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Abstract

The stabilized finite element formulations based on the SUPG (Stream-
line-Upwind/Petrov-Galerkin) and PSPG (Pressure-Stabilization/Petrov-
Galerkin) methods are developed and applied to solve buoyancy-driven in-
compressible flows with heat and mass transfer. The SUPG stabilization
term allows us to solve flow problems at high speeds (advection dominant
flows) and the PSPG term eliminates instabilities associated with the use
of equal order interpolation functions for both pressure and velocity. The
finite element formulations are implemented in parallel using MPI. In par-
allel computations, the finite element mesh is partitioned into contiguous
subdomains using METIS, which are then assigned to individual proces-
sors. To ensure a balanced load, the number of elements assigned to each
processor is approximately equal. To solve nonlinear systems in large-scale
applications, we developed a matrix-free GMRES iterative solver. Here
we totally eliminate a need to form any matrices, even at the element lev-
els. To measure the accuracy of the method, we solve 2D and 3D example
of natural convection flows at moderate to high Rayleigh numbers.

1 Introduction

Many geophysical and astrophysical heat transport problems have to do with
convection in a fluid layer with internal energy sources. Within this fluid layer,
the flow field is developed due to the buoyancy forces generated by temperature
gradients. These same forces are also responsible for transporting pollutants,
contaminants and chemicals. In order to adequately simulate this complex flow,
the incompressible Navier-Stokes equations are coupled with heat and mass
transfer equations. This coupling results in an extremely nonlinear system of
equations, especially at high Rayleigh numbers. Historically, many upwind finite
difference schemes have been developed to relax these nonlinearities [5, 6, 10],
but in most cases these algorithms lack stability and contain inconsistencies.
Thus, stable and consistent numerical algorithms are needed to solve these prob-
lems with a reasonable degree of accuracy.

∗Mathematics Subject Classifications: 65C20, 81T80.
Key words: Finite element method, parallel simulation, contaminant dispersion,
free convection.
c©2003 Southwest Texas State University.
Published February 28, 2003.

1



2 Simulation of incompressible flows EJDE–2003/Conf/10

In this article, we apply stabilized finite element formulations to solve buoy-
ancy driven incompressible flows with heat and mass transfer. The stabiliza-
tions are based on the SUPG (Streamline-Upwind/Petrov-Galerkin) and PSPG
(Pressure-Stabilization/Petrov- Galerkin) methods [1, 2, 3]. The SUPG stabi-
lization term allows us to solve flow problems at high speeds (advection domi-
nant flows) and the PSPG term eliminates instabilities associated with the use
of equal order interpolation functions for both pressure and velocity. Prior to
the computation, a finite element mesh is partitioned into contiguous subdo-
mains, which are then assigned to individual processors. To ensure a balanced
load, the number of elements assigned to each processor is approximately equal.

Discretizations of finite element formulations results in coupled, nonlinear
systems of equations which need to be solved at every time step. For complex 3D
systems as encountered in flows affected by heat transfer, this involves millions of
unknowns that require special attention to solve. Primarily, the computational
requirements are immense, requiring parallel supercomputers with hundreds of
processors such as the CRAY T3E to reduce the computing time. A message
passing computing paradigm is needed to allow cross-processor communication
and parallel implementation. This is accomplished using MPI (Message Passing
Interface) libraries. The nonlinear systems are linearized and solved iteratively
using the Newton-Raphson method [3]. The solutions of the linear systems are
also obtained iteratively using an advanced linear solver algorithm [11]. For very
large systems of equations, a matrix-free iteration strategy is used to obtain the
solution of the nonlinear system.

The 3D applications in buoyancy driven flows are large-scale. Parallel super-
computers with hundreds of fast processors, such as the CRAY T3E and IBM SP
are used to reduce the computing time. In the parallel implementation, we use a
message-passing computing paradigm, making the cross-processor communica-
tion explicit. This is accomplished by using the MPI (message passing interface)
libraries. Prior to the computation, the finite element mesh is partitioned into
contiguous subdomains, and these subdomains are assigned to individual pro-
cessors. To ensure load balancing for each processor, each subdomain contains
approximately the same number of elements. Element-level computations are
carried out independently for each processor.

The governing equations for buoyancy-driven will be introduced in Section
2. The finite element formulations are presented in Section 3. In section 4,
the iterative solution strategy is outlined and finally, the numerical results are
shown in Section 5.

2 Governing Equations

The governing equations are the incompressible Navier-Stokes equations coupled
with the heat and mass transfer equations written over the spatial domain Ω
with boundary of Γ. In non-dimensional form, these equations can be written
as follows:

∇ · u = 0 (2.1)
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1
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where, ρ, u, p, θ, ρc, g, and ng are the total density, velocity, pressure,
temperature, density of contaminant, gravitational force, and the unit vector in
the direction of the gravity, respectively. The strain tensor is denoted by ε and
I represents the identity tensor. The Reynolds, Prandtl, Lewis, and Grashoff
numbers are denoted by Re, Pr, Le, and Gr, respectively. The sources of heat
and mass generation are denoted by q̇ and ṅ, respectively. Here, the total density
is the density of air plus the density of contaminants. In non-dimensional form,
the total density is defined as:

ρ = 1 + ρc (2.7)

Since the density of the air is assumed to be much larger that the density of
the contaminant, we assume that the total density is constant and equal to the
density of the air.

3 Finite element formulations

In the finite element formulations we first define appropriate sets of trail solution
spaces Sh
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c also the weighting function spaces V h

u , V h
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θ , and
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c for the velocity, pressure, temperature and the density of contaminant. The
stabilized finite element formulation of Equations (2.1)–(2.6) can then be written
as follows: for all wh ∈ V h
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where h, hθ, and hc are the natural boundary conditions for the velocity, temper-
ature and the density of contaminant, respectively. The stabilization parameters
are defined as follows:

τm =
[(2‖u‖

h

)2 +
( 4
Reh2

)2
]1/2

, (3.4)
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h

2
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{
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(3.5)
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( 4
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, (3.6)
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h
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( 4
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)2
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, (3.7)

Remark: In Equation (3.1), the first three integrals together with the right
hand side term are the Galerkin formulation of the Navier-Stokes equations.
The fourth term (first element level integral) is the least-square stabilization
of the continuity equation. This term enhances stabilization at high Reynolds
number flows. The fifth term (second element level integral) includes the SUPG
and the PSPG stabilizations. The SUPG stabilization eliminated numerical
oscillation due to advection dominancy and the PSPG stabilization allow us to
use equal order interpolation functions for both velocity and pressure.

Remark: In Equation (3.2), the first two integrals together with the right
hand side term are the Galerkin formulation of the heat transfer equation. In
this equation, the element level integral is the SUPG stabilization term.

Remark: In Equation (3.3), the first two integrals together with the right
hand side term are the Galerkin formulation of the mass transfer equation. In
this Equation, the element level integral is the SUPG stabilization term.
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The finite element formulations are discretized using first order polynomials
for both the unknowns and the weighting functions [3].

4 Iterative solution strategy

The discretization of the finite element formulations results in a series of coupled,
nonlinear systems of equations that need to be solved at every time step. The
nonlinear system of equations in vector form can be written as:

F(ṡ, s) = L (4.1)

where the vector F is a function of the nodal unknowns s and its time derivative
ṡ. Here L is the known right hand side vector. After linearization using Newton-
Raphson algorithm, at every nonlinear iteration τ , we need to solve the first
order linear differential equation system in this form:

M∆ṡτ+1 + N∆sτ+1 = L− Fτ , (4.2)

where

M =
∂F
∂ṡ

, N =
∂F
∂s

.

Integrating in time, (4.2) results in

(Mτ+1 + ξ∆tNτ+1)∆sn+1 = Rτ , (4.3)

where n is the time step counter, δt is the time increment and R is the residual.
Here ξ is the scheme selector ( xi = 0 : fully explicit, ξ = 1: fully implicit,
ξ = 0.5: time accurate) [4]. In this work, is set ξ = 0.5 for second order accuracy
in time integration [4]. The linear system of equations in (4.3) is also solved
iteratively using the GMRES update algorithm [4, 11]. For very large systems
of equations, we use a matrix-free iteration strategy [4, 7]. This element-vector-
based computation totally eliminates the need to form any matrices, even at
the element level.

5 Numerical examples

Dispersion of Smoke from a Chimney In this test problem, smoke is
released into the air from a chimney as shown in Figure 1. The temperature of
the outside air is 15◦C and the smoke has the temperature of 56◦C. The density
of smoke is 10 precent of the air density.

The simulations are carried out using an unstructured mesh made of 339,513
elements and 57,266 nodes. The square base of the chimney is 1m 1m. The
simulations are carried out for three wind velocities, 0.25, 0.125 and 0.0625
m/s. The series of pictures in Figure 1 show the iso-surface of smoke at 5% of
air density. In this Figure, the left, middle and right pictures correspond to the
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Figure 1. Dispersion of Smoke from a Chimney. Iso-surface of smoke at 5% of air density. The 

left, middle and right pictures correspond to the wind velocity of 0.25, 0.125 and 0.0625  m/s, 

respectively. 

 

 

Figure 1: Dispersion of smoke from a chimney. Iso-surface of smoke at 5% of
air density. The left, middle and right pictures correspond to wind velocity of
0.25, 0.125, and 0.0625 m/s

wind velocity of 0.25, 0.125 and 0.0625 m/s, respectively. The simulations are
carried out on IBM SP-2 with 16 processors.

At a wind velocity of 0.25 m/s, the wind inertia is relatively greater than
bouyancy driven inertia in the vertical direction. Therefore, the dispersion is in
the form of plume. This characteristic changes as the wind velocity diminishes.
At the wind velocity of 0.0625 m/s the flow induced by the bouyancy force is
much stronger than the convection flow due to the wind.

2-D simulation of natural convection at various Rayleigh numbers
To measure the accuracy of the finite element method, we simulate the natural
convection of flow with constant heat source. Scientifically, there are extensive
experimental results for comparison [8, 9]. Here, the computational domain is a
square with one unit length. The nondimensional heat source is 2. The Prandtl
number is fixed at 6.5 and the Reynolds number is selected such that RePr = 1.

The computational domain consisted of 22,500 (150 × 150) quadrilateral
elements, and simulations were carried out for Rayleigh numbers of 104 to 108.
These simulations were carried out on the CRAY T3E with 64 processors. The
mass transfer equation is not solved in this problem; thus the initial conditions
included zero pressure, velocity and temperature everywhere on the domain.
A zero velocity boundary condition was imposed on all four edges, which were
also traction-free. In addition, zero temperature was imposed on the top edge,
and no heat flux on the remaining three edges. The comparison was of the
computed Nusselt number (based on the reference or average temperature inside
the computational domain) for the top edge versus measured Nusselt numbers.
The steady state solution is graphically depicted at Rayleigh numbers of 104–106

in Figure 2.
Figure 2 shows the time history of the Nusselt number for Rayleigh num-

bers of 104, 105, and 106. In these three cases, the steady-state solution was
obtained. For Rayleigh numbers more than 107, strong convection makes the
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Figure 2. Time history of the Nusselt number. 

 

 

 

 

Figure 2: Time history of the Nusselt number
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 Figure 3: Temperature distribution for Ra = 104 − 108 (from left to right)

flow unstable. Instabilities grow as we increase the Rayleigh number. However,
these instabilities, we believe are physical, since we could not find any numeri-
cal oscillations in the solution. Figure 3 shows the temperature distribution for
various Rayleigh numbers. As can be seen, the symmetric solution is obtained
for Rayleigh numbers up to 107. At Rayleigh number of 108, the instabilities
result in strong nonsymmetric convection.

In experiment [8, 9], the Nusselt number can be expressed in the form of the
power law as:

Nu = 0.306R0.227
a for Pr = 6.5 and 104 ≤ Ra ≤ 108 (5.1)

In Figure 4, we compare the computed Nusselt numbers with the expression in
(5.1). The comparison is excellent for Rayleigh numbers 104 and 108 and very
comparable for Rayleigh numbers 105, 106, and 107.
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Figure 4. Comparison between the computed and measured Nusselt numbers. 

 

Figure 4: Comparison between computed and mesasured Nusselt numbers

3-D simulation of natural convection at Ra = 107 Since the steady state
solution for Ra ≥ 107 was not achieved for 2-D (i.e., strong convection results
in unstable physical fluctuations), the simulation was carried out for 3-D using
same initial and boundary conditions. The computational domain consisted of
3,375,000 (150×150×150) quadrilateral elements, and simulations were carried
out for Rayleigh number of 107. Some results of this simulation are shown in
Figure 5, which depicts iso-surfaces of the temperature after release of heat at
different time.

Figure 6 shows the time history of the Nusselt number for Rayleigh numbers
of 107. This Figure compares the result of simulation for 2-D and 3-D. As can
be seen, the steady-state solution was obtained only for 3-D.

Conclusion This project demonstrates a highly accurate SUPG finite ele-
ment method, developed for buoyancy-driven incompressible flows with heat
and mass transfer. The finite element method was implemented in parallel us-
ing MPI libraries, and the accuracy of the method was demonstrated for flows
at moderate to high Rayleigh numbers. The computed results showed good cor-
relation with experimental or measured data, and show the applicability of the
method to solving 3D applications. Instabilities due to numerical oscillations
were eliminated for 3D model.
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Figure 5: Iso-surface illustration for temperature
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