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Solutions series for some non-harmonic motion

equations ∗

A. Raouf Chouikha

Abstract

We consider the class of nonlinear oscillators of the form

d2u

dt2
+ f(u) = εg(t)

u(0) = a0, u′(0) = 0,

where g(t) is a 2T -periodic function, f is a function only dependent on u,
and ε is a small parameter. We are interested in the periodic solutions with
minimal period 2T , when the restoring term f is such that f(u) = ω2u+u2

and g is a trigonometric polynomial with period 2T = π
ω
. By using method

based on expanding the solution as a sine power series, we prove the
existence of periodic solutions for this perturbed equation.

1 Introduction

Consider the second order differential equation

x′′ + g(t, x, x′, ε) = 0
u(0) = a0, u′(0) = 0 ,

(1.1)

where ε > 0 is a small parameter, g is a 2T -periodic function in t with
g(t, x, 0, 0) = g(x) is independent of t.

The existence of solutions for this equation in the case where g is independent
on x′ and continuously differentiable has been studied by many authors. In the
latter case, this proved the existence of solutions to

x′′ + g(t, x, ε) = 0.

For a detailed review, we refer the reader to the book by Chow and Hale [1].
Furthermore, the example given by Hartman proved non existence cases of (1).
So, we cannot expect to generalize their results. On the other hand, Loud,
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Willem and others considered the case where T is independent on ε. Concerning
the case T = T (ε), Fonda and Zanolin studied the system

u′′ + f(u) = εe(t, u, ε)

where f is semilinear with xf(x) > 0. Here e is a Tε-periodic function such
that |e(t, x, ε)| < K, limε→0 Tε = +∞ and limε→0 εTε = 0. They proved the
existence of periodic solutions.

In the present paper we are interested in the class of non linear oscillators
of the form

d2u

dt2
+ f(u) = εg(t)

u(0) = a0, u′(0) = 0 ,

(1.2)

where the restoring term f ≡ f(u) depends on u and the function g ≡ g(t) is
2T -periodic. We look for periodic solutions with minimal period 2T , when f
and g satisfy suitable conditions.

When f is a quadratic polynomial function, we are able to solve (1.1) , in
some situations and without ε to be small, or any restricted condition on the
period T . We will prove for that the existence of a trigonometric expansions of
(periodic) solutions in Sinus powers.

Note that, some times under certain conditions, (1) cannot have a periodic
solution, as described in the example below. However, under other suitable
conditions of controllability of the period, Equation (1) has a periodic solution.

A non existence result

According to Hartman [5, p.39], Equation (1) in general does not have a non
constant periodic solution, even if xg(t, x, x′) > 0. The following example, given
by Moser, proves the non existence of a non constant periodic solution of

x′′ + φ(t, x, x′) = 0.

Let
φ(t, x, y) = x + x3 + εf(t, x, y), ε > 0

satisfying the following conditions: φ ∈ C1(R3); f(t + 1, x, y) = f(t, x, y) with
f(0, 0, 0) = 0 and f(t, x, y) = 0 if xy = 0;

φ

x
→∞ as x →∞

uniformly in (t, y) ∈ R2;

δf

δy
> 0 if xy > 0, and

δf

δy
= 0 otherwise.

and x, y satisfying |x| < ε, |y| < ε. In fact, we have xf(t, x, y) and yf(t, x, y)) > 0
if xy > 0, |x| < ε, y arbitrary and φ = 0 otherwise.

We remark that δf
δy is small. The function V = 2x2 + x4 + 2x′

2 satisfies
V ′ = −4εx′f(t, x, x′), so that V ′ < 0 if xx′ > 0, |x| < ε and V ′ = 0 otherwise.
Thus x cannot be periodic unless V ′ = 0.
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A controllably periodic perturbation

In this part, we give brief explanation of a method due to Farkas [4] inspired
of the one of Poincaré. The determination of controllably periodic perturbed
solution. This method appears to be efficient particularly for the perturbations
of various autonomous systems. Since we know it for example a good application
for perturbed Van der Pol equations type as well as Duffing equations type.

The perturbation is supposed to be ‘controllably periodic’, i.e., it is periodic
with a period which can be chosen appropriately. Let u0(t) be the periodic
solution of the (unperturbed) equation. Under very mild conditions it is proved
that to each small enough amplitude of the perturbation there belongs a one pa-
rameter family of periods such that the perturbed system has a unique periodic
solution with this period.

It is assumed the existence of the fundamental matrix solution of the first
variational 2-dimensional system of ẋ = h(x) and the unique periodic solution
p(t) corresponding to u0(t). For more details concerning applications of this
method we may refer to [4].

2 Periodic perturbations of Duffing non linear
equations

In this section, we will apply the methods of trigonometric series in sinus pow-
ers to resolve in an explicit way non linear oscillators of Duffing type. This
approach already was used previously in an effective way, see [6] and [2]. One
can also apply it for periodic perturbations of various differential equations.
Our results generalize and improve those of [6] and [2]. Their also contribute in
an interesting way to the general problem of the periodic perturbations roughly
exposed in the introduction.

Case of finite trigonometric polynomial

Firstly, let us consider the restoring function

f(u) = ω2u + u2,

where ω is a constant and g(t) a finite trigonometric polynomial with period
2T = π

ω , which has a finite Fourier series expansion. So, it can be written

g(t) = b0 + b2 sin2(
πt

2T
) + · · ·+ b2p0 sin2p0(

πt

2T
) =

∑
n≤p0

b2n sin2n(
πt

2T
), p0 ∈ N.

Consider the following system

d2u

dt2
+ ω2u + u2 = εg(t)

u(0) = a0, u′(0) = 0 .

(2.1)
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Theorem 2.1 The T -periodic solutions of (1.2) may be expressed in the form

u(t) = c0 + c2 sin2(
πt

2T
) + c4 sin4(

πt

2T
) + c6 sin6(

πt

2T
) + · · · =

∑
n∈IN

c2n sin2n(
πt

2T
)

The coefficients c2n satisfy |a0| < C, a0 = c0, 2ω2c2 = −ω2c0 − c2
0 + εb0,

(ω = π
2T ) and the recursion formula

(2n + 1)(2n + 2)c2n+2

=

{
(4n2 − 1)c2n − 1

ω2

∑n
r=0 c2rc2n−2r + ε

ω2 b2n, for n ≤ p0,

(4n2 − 1)c2n − 1
ω2

∑n
r=0 c2rc2n−2r, for n > p0 .

(2.2)

Proof Suppose the solution u of equation (1.2) can be written in the form

u(t) =
∑

n∈IN

c2n sin2n(ωt).

We shall apply the previous method in [2] to: (i) obtain recursion formula of
the coefficients c2n, and (ii) prove the convergence of the series expansion of the
solution.

This method finds a solution to (1.2)in the form

u(t) = c0 + c1 sinωt + c2 sin2 ωt + c3 sin3 ωt + . . . (2.3)

where ci, i = 0, 1, 2, . . . , are coefficients to be determined by the substitution of
(2.2) in (1.2). In fact, we get ω = π

2T where T is the period of the solution. So,
a trivial computation gives

2ω2c2 = −ω2c0 − c2
0 + εb0.

We get also

12c4 = 3c2 −
2
ω2

c0c2 +
ε

ω2
b2

By identification for n ≥ 1, we obtain the recursion formula of these coefficients

(2n + 1)(2n + 2)c2n+2 = (4n2 − 1)c2n −
1
ω2

n∑
r=0

c2rc2n−2r +
ε

ω2
b2n, for n ≤ p0.

(2.4)
and

(2n + 1)(2n + 2)c2n+2 = (4n2 − 1)c2n −
1
ω2

n∑
r=0

c2rc2n−2r, for n > p0. (2.5)

Equation (1.2) implies c1 = 0. Relations (2.3) yields c3 = 0, c5 = 0, . . . .
However, the even order coefficients c2n do not vanish. The solution to (1.2)
can now be written as

u(t) = c0 − [c0 −
1
ω2

c2
0 +

ε

ω2
b0] sin2 ωt + [

1
4
c2 −

1
6ω2

c0c2 +
ε

12ω2
b2] sin2 ωt + . . .

(2.6)



EJDE/Conf/10 A. Raouf Chouikha 119

Relations of the coefficients and further induction show that c2i, i = 1, 2, . . . all
vanish for a0 = 0 and b2i = 0. So, the trivial solution u ≡ 0 is included in
(2.2) as a special case. The following lemma is strictly analogous of [2, Lemma
2], corresponding to the case ε = 0. It implies that∑

n≥1

|c2n| < +∞,

which implies the convergence of the expansion. �

Lemma 2.2 There exist a positive constants k and α verifying 1 < α < 3
2 such

that the coefficients c2n of the series expansion (2.2) solution of the differential
equation (1.2) satisfy the inequality

|c2n| <
k

(2n)α
. (2.7)

Remark Following [6], it is interesting to write the power series solution for
the system (1.2) in the form

u(t) = v(sinωt).

Let g̃ defined by g(t) = g̃(sinωt). Then v is a solution of the differential equation

(1− x2)
d2v

dx2
− x

dv

dx
+ v +

1
ω2

v2 =
ε

ω2
g̃(x)

v(0) = a0,
dv

dx
(0) = 0

(2.8)

Recall that the latter method permits to compare approximate solutions of the
non-harmonic motion of the oscillator.

A more general case

Now, consider a more general situation where the function g(t) in (1.1) may be
written as an infinite expansion in Sinus power

g(t) = b0 + b2 sin2(
πt

2T
) + · · ·+ b2n sin2n(

πt

2T
) + · · · =

∑
n∈IN

b2n sin2n(
πt

2T
).

It is the case in particular, when the function g(t) has a finite Fourier series
expansion. When g has an (infinite) Fourier series expansion, g(t) may be
expressed as an infinite expansion in Sinus power. But we have to prove its
convergence.

Now, we are interested in solving

d2u

dt2
+ ω2u + u2 = ε

∑
n∈IN

b2n sin2n(
πt

2T
)

u(0) = a0, u′(0) = 0 .

(2.9)

We prove the following theorem which extends Theorem 2.1.
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Theorem 2.3 Suppose that the coefficients of the expansions of the function
g(t) satisfies

|b2n| <
1

(2n)β
, with β ≥ 1,

then the solutions of (2.8) may be expressed in the form

u(t) = a0 + c2 sin2(
πt

2T
) + c4 sin4(

πt

2T
) + c6 sin6(

πt

2T
) + · · · =

∑
n∈IN

c2n sin2n(
πt

2T
).

The coefficients c2n satisfy the conditions |a0| < C, a0 = c0, 2ω2c2 = −ω2c0 −
c2
0 + εb0, (ω = π

2T ) and the recursion formula, for n > 0:

(2n + 1)(2n + 2)c2n+2 = (4n2 − 1)c2n −
1
ω2

n∑
r=0

c2rc2n−2r +
ε

ω2
b2n. (2.10)

Proof The proof starts in the same manner as that of Theorem 2.1. In order
to establish the recursion relation between the coefficients we may proceed as
previously. The difference is that one obtains a less good estimation of the c2n.
The crucial point is to state an analogous one of Lemma 2.4, ensuring thus the
convergence of the series solution. It may be deduced from∑

n≥1

|c2n| < +∞

For that, we prove the following lemma.

Lemma 2.4 For any positive number α such that 1 < α < 3/2, there exists a
positive constant k satisfying

k <
1
ω2

3
4
(
3
2
− α)41−α

such that the coefficients cn of the series expansion solution of the differential
equation (2.8) satisfies the inequality

|cn| <
k

nα
. (2.11)

Proof We first notice that Lemma 2.4 gives an optimal result, because our
method does not work for α = 3

2 . The coefficients cn of the power series solution,
satisfy the recursion formula (2.9). We shall prove there exist two positive
constants k > 0, and α > 1, such that the following inequality holds

|cn| <
k

nα

for any integer n ≥ 1. Suppose for any n ≤ p, we get |cn| < k
nα . In particular,

it implies that ∑
0<r<p

crcp−r <
∑

0<r<p

k2

rα(r − p)α
≤ k2

(p− 1)α−1
.
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Equality (2.9) gives

cp+2 =
p2 − 1

(p + 1)(p + 2)
cp −

1
ω2(p + 1)(p + 2)

p−1∑
r=0

crcp−r +
ε

ω2(p + 1)(p + 2)
bp.

Thus, if we prove the inequality

p2 − 1
(p + 1)(p + 2)

k

pα
+

1
ω2(p + 1)(p + 2)

k2

(p− 1)α−1
+

ε|bp|
ω2(p + 1)(p + 2)

≤ k

(p + 2)α
,

we can conclude
|cp+2| <

k

(p + 2)α
. (2.12)

Since the coefficients bp satisfy the hypothesis |b2n| < 1
(2n)β , with β ≥ 1, it is

not difficult to exhibit an integer p0 depending on β such that the following
inequality holds for p ≥ p0:

p2 − 1
(p + 1)(p + 2)

k

pα
+

1
ω2(p + 1)(p + 2)

k2

(p− 1)α−1
≤ k

(p + 2)α
(2.13)

This inequality is equivalent to

k <
β

ω2
pf(p)g(p) (2.14)

where

f(p) =
p + 1

p
(
p− 1
p + 2

)α−1

g(p) = 1−
(p2 − β

ω2 c0)(p + 2)α−1

(p + 1)pα

Using MAPLE, we prove that f(p) is an increasing positive function in p. More-
over, for any p ≥ 1, f(p) is bounded below as

f(p) ≥ (
3
2
)41−α.

The function g(p) is such that

pg(p) = p−
(p2 − β

ω2 c0)(p+2
p )α−1

(p + 1)

is a strictly decreasing and bounded function. More exactly, we may calculate
the lower bound

g(p) >
(3− 2α)

p
.

Thus, if (3− 2α) = ε > 0, it suffices to chose

k ≤ (
3
2
)41−α(3− 2α)

for inequality (17) to hold.
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Remark for the case ε = 0: Note that the choice of k depends on α value.
For α = 3/2, using MAPLE we can prove that

pg(p) = p−
(p2 − 3

2ω2 c0)(p+2
p )1/2

(p + 1)

is positive and strictly decreasing to 0. While p2g(p) is a bounded function.
Moreover, it appears that pf(p)g(p) is a decreasing function which tends to 0 as
p tends to infinity. Thus, our method fails since it does not permit to determine
a non negative constant k.
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