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Nonlinear equations with natural growth terms

and measure data ∗

Alessio Porretta

Abstract

We consider a class of nonlinear elliptic equations containing a p-
Laplacian type operator, lower order terms having natural growth with
respect to the gradient, and bounded measures as data. The model ex-
ample is the equation

−∆p(u) + g(u)|∇u|p = µ

in a bounded set Ω ⊂ RN , coupled with a Dirichlet boundary condition.
We provide a review of the results recently obtained in the absorption
case (when g(s)s ≥ 0) and prove a new existence result without any sign
condition on g, assuming only that g ∈ L1(R). This latter assumption is
proved to be optimal for existence of solutions for any measure µ.

1 Introduction

In this work we focus our attention on nonlinear Dirichlet problems whose model
is

−∆p(u) + g(u)|∇u|p = µ in Ω,
u = 0 on ∂Ω,

(1.1)

where p > 1, g : R → R is a continuous function, and µ is a bounded Radon
measure on Ω which is a bounded subset of RN .

Recently, many researchers have investigated the possibility to find solutions
of (1.1) under the assumption that g(s)s ≥ 0, in which case the term g(u)|∇u|p is
said to be an absorption term. In this case a detailed picture of what happens
is now available, according to the growth at infinity of g(s) and to whether
the measure µ charges or not sets of zero p-capacity (the capacity defined in
W 1,p

0 (Ω)). In the next section, we try to give a quick review of these results
and explain the main features of the problem in the absorption case, both for
elliptic and for parabolic equations.

No results for general measures µ are known to our knowledge if the sign
condition is not assumed to hold, possibly including the reaction case in which
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184 Nonlinear equations with natural growth terms and measure data

g(s)s ≤ 0. It is the purpose of the third section of this paper to give new results
in this situation. Eventually, these new results seem to fit perfectly those proved
in the absorption case, and we will prove (stated in more generality in Section
3) the following theorem, which extends that proved in [44] (under the same
assumptions) for data µ ∈ L1(Ω).

Theorem 1.1 Let µ be a nonnegative bounded Radon measure on Ω. Assume
that g ∈ L1(R). Then there exists a distributional solution u of (1.1).

Next we will give an example which somehow expresses that the assumption
g ∈ L1(R) in Theorem 1.1 is optimal; if µ is the Dirac mass, we prove that
no solution can be obtained by approximation. In particular, in the reaction
case (g(s)s ≤ 0), if µ is approximated by a sequence of smooth functions, the
sequence of approximating solutions converges to a solution of (1.1) if g ∈ L1(R),
while it blows up everywhere in Ω if g 6∈ L1(R). We recall that in [34] the
absorption case g(s)s ≥ 0 had already been studied; in that situation if the
Dirac mass is approximated by smooth functions, the approximated solutions
still converge to a solution of the problem if g ∈ L1(R), while they converge
to zero if g 6∈ L1(R). Thus, even if for different reasons, in both cases the
assumption g ∈ L1(R) turns out to be optimal.

2 The absorption case: a quick review

A wide literature has dealt with elliptic and parabolic equations with measure
data in the last decades. In particular, the techniques of a priori estimates and
compactness of approximating solutions, firstly introduced in [14], have been
proved to work well enough for pseudomonotone operators of Leray-Lions type
([32]), providing several existence results in case of L1 data. The presence of
absorbing lower order terms (i.e. satisfying a sign condition) often brings in this
kind of problems new features; for instance, as in [18], [15], lower order terms
may have a regularizing effect on solutions of problems with L1 data. The two
main examples are the following problems:

−∆pu+ |u|r−1u = µ in Ω,
u = 0 on ∂Ω ,

(2.1)

and
−∆pu+ u|∇u|p = µ in Ω,

u = 0 on ∂Ω .
(2.2)

If µ ∈ L1(Ω), problem (2.1) has a solution in W 1,q
0 (Ω) for any q < pr

r+1 , while
problem (2.2) has a finite energy solution u, which belongs to W 1,p

0 (Ω). In
general, if the lower order term is absorbing, one can prove the existence of a
solution with L1(Ω) data; for instance, the problem:

−∆p(u) +H(x, u,∇u) = f in Ω,
u = 0 on ∂Ω ,

(2.3)
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with ξ 7→ H(x, s, ξ) growing at most like |ξ|p (the so-called natural growth),
always admits a solution if f ∈ L1(Ω) (see [42]). In fact, dealing with the limit
growth for H(x, s, ξ) is not that easy and requires the strong compactness of
truncations in the energy space; on the other hand, these truncation methods
can be adapted to several different contexts if still dealing with L1(Ω) data, as
obstacle problems or more general operators (see [9], [10], [28]).

When trying to extend the previous results to measure data, it turns out
that precisely the regularizing effect mentioned above may be responsible for
nonexistence of solutions. Actually, this fact was first observed in the pioneering
works of H. Brezis ([20, 21]) and in a whole series of papers (see [4, 25, 30, 47,
45, 46] and the references therein) concerning problem (2.1) in the linear case
p = 2. More recently, the nonlinear case p 6= 2 has been dealt with in [37, 38, 11].
Summing up these results, it is proved that problem (2.1) has a solution for
every given bounded measure µ only if r < N(p−1)

N−p , while if r ≥ N(p−1)
N−p then no

solution exists if µ charges sets of zero q-capacity with q(p−1)
q−p < r (a necessary

and sufficient condition in the linear case p = 2 is given in [30]). As an example,
if µ is the Dirac mass, then a solution of (2.1) exists if and only if r < N(p−1)

N−p .
However, the statement of nonexistence of solutions needs to be suitably

precised; how shall we express such a failure of existence? Three different ways
have been suggested so far in previous works: firstly, nonexistence of solutions
for a general problem as (2.3) may be deduced from removable singularity type
results. This is a classical approach, and mostly used for linear operators; a set
K is removable if any solution of

−∆p(u) +H(x, u,∇u) = f in Ω \K,
u ∈W 1,p(Ω \K) ,

can be proved to be a solution in the whole of Ω. If K is removable, then we
cannot have a solution of the equation with data concentrated on K.

Alternatively, one studies the limit of approximating equations:

−∆p(un) +H(x, un,∇un) = fn in Ω ,
un = 0 on ∂Ω ,

(2.4)

if fn converges to a measure µ in the so-called narrow topology, which means∫
Ω

fnϕdx
n→+∞→

∫
Ω

ϕdµ , (2.5)

for any function ϕ bounded and continuous on Ω. This is the most natural
way to approximate a bounded Radon measure, so that, if a solution exists, we
expect that we can prove the convergence of un towards a solution u of

−∆p(u) +H(x, u,∇u) = µ in Ω
u = 0 on ∂Ω ,

(2.6)

like it happens if fn strongly converges in L1(Ω). Thus studying the limit of un

is a constructive way to see whether and why existence may fail; thanks to (2.5)
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fn is bounded in L1(Ω) so that “a priori” estimates are available, and usually
compactness of un can also be proved. The main task is to understand which
is the limit of un and what equation it satisfies.

Finally, a third approach is in some sense the combination of the previous
two. One studies (2.4) assuming only that fn converges in L1

loc(Ω \K) towards
a function f , where K is a compact subset of Ω. Here no assumption is made
on the behaviour of fn on K, so that no estimates on K are obtained for un.
If one proves that un still converges to a solution u of (2.3), this means that
perturbations of f whatever singular, but localized on K, are not seen by the
equation. As in the viewpoint of removable singularity, no solution can be
expected for data concentrated on K. These three possible approaches were all
investigated as far as problem (2.1) is concerned in some of the papers mentioned
above.

In a series of recent works, these questions have been studied for problems
with gradient dependent lower order terms. A particular case is given when
the lower order term has natural growth. When trying to find solutions for the
model equation

−∆pu+ g(u)|∇u|p = µ

u = 0,
(2.7)

the growth at infinity of g(s) and the regular or singular nature of µ play a crucial
role. Removable singularity results were proved by H. Brezis and L. Nirenberg
in [24] for p = 2, showing that if sg(s) ≥ γ

s2 with γ > 1, then any compact
set of zero capacity (the standard Newtonnian capacity) is removable. In [17],
[40], [34], the behaviour of sequences of approximating solutions was studied if
µ is approximated in the narrow topology, say by a standard convolution. It is
proved that if g ∈ L1(R), then there exists a solution u of (2.7) for any measure
µ, while if g 6∈ L1(R) approximating solutions converge to a solution u of the
same problem but with datum µ0, the absolutely continuous part of µ with
respect to p-capacity. Here p-capacity denotes the capacity defined in W 1,p

0 (Ω)
and we recall (see [29]) that any measure µ admits a unique decomposition as
µ = µ0 + λ, where λ is concentrated on a set of zero p-capacity and µ0(E) = 0
for any set E of zero p-capacity. In other words, in the approximation method,
one looses the singular part of the measure which is concentrated on sets of zero
p-capacity; if µ does not charge sets of zero p-capacity then existence is proved
for any function g(s).

Removability properties in the stability approach are investigated in [36],
where the approximating equations of (2.7) are considered with data fn only
converging to a function f in L1

loc(Ω \ K), where K has p-capacity zero. It
is proved that, setting G(s) =

∫ s

0
g(t)dt, if, roughly speaking, exp(−G(s)/(p −

1)) ∈ L1(R) then un still converges to a solution with datum f ; thus, whatever
singular perturbations, provided they are localized on sets of zero p-capacity,
are not seen by the equation. This result somehow includes the removable
singularity point of view, and extends the result in [24] since the assumption
that exp(−G(s)/(p − 1)) ∈ L1(R), in the case p = 2, is weaker than assuming
that sg(s) ≥ γ

s2 with γ > 1.
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This kind of phenomena due to absorption terms has been investigated for
parabolic equations as well. As it happens for the stationary case, the semilinear
evolution problem

ut −∆u+ |u|r−1u = µ in Q := Ω× (0, T )
u = 0 on Σ := ∂Ω× (0, T )

u(0) = u0 in Ω,
(2.8)

does not always have a solution for any measure µ on Q and any measure initial
datum u0. In [22], the authors study the problem with µ = 0 concentrating the
attention on the initial measure u0. They point out that, ir r is large enough,
nonexistence phenomena may occurr, and can appear as initial layer phenomena.
In fact, a singular measure as initial condition may be lost while approximating
the problem with smooth approximating problems. Subsequently, in [5], neces-
sary and sufficient conditions are given on the measures µ and u0 in order to
have a solution of (2.8); as expected, these conditions involve some notions of
space-time dependent capacity. Further results on nonlinear analogue of (2.8)
are proved in [3], [33], [12] (see also the references in these papers).

In view of the results mentioned above for elliptic equations, recent study
has been devoted to evolution problems as the following:

ut −∆pu+ g(u)|∇u|p = 0 in Q := Ω× (0, T )
u = 0 on Σ := ∂Ω× (0, T )

u(0) = u0 in Ω,
(2.9)

in case u0 is a bounded measure. The existence of a solution in case u0 ∈ L1(Ω)
is proved in [41]. The possibility to extend this result to a general measure
initial datum is studied in [13]. Again, under the assumption that g ∈ L1(R),
it is proved the existence of a solution for any measure u0. On the other hand,
if g 6∈ L1(R), then initial layer phenomena occur; in particular, if u0n is a
convolution approximation of the measure u0, the sequence of approximating
solutions un of the same problem, with initial datum u0n, converges to a solution
u of the problem having, as initial value, the absolutely continuous part of u0

with respect to Lebesgue measure. Sharp removable singularity type results,
which in a stronger way express the nonexistence of solution, still depend on
the growth at infinity of g(s) and are obtained in [43].

Eventually, one obtains for the evolution problem (2.9) the same type of
results obtained for the elliptic problem (2.7) replacing the role of µ with u0

and the p-capacity (capacity in W 1,p
0 (Ω)) with the Lebesgue measure in Ω. Are

then these results consistent? The answer has to be found in the study of the
notion of capacity for parabolic equations. A functional type presentation and
construction of the parabolic p-capacity (capacity defined in the space W =
{u ∈ Lp(0, T ;W 1,p

0 (Ω)) , ut ∈ Lp′(0, T ;W−1,p′(Ω))}) is given in [39] for p = 2
and in [27] for p 6= 2. In this last paper, it is proved that given B ⊂ Ω, the
set {t = 0} × B has zero parabolic capacity in (0, T ) × Ω if and only if B has
zero Lebesgue measure. Thus, if one looks at singularities at initial time as
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singularities on Q concentrated at t = 0, the results obtained on (2.9) reflect
perfectly those on (2.7). Moreover, it becomes clear that in order to deal with
problem (2.9) with interior space-time dependent measures as data, one has to
follow the outlines of the stationary case and use a decomposition theorem for
measures with respect to parabolic p-capacity. This latter result, which extends
the stationary one given in [16], is proved in [27] and states that any measure
µ on (0, T )× Ω which does not charge sets of zero parabolic p-capacity admits
the decomposition (as a distribution)

µ = f + g1 − (g2)t

with f ∈ L1(Q), g1 ∈ Lp′(0, T ;W−1,p′(Ω)) and g2 ∈ Lp(0, T ;W 1,p
0 (Ω)).

Finally, let us mention that, in the linear case (p = 2), other existence and
nonexistence results with gradient dependent lower order terms (absorbing or
repulsive) and measure data are obtained in [1, 2, 6, 7] (see also the references
cited therein). We point out that the techniques used in these papers are mainly
based on a linear operator and on the concept of distributional solution (with
two integration by parts), or on semigroup theory and the concept of integral
solution. These approaches allow to have sharper nonexistence results especially
for the case of subcritical growth, on the other hand their study is mostly
restricted to the case g(u) ≡ 1.

2.1 Natural growth reaction terms and measure data

As explained in the previous section, if the term H(x, u,∇u) is an absorption
term and has natural growth, the borderline case which allows to have solutions
of (2.6) for all measures µ is the case in which

|H(x, u,∇u)| ≤ g(u)|∇u|p , with g ∈ L1(R).

Our aim is now to show that, somehow surprisingly, the same assumption is
necessary and sufficient to have solutions for any measure even in the reaction
case, that is without assuming any sign condition on H(x, s, ξ). In particular,
if we aim to have solutions of (2.7) for any given measure data, there is no
difference between the reaction and the absorption case.

Heuristically, this feature can be easily explained. In fact, the model equa-
tion

−∆u = g(u)|∇u|2 + µ , (2.10)

can be transformed, through a change of unknown, into the equation

−∆v = exp(G(u))µ , (2.11)

with v =
∫ u

0
exp(G(s))ds and G(s) =

∫ s

0
g(r)dr.

In [34] we proved that equation (2.11) has a solution if exp(G(u)) has a finite
limit at infinity, which is the case whenever g ∈ L1(R), so that in this case (2.10)
is also expected to have a solution. On the other hand, if g 6∈ L1(R), then the
right hand side of (2.11) can be hardly handled since exp(G(u)) is not bounded.
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We are going to provide an example where µ is the Dirac mass and no solution
of (2.11) can be found by approximation, precisely proving that approximated
solutions of (2.10) in this case blow up completely (i.e. at every point of Ω).

We will prove our result in a more general situation. Assume that a(x, s, ξ)
and H(x, s, ξ) are Carathéodory functions satisfying, for almost every x ∈ Ω,
for every s ∈ R, ξ, η ∈ RN (ξ 6= η):

a(x, s, ξ) · ξ ≥ α|ξ|p , α > 0 , p > 1 , (2.12)

|a(x, s, ξ)| ≤ β(k(x) + |s|p−1 + |ξ|p−1) k(x) ∈ Lp′(Ω), β > 0 , (2.13)
(a(x, s, ξ)− a(x, s, η)) · (ξ − η) > 0 , (2.14)

and
|H(x, s, ξ)| ≤ γ(x) + g(s)|ξ|p , γ(x) ∈ L1(Ω)

and g : R → R+ continuous , g ≥ 0 , g ∈ L1(R) .
(2.15)

In the following we denote by capp(B) the p-capacity of a borelian set B ⊂ Ω,
where the p-capacity is the standard notion of capacity defined in the Sobolev
space W 1,p

0 (Ω). Let us recall (see [29]) that any bounded Radon measure µ has
a unique decomposition as

µ = µ0 + λ , (2.16)

where µ0, λ are bounded measures such that µ0 does not charge sets of zero
p-capacity (i.e. µ0(B) = 0 for every B with capp(B) = 0) and λ is concentrated
on a set E ⊂ Ω such that capp(E) = 0. Moreover, if µ is nonnegative, then both
µ0 and λ are nonnegative. For a presentation of the basic notions concerning
measures and capacity the reader may refer to [31], [26]. We also have, from
[16], that µ0 furtherly admits a decomposition (in distributional sense) as

µ0 = f − div(F ) , f ∈ L1(Ω), F ∈ Lp′(Ω)N . (2.17)

Hereafter, let µ be a bounded nonnegative Radon measure on Ω. Referring to
the previous decomposition of µ and µ0 in (2.16), (2.17), there exists a sequence
µn of bounded functions such that

µn = µ0n + λn , µ0n ≥ 0, λn ≥ 0,

µ0n = fn − div(Fn) , fn ∈ L∞(Ω) , Fn ∈ L∞(Ω)N ,

fn → f strongly in L1(Ω),

Fn → F strongly in Lp′(Ω)N ,∫
Ω

ϕλndx→
∫

Ω

ϕdλ ∀ϕ ∈ Cb(Ω) ,

(2.18)

where Cb(Ω) denotes the space of bounded continuous functions in Ω. Such
a sequence µn can be constructed using convolution and a suitable compactly
supported approximation of µ.

For fixed n ∈ N, since µn ∈ L∞(Ω), under the previous assumptions it is
proved in [19] that there exists a weak solution un ∈ W 1,p

0 (Ω) ∩ L∞(Ω) of the
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problem:
−div(a(x, un,∇un)) = H(x, un,∇un) + µn in Ω ,

un = 0 on ∂Ω .
(2.19)

Our main result is the following.

Theorem 2.1 Let a(x, s, ξ) and H(x, s, ξ) satisfy assumptions (2.12)–(2.15).
Let µ be a nonnegative bounded Radon measure on Ω. Then there exists a
solution u of the problem

−div(a(x, u,∇u)) = H(x, u,∇u) + µ in Ω ,
u = 0 on ∂Ω .

(2.20)

Proof. We essentially follow the method used in [44], which consists in mul-
tiplying the equation (2.19) by exp(G(un)) or by exp(−G(un)), where G(s) =∫ s

0
g(t)/αdt (the function g appears in (2.15)). In other words this replaces the

idea of the change of unknown which transforms the model problem (2.10) into
(2.11). After this multiplication, we will apply the techniques fully developed
in [40], [34] to obtain the strong convergence of truncations.

In the following, we omit for shortness the dependence on x in the integrals,
and we denote by c any positive constant independent on n. Let ϕ ∈W 1,p

0 (Ω)∩
L∞(Ω); choosing exp(G(un))ϕ as test function in (2.19) we have∫

Ω

exp(G(un))a(un,∇un)∇ϕ+
∫

Ω

g(un)
α

exp(G(un))a(un,∇un)∇unϕ

=
∫

Ω

H(un,∇un) exp(G(un))ϕ+
∫

Ω

ϕ exp(G(un))µn .

For any ϕ ≥ 0, thanks to (2.12) and (2.15) we obtain∫
Ω

exp(G(un))a(un,∇un)∇ϕ ≤
∫

Ω

γ(x)ϕ exp(G(un)) +
∫

Ω

ϕ exp(G(un))µn

∀ϕ ∈W 1,p
0 (Ω) ∩ L∞(Ω) , ϕ ≥ 0 .

(2.21)
Similarly, taking exp(−G(un))ϕ as test function in (2.19) we obtain∫

Ω

exp(−G(un))a(un,∇un)∇ϕ+
∫

Ω

γ(x)ϕ exp(−G(un))

≥
∫

Ω

ϕ exp(−G(un))µn ∀ϕ ∈W 1,p
0 (Ω) ∩ L∞(Ω) , ϕ ≥ 0 . (2.22)

Let ϕ = Tk(un)+ in (2.21) and ϕ = Tk(un)− in (2.22). Also let G(±∞) =
1
α

∫ ±∞
0

g(s)ds which are well defined since g ∈ L1(R). Since exp(G(−∞)) ≤
exp(G(s)) ≤ exp(G(+∞)) and exp(|G(±∞)|) ≤ exp(‖g‖L1(R)/α), using (2.12),
we obtain

‖Tk(un)‖p

W 1,p
0 (Ω)

≤ 1
α

exp
(‖g‖L1(R)

α

)
k(‖γ‖L1(Ω) + ‖µn‖L1(Ω)) ≤ ck . (2.23)
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Standard estimates (see [8]) imply that un is bounded in the Marcinkiewicz space
M

N(p−1)
N−p (Ω) and |∇un| is bounded in the Marcinkiewicz space M

N(p−1)
N−1 (Ω). In

particular we have from (2.13) that a(x, un,∇un) is bounded in Lq(Ω)N for any
q < N

N−1 . Furthermore, there exist a function u and a subsequence such that

un → u a.e. in Ω,

Tk(un) → Tk(u) weakly in W 1,p
0 (Ω) and a.e. in Ω for any k > 0.

Let us take ϕ = T1(un − Tj(un))− in (2.22); we obtain

∫
{−(j+1)≤un≤−j}

a(un,∇un)∇un +
∫

Ω

exp(−G(un))T1(un − Tj(un))−µn

≤ γ

∫
Ω

exp(−G(un))T1(un − Tj(un))− . (2.24)

The term with µn can be neglected since it is nonnegative. In the right hand
side we can pass to the limit in n and in j by Lebesgue’s theorem, using that G
is bounded; indeed, since

exp(−G(u))T1(u− Tj(u))− ≤ exp
(‖g‖L1(R)

α

)
χ{u<−j}

we have∫
Ω

exp(−G(un))T1(un−Tj(un))− n→∞→
∫

Ω

exp(−G(u))T1(u−Tj(u))−
j→∞→ 0 ,

so that we deduce from (2.24)

lim
j→∞

lim sup
n→∞

∫
{−(j+1)≤un≤−j}

a(un,∇un)∇un = 0 . (2.25)

We are going now to prove that the truncations strongly converge in W 1,p
0 (Ω).

Following the idea introduced in [26], this is done by using a suitable sequence
of cut-off functions. Indeed, let δ > 0; since λ is a regular measure concentrated
on E and since E has zero p-capacity, there exist a compact set Kδ ⊂ E and a
sequence {ψδ} of functions in C∞c (Ω) with the properties that

λ(E \Kδ) < δ , 0 ≤ ψδ ≤ 1 ,
ψδ ≡ 1 on an open neighbourhood Aδ of Kδ

ψδ
δ→0→ 0 strongly in W 1,p

0 (Ω).

(2.26)

Take now ϕ = (k − Tk(un))(1 − |T1(un − Tj(un)|)ψδ in (2.22), with j > k.
Observe that ϕ = (k − un)ψδ if |un| < k and ϕ = 0 if un > k. Thus we get,
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using also that exp(−G(un)) ≤ exp
(‖g‖L1(R)

α

)
and ψδ ≤ 1,∫

Ω

exp(−G(un))a(un,∇un)∇ψδ(k − Tk(un))(1− |T1(un − Tj(un)|)

+ 2k exp
(‖g‖L1(R)

α

) ∫
{−(j+1)≤un≤−j}

a(un,∇un)∇un + 2k exp
(‖g‖L1(R)

α

) ∫
Ω

γψδ

≥ exp
(
−
‖g‖L1(R)

α

) ∫
Ω

a(Tk(un),∇Tk(un))∇Tk(un)ψδ (2.27)

+
∫

Ω

(k − Tk(un)) exp(−G(un))(1− |T1(un − Th(un)|)ψδµn .

Since

|a(un,∇un)(1− |T1(un − Tj(un)|)| ≤ |a(Tj+1(un),∇Tj+1(un))| ,

and since last term is bounded in Lp′(Ω) and G is bounded, we have that there
exists Λj ∈ Lp′(Ω)N such that

exp(−G(un))a(un,∇un)(k − Tk(un))(1− |T1(un − Tj(un)|) → Λj

weakly in Lp′(Ω)N . Thus we get

lim
n→∞

∫
Ω

exp(−G(un))a(un,∇un)∇ψδ(k − Tk(un))(1− |T1(un − Tj(un)|)

=
∫

Ω

Λj∇ψδ ,

and then, as δ tends to zero, thanks to (2.26) we have

lim
δ→0

lim
n→∞

∫
Ω

exp(−G(un))a(un,∇un)∇ψδ(k−Tk(un))(1−|T1(un−Tj(un)|) = 0 .

The third integral in (2.27) easily goes to zero since ψδ converges to zero and
γ ∈ L1(Ω). Furthermore, the term with µn can again be neglected since it is
nonnegative. Therefore, passing to the limit first in n, then in δ we obtain from
(2.27)

lim
δ→0

lim sup
n→∞

∫
Ω

a(Tk(un),∇Tk(un))∇Tk(un)ψδ

≤ lim sup
n→∞

2k exp
(2‖g‖L1(R)

α

) ∫
{−(j+1)≤un≤−j}

a(un,∇un)∇un .

Then, as j goes to infinity, using (2.25) and since a(x, s, ξ) · ξ ≥ 0, we get

lim
δ→0

lim sup
n→∞

∫
Ω

a(Tk(un),∇Tk(un))∇Tk(un)ψδ = 0 . (2.28)
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Let now wn = T2k(un − Th(un) + Tk(un)− Tk(u)), we take ϕ = w+
n (1− ψδ) in

(2.21) and ϕ = w−n (1− ψδ) in (2.22) to obtain∫
{wn≥0}

exp(G(un))a(un,∇un)∇wn(1− ψδ)

≤
∫

Ω

γw+
n exp(G(un))(1− ψδ) +

∫
Ω

w+
n exp(G(un))(1− ψδ)µn

+
∫

Ω

exp(G(un))a(un,∇un)∇ψδw
+
n

and ∫
{wn≤0}

exp(−G(un))a(un,∇un)∇wn(1− ψδ)

≤
∫

Ω

γw−n exp(−G(un))(1− ψδ)−
∫

Ω

w−n exp(−G(un))(1− ψδ)µn

−
∫

Ω

exp(−G(un))a(un,∇un)∇ψδw
−
n .

Setting M = h+ 4k and using a(x, s, ξ) · ξ ≥ 0, we have

a(un,∇un)∇wn ≥a(Tk(un),∇Tk(un))∇(Tk(un)− Tk(u))
− |a(x, TM (un),∇TM (un))||∇Tk(u)|χ{|un|>k} .

Then∫
{wn≥0}

exp(G(un))a(Tk(un),∇Tk(un))∇(Tk(un)− Tk(u))(1− ψδ)

≤
∫

Ω

γw+
n exp(G(un))(1− ψδ) +

∫
Ω

w+
n exp(G(un))(1− ψδ)µn

+
∫

Ω

exp(G(un))a(un,∇un)∇ψδw
+
n

+
∫

Ω

exp(G(un))|a(x, TM (un),∇TM (un))||∇Tk(u)|χ{|un|>k}(1− ψδ)

(2.29)
and∫

{wn≤0}
exp(−G(un))a(Tk(un),∇Tk(un))∇(Tk(un)− Tk(u))(1− ψδ)

≤
∫

Ω

γw−n exp(−G(un))(1− ψδ)−
∫

Ω

w−n exp(−G(un))(1− ψδ)µn

−
∫

Ω

exp(−G(un))a(un,∇un)∇ψδw
−
n

+
∫

Ω

exp(−G(un))|a(x, TM (un),∇TM (un))||∇Tk(u)|χ{|un|>k}(1− ψδ) .

(2.30)
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Since a(un,∇un) is bounded in Lq(Ω)N for any q < N
N−1 , there exists ν ∈

Lq(Ω)N such that a(un,∇un) weakly converges to ν in Lq(Ω)N . Since ψδ ∈
W 1,∞

0 (Ω), and G is bounded, we get∫
Ω

exp(G(un))a(un,∇un)∇ψδw
+
n

n→∞→
∫

Ω

exp(G(u))ν∇ψδT2k(u− Th(u)) h→∞→ 0 .
(2.31)

Using that |∇Tk(u)|χ{|un|>k} strongly converges to zero in Lp(Ω) and that
∇TM (un) is bounded in Lp′(Ω)N we also have that∫

Ω

exp(G(un))|a(x, TM (un),∇TM (un))||∇Tk(u)|χ{|un|>k}(1− ψδ)
n→∞→ 0 .

(2.32)
Similarly, using the weak convergence of Tk(un) to Tk(u) in W 1,p

0 (Ω), we have∫
Ω

exp(−G(un))a(Tk(un),∇Tk(u))∇(Tk(un)− Tk(u))(1− ψδ)
n→∞→ 0 , (2.33)

and, since γ ∈ L1(Ω),∫
Ω

γw+
n exp(G(un))(1− ψδ)

n→∞→
∫

Ω

γ exp(G(u))(1− ψδ)T2k(u− Th(u))+ h→∞→ 0 .
(2.34)

Moreover, we have, using the decomposition of µn in (2.18),∫
Ω

w+
n exp(G(un))(1− ψδ)µn

=
∫

Ω

w+
n exp(G(un))(1− ψδ)dµ0n +

∫
Ω

w+
n exp(G(un))(1− ψδ)λn

≤ exp
(‖g‖L1(R)

α

) ∫
Ω

w+
n (1− ψδ)dµ0n + 2k exp

(‖g‖L1(R)

α

) ∫
Ω

(1− ψδ)λn .

Since w+
n converges to T2k(u − Th(u))+ weakly-∗ in L∞(Ω) and weakly in

W 1,p
0 (Ω), using the convergence of µ0n (which is strong in L1(Ω) +W−1,p′(Ω))

and λn we obtain

lim sup
n→∞

∫
Ω

w+
n exp(G(un))(1− ψδ)µn

≤ exp
(‖g‖L1(R)

α

) ∫
Ω

T2k(u− Th(u))+(1− ψδ)dµ0

+ 2k exp
(‖g‖L1(R)

α

) ∫
Ω

(1− ψδ) dλ .

(2.35)
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Since Tk(u) ∈ W 1,p
0 (Ω) for any k > 0 and (2.23) holds true, we have (see e.g.

Remark 2.11 in [26]) that u has a cap-quasi continuous representative which is
cap-quasi everywhere finite, that is there exists a function ũ such that ũ = u
almost everywhere and cap{|ũ| = +∞} = 0. In particular, since µ0 does not
charge sets of zero capacity, we have that ũ is finite µ0-quasi everywhere, hence
T2k(ũ− Th(ũ)) converges to zero µ0-quasi everywhere. Letting h go to infinity
we deduce that

lim
h→∞

∫
Ω

T2k(u− Th(u))+(1− ψδ) dµ0 = 0 ,

so that (2.35) implies

lim
h→∞

lim sup
n→∞

∫
Ω

w+
n exp(G(un))(1− ψδ)µn ≤ 2k exp

(‖g‖L1(R)

α

) ∫
Ω

(1− ψδ) dλ

(2.36)
Then, as n and then h go to infinity, using (2.31), (2.32), (2.33), (2.34), (2.36),
we obtain from (2.29),

lim sup
h→∞

lim sup
n→∞

∫
{wn≥0}

exp(G(un))
[
a(Tk(un),∇Tk(un))

− a(Tk(un),∇Tk(u))
]
∇(Tk(un)− Tk(u))(1− ψδ)

≤ 2k exp(
‖g‖L1(R)

α
)
∫

Ω

(1− ψδ)dλ ≤ 2k exp
(‖g‖L1(R)

α

)
λ(Ω \Kδ) .

By means of (2.14) and recalling (2.26) we deduce

lim sup
δ→0

lim sup
h→∞

lim sup
n→∞

∫
{wn≥0}

[
a(Tk(un),∇Tk(un))

− a(Tk(un),∇Tk(u))
]
∇(Tk(un)− Tk(u))(1− ψδ) ≤ 0.

In the same way we work on (2.30), obtaining

lim sup
δ→0

lim sup
h→∞

lim sup
n→∞

∫
{wn≤0}

[
a(Tk(un),∇Tk(un))

− a(Tk(un),∇Tk(u))
]
∇(Tk(un)− Tk(u))(1− ψδ) ≤ 0.

Adding the two inequalities we conclude

lim sup
δ→0

lim sup
n→∞

∫
Ω

[
a(Tk(un),∇Tk(un))

− a(Tk(un),∇Tk(u))
]
∇(Tk(un)− Tk(u))(1− ψδ) = 0 . (2.37)
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Now, we have∫
Ω

[a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u))]∇(Tk(un)− Tk(u))

=
∫

Ω

[a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u))]∇(Tk(un)− Tk(u))(1− ψδ)

+
∫

Ω

a(Tk(un),∇Tk(un))∇Tk(un)ψδ −
∫

Ω

a(Tk(un),∇Tk(un))∇Tk(u)ψδ

−
∫

Ω

a(Tk(un),∇Tk(u))∇(Tk(un)− Tk(u))ψδ .

Using the weak convergence of Tk(un) to Tk(u) last term converges to zero
as n goes to infinity. Similarly, we have that a(Tk(un),∇Tk(un)) is bounded in
Lp′(Ω)N uniformly on n while ∇Tk(u)ψδ converges to zero in Lp(Ω)N as δ tends
to zero. Using also (2.37) and (2.28) we finally get, letting first n go to infinity
and then δ to zero,

lim
n→∞

∫
Ω

[a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u))]∇(Tk(un)− Tk(u)) = 0.

Under assumptions (2.12)–(2.14), it is well known that this implies

Tk(un) → Tk(u) strongly in W 1,p
0 (Ω) for any k > 0. (2.38)

Moreover, using that meas{|un| > k} goes to zero as k goes to infinity uniformly
on n, as a consequence of (2.38) we also have that, up to subsequences, ∇un

almost everywhere converges to ∇u in Ω. In turns, this implies that

a(x, un,∇un) → a(x, u,∇u) strongly in Lq(Ω)N for any q < N
N−1 . (2.39)

Let ϕ =
∫ un

0
g(s)χ{s>h}ds in (2.21); since |ϕ| ≤

∫∞
h
g(s)ds we have∫

Ω

a(un,∇un)∇ung(un)χ{un>h}

≤ exp
(‖g‖L1(R)

α

)( ∫ ∞

h

g(s)ds
)
(‖γ‖L1(Ω) + ‖µn‖L1(Ω)) .

Using (2.12) and the fact that µn is bounded in L1(Ω) gives

α

∫
{un>h}

g(un)|∇un|p ≤ c
( ∫ ∞

h

g(s)ds
)
,

and then since g ∈ L1(R) we obtain

lim
h→∞

sup
n∈N

∫
{un>h}

g(un)|∇un|p = 0 .
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Similarly, taking ϕ =
∫ 0

un
g(s)χ{s<−h}ds in (2.22) we obtain the corresponding

result on the set {un < −h}, hence

lim
h→∞

sup
n∈N

∫
{|un|>h}

g(un)|∇un|p = 0 . (2.40)

A standard argument allows to conclude from (2.38) and (2.40) that g(un)|∇un|p
strongly converges in L1(Ω) to g(u)|∇u|p. Then from (2.15), the almost every-
where convergence of un and ∇un and Lebesgue’s theorem we conclude that

H(x, un,∇un) → H(x, u,∇u) strongly in L1(Ω). (2.41)

Thanks to (2.39) and (2.41) we can pass to the limit in (2.19) and we obtain
that u is a distributional solution of (2.20). �

Remark 2.2 The assumption that µ is nonnegative is not essential in Theorem
2.1. In order to deal with changing sign measures it is enough to follow the same
lines of the previous proof with suitable modifications while proving the strong
convergence of truncations similar to those developed in [26].

Example 2.3 Let µ = δ0 be the Dirac mass at the origin and let Ω = B(0, 1)
be the unit ball in RN , with N ≥ 3. Let µn = nNχB(0, 1

n ); clearly µn converges,
in the narrow topology, to λδ0 for some constant λ > 0. Note that in particular
µn satisfies (2.18) (with fn = Fn = 0). Let un be any sequence of solutions of

−∆un = g(un)|∇un|2 + µn in Ω ,
un = 0 on ∂Ω.

(2.42)

We claim that if the following assumption holds:

∃h ∈ C(R,R+): g(s) ≥ h(s) for every s ∈ R+,
h is nonincreasing, lims→+∞ h(s) = 0 and h 6∈ L1(R+),

(2.43)

then the sequence un blows up completely, namely un(x) → +∞ for every
x ∈ Ω.

As far as assumption (2.43) is concerned, observe that if g is nonincreasing,
converges to zero at infinity and g 6∈ L1(R), we can clearly take h = g in (2.43);
this includes the main examples of g around the borderline case g ∈ L1(R), as
g(s) = 1/(|s|+1) or g(s) = 1/((1+ |s|) log(1+ |s|)). Anyway, assumption (2.43)
is stated in this generality to include most examples of g; in particular, note
that the it requires g to be larger than a nonincreasing function which is not
integrable, so that g itself may also be unbounded.

In order to prove our claim, we adapt an idea used in a context of sub-
linear equations by L. Orsina ([35]). Let us set H(s) =

∫ s

0
h(ξ)dξ, ψ(s) =∫ s

0
exp(H(ξ))dξ and define vn := ψ(un) (the function h is defined in (2.43)).

Observe that ψ is an increasing unbounded function, so that vn goes to infinity
if and only if un goes to infinity. Since g(un) ≥ h(un), vn satisfies

−∆vn ≥ exp(H(un))µn in Ω ,
vn = 0 on ∂Ω.

(2.44)
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In particular, by definition of µn, we have that vn is a supersolution of the
problem

−∆z = exp(H(ψ−1(z)))nN in B(0,
1
n

),

z = 0 on ∂B(0,
1
n

) .
(2.45)

Let ϕ1,n be the first eigenfunction of the Laplacian on B(0, 1
n ), normalized so

that ‖ϕ1,n‖L∞(Ω) = 1, and let λ1,n be the first eigenvalue. Let us set

B(s) :=
exp(H(ψ−1(s)))

s
.

Since h is nonincreasing we have

d

dr

(exp(H(r))
ψ(r)

)
=

exp(H(r))
ψ(r)2

(
h(r)

∫ r

0

exp(H(ξ))dξ − exp(H(r))
)

≤exp(H(r))
ψ(r)2

( ∫ r

0

exp(H(ξ))h(ξ)dξ − exp(H(r))
)
< 0 ,

so that B(ψ(s)) is decreasing. Since ψ is increasing, we deduce that B is a
decreasing function. Let us set Tn = B−1(λ1,n

nN ). Since B is decreasing, we
deduce that

λ1,n

nN
= B(Tn) = B(Tn‖ϕ1,n‖L∞(Ω)) ≤ B(Tnϕ1,n(x)) ∀x ∈ B(0,

1
n

) ,

which implies, by definition of B,

λ1,nTnϕ1,n(x) ≤ exp(H(ψ−1(Tnϕ1,n(x))))nN ∀x ∈ B(0,
1
n

) .

Since λ1,nTnϕ1,n = −∆(Tnϕ1,n) we conclude that Tnϕ1,n is a subsolution of
(2.45). Since exp

(
H(ψ−1(z))

)
/z = B(z) is decreasing, a well-known comparison

principle holds for positive sub-super solutions of (2.45) (see for example [23]),
so that we get vn ≥ Tnϕ1,n in B(0, 1

n ). By scaling arguments we know that

ϕ1,n(x) = ϕ1,1(nx) , λ1,n = λ1,1n
2 ,

hence we obtain

∀x ∈ B(0,
1
2n

) : vn(x) ≥ B−1(
λ1,1

nN−2
) min

B(0, 1
2 )
ϕ1,1 .

Since ϕ1,1 is radial, we have minB(0, 1
2 ) ϕ1,1 = ϕ1,1( 1

2 ), so that

min
B(0, 1

2n )
vn ≥ B−1(

λ1,1

nN−2
)ϕ1,1(

1
2
) . (2.46)
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Now observe that, using De L’Hospital’s theorem and the fact that h(s) goes to
zero at infinity, we have lims→+∞B(s) = 0. Since λ1,1/n

N−2 converges to zero
as n tends to infinity, we end up with

lim
n→+∞

B−1(
λ1,1

nN−2
) = +∞ ,

and then from (2.46)
lim

n→+∞
min

B(0, 1
2n )

vn = +∞ . (2.47)

Let now G(x, y) be the kernel of the Laplacian with zero boundary condition;
we have from (2.44)

vn(x) ≥
∫

Ω

G(x, y) exp(H(un))(y)µn(y)dy

≥ min
B(0, 1

2n )

(
exp(H(ψ−1(vn)))

) ∫
B(0, 1

2n )

G(x, y)nN dy .
(2.48)

Since there exists a constant c > 0 such that∫
B(0, 1

2n )

G(x, y)nNdy → c

∫
Ω

G(x, y)dδ0(y) > 0 ,

and since both ψ−1 and H go to infinity at infinity (because h 6∈ L1(R+)), we
deduce using (2.47) that the right hand side of (2.48) goes to infinity as n goes
to infinity. We then conclude

lim
n→+∞

vn(x) = +∞ ∀x ∈ Ω .

Since ψ is unbounded and un = ψ−1(vn), we have proved that the solutions
un of (2.42) blow up completely in Ω. This is in sharp contrast with what
proved in Theorem 2.1 when g ∈ L1(R), so that this assumption is optimal in
the existence result above.
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[8] P. Benilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J. L. Vázquez,
An L1 theory of existence and uniqueness of nonlinear elliptic equations,
Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22 (1995), 240–273.

[9] A. Benkirane, A. Elmahi, A strongly nonlinear elliptic equation having
natural growth terms and L1 data, Nonlin. Anal. T.M.A.39 (2000), 403–
411.

[10] A. Benkirane, A. Elmahi, D. Meskine, An existence theorem for a class of
elliptic problems in L1, submitted.
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