), it follows that

, N
=L 4q 1 ov _ o1
la;(z, un,VU)|p 7 < BlR) + un|? o7 +Z|7l|17 le P

(3.4)

(3.5)

(3.6)
vk (x) +|un|q0+2‘7‘pw]
where 8 and 7 are positive constants. Since u, — wu weakly in VVO1 P(Q,w) and

Wy (Q,w) —— L, 0), it follows that u, — u strongly in L(2, o) and u, — u
a.e. in €; hence

|ai (2, U, VO w) — |a;(z,u, Vo) w  ae. in €, (3.7)

and
N
/ 0
3 [k + un|qo+j;|aj],|pwi] = [k + |u|qo+2|f|”w]}

a.e. in 2. Then, By Vitali’s theorem,
a; (T, up, Vv) — a;(z,u, Vv) strongly in L (9, wy), as n — 4o0. (3.8)
]
Lemma 3.4 ([1]). Assume that (H1)-(H2) are satisfied, and let (uy) be a sequence
in Wy (Q,w) such that u, — u weakly in Wy (Q,w) and

/Q[a(amun7 V) — a(z, tun, Vu)]V(u, —u)dz — 0.
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Then, u, — u in Wy (Q,w).
For v € VVO1 P(Q,w), we associate the Nemytskii operator F' with respect to f,
F(v,Vv)(z) = f(z,v,Vv) a.e.,x € .

Lemma 3.5. The mapping v — F(v, Vv) is continuous from the space Wol’p(Q, w)
to LY (Q, 01 ~7).

Proof. By hypothesis (H3), we have

N
|, &) < oVg(w) + |r[70 + Y w)/P(x)l€;]?].

i=1

Thanks to Young’s inequality,

|r|ngn/q < n 1|T|q*10(qfl)/q +1] < [|T|q710q' +1],
q-—

w1617 < fwl P+ 1),

which implies

N
£, €)1 < N +2) + g(a) + Irl7 o+ 3wl ).
i=1
Then

N
[, O 0711 < caler + (@) + [r DT o Y il
i=1
Since f is a Carathéodory, and for all subset E measurable, such that |E| < n, we
have

N
r za ov
/E|f(x,v,Vv)|qa a deCQ[Cg—G—/Ey|qadx+/EiE_lwi|8xi|de].

Then by Vitali’s theorem, we deduce the continuous of the operator F'. Moreover,
— 1/q’ I /o
([ 1@ 0.0l o dz) ™ < ale+ oll? +ulP'7). 39)
Q
O

Proof of Theorem [3.1. Step (1) We will show that the operator B : W, (€, w) —
WP (Q, w*) defined by B(v) = A(v) — f(x,v, Vv) is a calcul of variational.
Assertion 1. Let

N
0 i\ Ly Uy
B(u,v) = —;W — f(z,u, Vu).
Then B(v,v) = B(v) for all v € W, (Q,w).
Assertion 2. We claim that the operator v — B(u,v) is bounded for all u €
WyP(Q,w). Let ¢ € WyP(Q,w), we have

N
B0 ) =3 [ oo 7o)

X

wi—/ﬂf(x,u,Vu)wdx.



16 Y. AKDIM, E. AZROUL, M. RHOUDAF EJDE/CONF/11

From Holder’s inequality, the growth condition (2.7)) and the compact imbedding
(2.6)), we obtain

N
;/ﬂ a;(x,u, Vv) g;/}l

< é(/ﬂ |ai(x7u,Vv)|p/w;Tpl dm)l/p/ (/Q |g;i [Pw; dac)l/p

(3.10)
wn&(/ K+ ultor + 312y )
<c )’ + |ulfoc + —VPw; dx
! i=1 /0 j=1 Oxj 7
< eslll¥llIes + N7 + [lollP~].
Similarly,
’ 7‘1/ 1// 1/
[t ipds < ([ 1w vars ™ ) " ([ o)
Q Q Q
by (2.5) and (3.9), we have,
/Qf(%u’vu)fﬂ da < ellllll[er + Null 1" + [[[ul /<], (3.11)

Since u and v belong to W, (€, w) and in view of and (3.11)), we deduce
that (B(u,v),) is bounded in Wy (Q,w) x WyP (Q,w).

We claim that the operator v — B(u,v) is hemicontinuous for all u € W, *(Q, w),
i.e., the operator A — (B(u,v1+Avs), 1) is continuous for all vy, v, € Wol’p(Q7 w).
Since a; is a Carathéodory function,

ai(x,u, V(vy + Ave)) — a;(x,u, Vor) ae. in Qas A — 0.

Further, we know from (2.7) that (a;(z,u, V(v1 + Ava))y is bounded in L (2, w*);
thus, by Lemma we conclude

a;(z,u, V(vy + Avg)) = a;(x,u, Vo)  weakly in L (Qw)), asA—0. (3.12)

Hence,
;\%(B(u,m + Ava), )
- 0y
= )1\{%;/9 a;(z,u, V(vy + )\vg))axi dx — /Q fz,u, Vu)yp do -

N
:i_zl/gai(x,u,Vvl)gZ dx—/ﬂf(x,u,Vu)wdx

= (B(u,v1),v) for all vi,vq,% € Wol’p(Q,w).

Similarly, we show that v — (B(u,v),) is bounded and hemicontinuous for all
v € WyP(Qw). Indeed. By (B9), we have f((z,u1 + Mg, V(up + Aug)))y is
bounded in L7 (€,6'79) and as f is a Carathéodory function then

flz,ug + Aug, V(ug + Aug)) — f(x,u1, Vur)  ae. in Q.
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Hence, Lemma [3.2] gives,

fl@,ur + Aug, V(ug + Aus)) = f(z,u1, Vus) weakly in L9 (Q,079) as A — 0,

(3.14)
On the other hand, as in (3.12)), we have
a;(z, uy + Mg, Vo) = a;(z,u1, Vo) in LP (Q,w}), as A — 0. (3.15)

Combining (3.14) and (3.15)), we conclude that, w — B(u,v) is bounded and hemi-
continuous.

Assertion 3. From (2.8)), we have,

N
(B(u,u) — B(u,v),u —v) = Z/Q (ai(z,u, Vu) — a;(z,u, Vv)) (SZ - 5(?;}1) >0

Assertion 4. Assume that u, — u weakly in Wy *(Q,w) and (B(un,un,) —
B(tin, 1), un — u) — 0, we claim that B(up,v) — B(u,v) weakly in W1 (Q, w*).
We can write (B(un, upn) — B(un, ), u, —u) — 0 as n — oo,

N 9 5
<lz—;_ [a ia/i(x,un’vun) - %ai(l‘?un7vu)]aun_u>
S 0
= Z/ [ai (2, Un, Vi) — a; (2, Uy, Vu)] o (up — u)dz — 0
=179 i

Then, by Lemma we have u, — u strongly in WO1 P(Q,w) and it follows from
Lemma [3.5] that

F@,tun, Vug) — f(z,u, Vu) in L9 (Q,0'9). (3.16)

Since u, — u in LP(Q,w) and by [@.7) and W "*(Q,w) —— L(Q,0), we can
obtain from Lemma [B.3] that

a; (2, Un, Vv) — a;(z,u, Vo) in LV (Qwy). (3.17)
This implies
o o
/Qal(x,un,Vv) oz, dr — /Qal(a:,u,Vv)axi dz. (3.18)

On the other hand, by Holders inequality,

/Q|f(a:,un,Vun)¢|dx < (/Q \f(x,un,Vunﬂq,al*q/ dx)l/q/ (/Q |¢|qadx> 1/q.

Thanks to (3.16)), (2.5), and Lebegue’s dominated convergence theorem, we obtain

/f(x,un,Vun)qlzdacﬁ/f(x,u,Vu)i/}dx. (3.19)
Q Q
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Then, we have

9y

lim (B(un,v),?) = lim Z/ a;(x, U,

n—oo n—oo

>

= (B(u,v),), for all ) € WP (Q,w).

/ f(z,u, Vu)yp dx
)

dx—/f(x,un,Vun)wdsc
Q

Assertion 5. Assume u,, — u weakly in Wy (Q,w) and B(uy,,v) — ¢ weakly
in Wb (Q,w). We claim that (B(upn,v),u,) — (¢),u). Thanks to u, — u in

W§ (2, w), we obtain by Lemma [3.3]
a; (2, Up, VU) — ai(z,u, Vo)  strongly in L (Q,w}) as n — +oo.

And so
Ouy,

ou
/Qai(x,un,Vv) oz, m dx — / a;(z,u, Vv)axl

Hence together with

N
> [ s, Vo) de = [ Vopude — 0,1,
=179 Oz; Q

we have

(B(up,v / (x, Uy, VV) 5‘un / f(z,up, Vuy)u, do

=2
el

/f(x U, Vuy,) udxf/ f(z, up, Vuy) (un — u) de.
But in view of (3.20) and -, we obtain

ou,, ou
Zl/ﬂ ai(x,un,Vv)(a—xi - 8701)(1;[ — 0.

On the other hand, by Hélder’s inequality,

/ ‘f(maunavun)(un - U)| dl‘
Q
’ ’ 1// 1/
S (/ |f(z7un7 vun)|q Uliq dl’) ! (/ |un - 'U/|q0' dZZ?) !
Q Q

< cllup — ullpao,e) = asn— oo
ie.,

/ f(z,un, Vuy) (un, —u)der — 0 as n — oo.
Q

Thanks to (3.22)), (3.23]) and (3.24]), we obtain
(B(un,v), up) = (¥, u).

(3.20)

(3.21)

(3.22)

8un ou ou

(3.23)

(3.24)
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Step 2. We claim that the operator B satisfies the coercivity condition

(B(v),v)

im ——— = 00. 3.25
lolll—+oo V]| (3:29)

Since

N
Ov
Bu,v) = a;(xz,v, Vv dx — z,v, Vv)vdz.
Be) =3 [ oie o5t [ o0 w)
Then, using (2.9), we have

N
Ov
. p_
(Bv,v) > ai2=1wz\ami| /Qf(x,v, Vo)vdz. (3.26)

Moreover,

/ flz, v, Vo)vdx
Q

N
0

S/al/qg(x)vdx—i—/ |v|”+10("+1)/qu+/ g wf/p\—v|5al/q|v|dx.
Q Q Qi ox;

Thanks to Holder’s inequality and (2.5)), we have
1/ / 1/q 1/q
/ oV g(z)v da < ( lg(2)]? dx) ( o]0 dx) <e|l]ll- (3.28)
Q Q Q

On the other hand, by Hélder’s inequality,

(3.27)

’

N N ,
Zw?/p|g—;|5ol/q|v| < cz_zl(/Q w;%|%‘6q’ dm)l/q (/Q |v\qadm) 1/q.

1=

In view of (2.5)), we have

= 5/p OV 15 1y al LU 1/q’
;wi |5 ol <c;(/ﬂwf 5l ar) el (3.29)
Since 0 < 57’3/ < 1, hence by Holder’s inequality, we deduce
| , 1/q' 0 5/p
(/ w)/ " pl | dw) < (/ w; U|de) ; (3.30)
Q axt Q 8x2

remark that,
(a+b)" >cla"+b") if0<r<l. (3.31)
Combining (3.29), (3.30) and (3.31)), we conclude that

N 9 N
>l gt ol < llvll (3 [ wid

=1

ov 5/p
P < J, .
ol da) " <clloll el (332)

Further, 0 < "TH < 1, then by Holder’s inequality and (2.6, we deduce

/ | oD/ 4y < o[ (3.33)
Q

Then from (3.26)), (3.28), (3.32) and (3.33)), we deduce that

_ 5—
(Bu,v) = ol|[[oll[P~ = 1 = ea[[o]l|” = esl[oll°~
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and since p — 1 > 7 and p > J, we conclude that ﬁf}i‘v) — 4o00. Finally, the proof

of Theorem is complete thanks to the classical Theorem in [7]. O

4. EXAMPLES

Let us consider the Carathéodory functions
ai(z,m,§) = wi &P sgn(&;)

Where w;(z)(i = 1,...,N) are a given weight functions strictly positive almost
everywhere in Q. We shall assume that the weight function satisfies w;(z) = w(z),
x € Qfori=0,...,N. It is easy to show that the a;(z,s,&) are Carathéodory
function satisfying the growth condition and the coercivity . On the other
side, the monotonicity condition is verified. In fact,

N

Z(ai(xa S, f) - ai(x’ S, é))(ﬁz - éz)

|§ P~ sgn(&) — &P sgn(€)) (& — &) > 0

i=1

for almost all z € Q and for all f,{ € RN with ¢ # f, since w > 0 a.e. in . We
consider the Hardy inequality (2.5 in the form

( /Q u(e)fo(a) dr) ' < of /Q Vu@)Pu(a)dz)

where o and ¢ are defined in (2.5). In particular, let us use a special weight
functions w and o expressed in terms of the distance to the bounded 9f). Denote
d(x) = dist(x, 092) and set

w(z) = dMz), o(z)=d"(z).

In this case, the Hardy inequality reads

q K l/q p
( lu(x)[9d" (z) dm) < c( [ Vu(@)| d(z) da:)

Q

1/p

The corresponding imbedding is compact if:
(i) For, 1 < p < ¢ < o0,

N N A N N
A<p—1, — T 410 B2, 0 T 15 (4.1)
q 1 a p q p
(ii) For 1 < g < p < o0,
A 11
A<p-1, E_Z242_Z4aso (4.2)
¢ p q »p

Remarks. 1. Condition or Condition is sufficient for the compact
imbedding to hold; see for example [4, example 1], [5, example 1.5], and [6],
Theorems 19.17, 19.22].

Let us consider the Carathéodory function

f@,r,€) = ¥ (@) (d5 (@)lr]" +Zd (@)l + (=),



EJDE/CONF/11 SOLVABILITY OF QUASILINEAR ELLIPTIC PROBLEMS 21

with g € L9 (Q), o(x) is weight function and 0 < 7 < min(p—1,¢—1),0 < § < p;l.

Because of its definition, f(x,r,¢) satisfies the growth condition (2.10]). Also the
hypotheses of Theorem [3.1] are satisfied. Therefore, the problem

N
Ju Ou Ov
A T p22 7
;/Q (¢ @z o, 8xi)dx
N
:/d#/q(l‘)(dﬂé/q(l‘ﬂuw+Zd>‘6/p(l‘)‘§i|5—i—g(l‘))vdl‘,
Q i=1

for all v € W, P(Q,w), has at last one solution.
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