\documentclass[twoside]{article}
\usepackage{amsfonts, amsmath} % used for R in Real numbers
\pagestyle{myheadings}
\markboth{Existence and regularity of positive solutions }
{ Abdelouahed El Khalil, Mohammed Ouanan,\& Abdelfattah Touzani }
\begin{document}
\setcounter{page}{171}
\title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent
2002-Fez conference on Partial Differential Equations,\newline
Electronic Journal of Differential Equations,
Conference 09, 2003, pp 171--182. \newline
http://ejde.math.swt.edu or http://ejde.math.unt.edu
\newline ftp ejde.math.swt.edu (login: ftp)}
\vspace{\bigskipamount} \\
%
Existence and regularity of positive solutions for an
elliptic system
%
\thanks{ {\em Mathematics Subject Classifications:} 35J20, 35J45, 35J50,
35J70.
\hfil\break\indent
{\em Key words:} p-Laplacian operator, mountain pass Theorem Orlicz space.
\hfil\break\indent
\copyright 2002 Southwest Texas State University. \hfil\break\indent
Published December 28, 2002.} }
\date{}
\author{Abdelouahed El Khalil, Mohammed Ouanan,\\
\& Abdelfattah Touzani}
\maketitle
\begin{abstract}
In this paper, we study the existence and regularity of
positive solution for an elliptic system on a bounded and
regular domain. The non linearities in this equation are
functions of Caratheodory type satisfying some exponential
growth conditions.
\end{abstract}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{prop}[theorem]{Proposition}
\numberwithin{equation}{section}
\section{Introduction}
In this work, we study the elliptic system
\begin{equation} \label{E}
\begin{gathered}
-\Delta_p u=f(x,u,v)\quad\mbox{in }\Omega\\
-\Delta_p v=g(x,u,v)\quad \mbox{in }\Omega\\
u=v=0 \quad\mbox{on }\partial \Omega,
\end{gathered}
\end{equation}
where $\Omega$ is a bounded regular domain in $\mathbb{R}^N$, $1
0$, there exists $m>0$ such that for all
$(\xi,\eta) \in \mathbb{R} \times \mathbb{R}$, satisfying
$|\xi|+|\eta|\leq K$ and for almost every where
$x\in \Omega$ we have
$$
f(x,\xi,\eta)\leq m \quad\mbox{and}\quad g(x,\xi,\eta)\leq m.
$$
\item[(H2)] There exist $\sigma_0>2p-1$, $\theta_0>2p-1$ and $R>0$ such that
for
all $(\xi,\eta) \in \mathbb{R}^+ \times \mathbb{R}^+$ satisfying $\xi +\eta
\geq R$
we have
\begin{gather}
\xi f(x,\xi,\eta)\geq (\sigma_0+1) G(x,\xi,\eta)\mbox{ a.e }x\in
\Omega\label{2.1}\\
\eta g(x,\xi,\eta)\geq (\theta_0+1) G(x,\xi,\eta)\mbox{ a.e }x\in
\Omega\label{2.2}
\end{gather}
where $\frac{\partial G(x,\xi,\eta)}{\partial
\xi}=f(x,\xi,\eta)$, and $\frac{\partial
G(x,\xi,\eta)}{\partial \eta}=g(x,\xi,\eta)$.
\end{itemize}
\paragraph{Definition} %2.1
We say that $(u,v)$ is a weak solution of elliptic system \eqref{E} if
for all $(\phi,\psi)\in (W_0^{1,p}(\Omega))^2$ we have
\begin{gather*}
\int_\Omega |\nabla u|^{p-2}\nabla u\nabla \phi =
\int_\Omega f(x,u,v)\phi\\
\int_\Omega |\nabla v|^{p-2}\nabla v \nabla \psi =
\int_\Omega g(x,u,v)\psi
\end{gather*}
\begin{theorem}[Mountain Pass \cite{Am-Ra}] \label{thm2.1}
Let $I$ be a $C^1$-differentiable functional on a Banach space $E$ and
satisfying the Palais-Smale condition (PS), suppose that there exists a
neighbourhood $U$ of 0 in $E$ and a positive constant $\alpha$
satisfying the following conditions:
\begin{itemize}
\item[(I1)] $I(0)=0$.
\item[(I2)] $I(u)\geq \alpha$ on the boundary of $U$.
\item[(I3)] There exists an $e\in E\backslash U$ such that $I(e)<\alpha$.
\end{itemize}
Then
$$
c=\inf_{\gamma\in \Gamma}\sup_{y\in [0,1]}I(\gamma(y))
$$
is a critical value of I with $\Gamma=\{g\in C([0,1]); g(0)=0, g(1)=e\}$.
\end{theorem}
\section{Main result}
\subsection*{The case $p\neq N$.}
Set $$J(u,v)=\frac{1}{p}\int_\Omega (|\nabla u|^p+|\nabla
v|^p)\,dx-\int_\Omega G(x,u,v)\,dx $$
$J$ is well define in $(W_0^{1,p}(\Omega))^2$.
In this subsection we have the following result
\begin{theorem} \label{thm3.1}
Let $f$ and $g$ are two Carath\'eodory functions satisfying (H1), (H2)
and suppose that \begin{itemize}
\item[i)] $X\subset L^{\infty}(\Omega)$.
\item[ii)] There exist some $r_0>0$, $\sigma >p-1$, $\theta >p-1$ and $c>0$
such that, for almost every where $x\in \Omega$ and for all
$|\xi|+|\eta|N$.
The following proposition gives another interesting example of the
space $X$ with $p>1$.
\begin{prop}[\cite{Th2}] \label{prop3.1}
Let $0<\rho0$ such that, for
all $u\in X$ and for almost every where $x\in \Omega$ we have
$$ |u(x)|\leq c(N,\rho,p,R)\|\nabla u\|_p.
$$
\end{prop}
To prove Theorem \ref{thm3.1} we prove some preliminary lemmas.
\begin{lemma} \label{lm3.1}
Let $u\in X$. Suppose that $f$ and $g$ satisfy (H1) and (H2).
Then,
any sequence $\{(u_j,v_j)\}_{j\geq 0}\in X\times X$ satisfying the
following two hypotheses:
\begin{equation}
|J(u_j,v_j)|\leq K \label{PS1}
\end{equation}
and for all $\epsilon>0$ there exist $j_0\in \mathbb{N}^*$ such that
$\forall j\geq j_0,$
\begin{equation}
|\langle J'(u_j,v_j),(u_j,v_j)\rangle|\leq \epsilon \|(u_j,v_j)\|,
\label{PS2}
\end{equation}
is bounded in $X\times X$.
\end{lemma}
\paragraph{Proof.}
Set $\|(u,v)\|=(\|\nabla u\|_p^p+\|\nabla v\|_p^p)^{1/p}$. This is a norm
in the product space $X\times X$, and $\|\nabla u\|_p=\|u\|_X$.
Now we proceed by contradiction. Suppose that a subsequent denoted by
$\{(u_j,v_j)\}_{j\geq
0}$ be such that $$\lim_{j\to +\infty}\|(u_j,v_j)\|=+\infty,$$
In virtue \eqref{PS1}, we get
$$\frac{-K}{\|(u_j,v_j)\|^p}\leq
\frac{1}{p}-\frac{\int_\Omega
G(x,u_j,v_j)dx}{\|(u_j,v_j)\|^p}\leq \frac{K}{\|(u_j,v_j)\|^p}.
$$
By passing to limit we deduce that
\begin{equation}
\lim_{j\to +\infty}\frac{\int_\Omega
G(x,u_j,v_j)dx}{\|(u_j,v_j)\|^p}=\frac{1}{p}.\label{3.3}
\end{equation}
On the other hand, \eqref{PS2} implies
$$
\frac{-\varepsilon}{\|(u_j,v_j)\|^{p-1}}\leq
1-\frac{\int_\Omega
(u_jf(x,u_j,v_j)+v_jg(x,u_j,v_j))dx}{\|(u_j,v_j)\|^{p}}\leq
\frac{\varepsilon}{\|(u_j,v_j)\|^{p-1}}.
$$
By passing to limit, we obtain
\begin{equation}
\lim_{j\to +\infty}\frac{\int_\Omega
(u_jf(x,u_j,v_j)+v_jg(x,u_j,v_j))dx}{\|(u_j,v_j)\|^{p}}=1.\label{3.4}
\end{equation}
Combining \eqref{2.1}, \eqref{2.2}, \eqref{3.3} and \eqref{3.4} we deduce
that
$$\frac{1}{p}\leq
\frac{1}{\sigma_0+1}+\frac{1}{\theta_0+1}<\frac{1}{p}.
$$
A contradiction, whence $\|(u_j,v_j)\|_X$ is bounded. \hfill$\square$
\begin{lemma} \label{lm3.2}
Let $f$ and $g$ be two Carath\'eodory functions satisfying the
hypothesis of Theorem \ref{thm3.1} and let $\{(u_j,v_j)\}_{j\geq 0}$ be a
sequence in $X\times X$ such that $(u_j,v_j)\rightharpoonup (u,v)$
weakly in $X\times X$.
Then
$$ \lim_{j\to +\infty}\int_\Omega
f(x,u_j,v_j)(u_j-u)=0, quad \lim_{j\to+\infty}\int_\Omega g(x,u_j,v_j)
(v_j-v)=0.
$$
\end{lemma}
\paragraph{Proof.}
By using H\"older's inequality we obtain
$$
\big|\int_\Omega f(x,u_j,v_j)(u_j-u)\big|\leq
\|f(x,u_j,v_j)\|_{p'}\|u_j-u\|_p.
$$
In virtue i), (H1) and by using the imbedding Sobolev space we have
$(u_j,v_j)\to (u,v)$ strongly in $L^p(\Omega)\times
L^p(\Omega)$.
Then, by Lebesgue's theorem, as $j\to +\infty$,
$$\lim_{j\to +\infty}\int_\Omega
f(x,u_j,v_j)(u_j-u)=0.$$
The proof of the second limit in this Theorem is the same.
\hfill$\square$
\begin{lemma} \label{lm3.3}
Under the hypothesis of Theorem \ref{thm3.1}, $J\in C^1(X\times X)$
and satisfies the Palais-Smale condition.
\end{lemma}
\paragraph{Proof.}
In virtue of the preceding lemma we have $J\in C^1(X\times X)$.
Let $\{(u_j,v_j)\}_{j\geq 0}$ be a sequence of element in $X\times X$
satisfying the conditions \eqref{PS1} and \eqref{PS2}. Hence, by
Lemma \ref{lm3.1}
the sequence $(u_j,v_j)$ is bounded, then, there exist a subsequent still
denoted $\{(u_j,v_j)\}_{j\geq 0}$ weakly convergent to
$(u,v)\in X\times X $ and strongly in $L^p(\Omega)\times L^p(\Omega)$ .
On the other hand, since
$$
\langle -\Delta_p u_j,u_j-u\rangle=\langle
J'(u_j,v_j),(u_j,v_j)-(u,v)\rangle -\int_\Omega f(x,u_j,v_j)(u_j-u).$$
As
$j\to +\infty$, in virtue of Lemma \ref{lm3.2} and \eqref{PS2} we
have
$$
\lim_{j\to +\infty}\langle -\Delta_p u_j,u_j-u\rangle =0.
$$
Or the p-Laplacian operator satisfies the condition $(S_+)$, thus
$$u_j\to u \mbox{ strongly in }X.
$$
The same way, we prove that $v_j\to v$ strongly in $X$.
\hfill$\square$
\paragraph{Proof of Theorem \ref{thm3.1}}
It suffices to prove that the functional $J$ satisfies the conditions
for the Pass-Mountain lemma \cite{Am-Ra}:\\
$J$ satisfies condition of Palais-Smale and $J(0)=0$ (see Lemma
\ref{lm3.3}).\\
For $\|(u,v)\|=r$ sufficiently small, we have
$J(u,v)\geq \alpha>0$.
We prove this second conditions first.
By i), for all $x\in \Omega$, there exist $c'>0$
such
that $|u(x)|+|v(x)|\leq c'\|(u,v)\|$; and for $\|(u,v)\|\leq
\frac{r_0)}{c'}$.
Using ii) we deduce that
\begin{eqnarray*}
G(x,u(x),v(x))&\leq & c(|u(x)|^{\sigma+1}+|v(x)|^{\theta+1})\\
&\leq & c[
(c')^{\sigma+1}\|(u,v)\|^{\sigma+1}+(c')^{\theta+1}\|(u,v)\|^{\theta+1}]
\\
&\leq & c^{''}(\|(u,v)\|^{\sigma+1}+\|(u,v)\|^{\theta+1}).
\end{eqnarray*}
Then
\begin{eqnarray*}
J(u,v) & \geq &
\frac{1}{p}\|(u,v)\|^p-c^{''}(\|(u,v)\|^{\sigma+1}+\|(u,v)\|^{\theta+1})
\\
& \geq & \frac{1}{p}\|(u,v)\|^p-2c^{''}\|(u,v)\|^l
\end{eqnarray*}
with $ l=\min(\sigma+1,\theta+1)$. It suffices to take
$r \leq \min(\frac{r_0)}{c'},\,(\frac{1}{2pc^{''}})^{\frac{1}{l-p}})$.\\
Finally, for $\|(u,v)\|\leq r$, we have
$$ J(u,v)\geq \alpha=\frac{r^p}{p}>0.
$$
Now, we prove the first condition. Let $(u_0,v_0)\in X\times X$ such that
for almost every where
$x\in \Omega_0$ with $\mathop{\rm meas} (\Omega_0)>0$ we have $u_0(x)+
v_0(x)>\alpha_0>0$with some $\alpha_0>0$. For $t$ large enough we have
$t u_0>\xi_0$, $t v_0>\eta_0$ with $\xi_0+\eta_0>R$.
From \eqref{2.1} and \eqref{2.2} we get
$$ \xi\to \frac{G(x,\xi,\eta)}{|\xi|^{\sigma_0+1}}\quad
\mbox{and}\quad \eta \to \frac{G(x,\xi,\eta)}{|\eta|^{\theta_0+1}}
$$
are increasing, then
$$
\int_\Omega G(x,tu_0,tv_0)\geq \int_{\Omega_0}
G(x,tu_0,tv_0)\geq \beta (t^{\sigma_0+1}+t^{\theta_0+1}),
$$
with
\begin{align*}
\beta=\frac{1}{2}\inf\Big(&\frac{1}{\xi_0^{\sigma_0+1}}\int_{\Omega_0}
G(x,\xi_0,\eta_0)|u_0(x)|^{\sigma_0+1},\\
&\frac{1}{\eta_0^{\theta_0+1}}\int_{\Omega_0}
G(x,\xi_0,\eta_0)|v_0(x)|^{\theta_0+1}\Big).
\end{align*}
Consequently,
$$
J(tu_0,tv_0)\leq \frac{t^p}{p}\|(u,v)\|^p-\beta
(t^{\sigma_0+1}+t^{\theta_0+1}).
$$
by passing to the limit, as $t\to +\infty$ we
have $\lim_{t\to+\infty}J(tu_0,tv_0)=-\infty$.
Then, there exist some $(e_1, e_2)\in X\times X$, with $e_1\neq 0$ and
$e_2\neq 0$, such that $J(e_1,e_2)<0$.
By the Pass-Mountain theorem, there exists $(u_0,v_0)\in X\times X$
$u_0\neq 0$, $v_0\neq 0$, such that
$J'(u_0,v_0)=0$, i.e for all $(\phi,\psi)\in W_0^{1,p}(\Omega)\times
W_0^{1,p}(\Omega)$,
\begin{gather*}
\int_\Omega |\nabla u_0|^{p-2}\nabla u_0 \nabla
\phi-\int_\Omega f(x,u_0,v_0)\phi=0,\\
\int_\Omega |\nabla v_0|^{p-2}\nabla v_0 \nabla
\psi-\int_\Omega g(x,u_0,v_0)\psi=0.
\end{gather*}
In virtue of Tolksdorf regularity \cite{To}, $(u_0,v_0)\in
C^{1,\nu}(\bar\Omega)\times C^{1,\nu}(\bar\Omega)$ and by Vazquez's
maximum
principle \cite{Va}, $u_0>0$ and $v_0>0$. \hfill$\square$
\paragraph{Example} %3.1
Let $f(x,\xi ,\eta)=\xi^{\sigma} \exp(\xi^q+\eta ^r)$,
$g(x,\xi ,\eta)=\eta^{\theta} exp(\xi^q+\eta ^r)$,
$\sigma>2p-1$, $\theta>2p-1$, $r,q > 0$. The functions $f$ and $g$
satisfy the hypotheses
(H1), (H2), (ii), and $X$ the space defined in Proposition \ref{prop3.1}.
Hence, for $\sigma, \theta >1$;
\begin{gather*}
-\Delta_p u= u^{\sigma} \exp(u^q+v^r)\quad \mbox{in }\Omega\\
-\Delta_p v=v^{\theta} \exp(u^q+v^r) \quad \mbox{in }\Omega\\
u=v=0 \quad \mbox{on }\partial \Omega,
\end{gather*}
has a positive solution $(u,v)\in (X\times C^{1,\nu}(\overline\Omega))^2$.
\subsection*{The case $p=N$}
Recall that a Young function is an even convex function from $\mathbb{R}$
into
$\mathbb{R}^+$, such that
$$
\lim_{\xi\to 0}\frac{M(\xi)}{\xi}=0 \quad \mbox{and}\quad
\lim_{\xi\to +\infty}\frac{M(\xi)}{\xi}=+\infty.
$$
The conjugate function of $M$ is defined as
$$M^*(\xi)=\sup_{s\in \mathbb{R}}[\xi s-M(s)].
$$
The Orlicz space $L_M(\Omega)$ is the set of measurable function $u$
defined on $\mathbb{R}$ such that, there is some $\lambda >0$ with
$$\int_\Omega M(\frac{u}{\lambda})<+\infty.
$$
This is a Banach space for the norm
$$\|u\|_M=Inf\left \{ \lambda >0:\,\,\int_\Omega
M(\frac{u}{\lambda})<1\right\}.
$$
Let $E_M(\Omega)$ be the closure of $C_0^{\infty}(\Omega)$ in
$L_M(\Omega)$.\\We say that $M$ is super-homogenous of degree
$(\sigma+1)$
\cite{Th2} if there exists $K>0$ such that
$$
M(h\xi)\leq h^{\sigma+1}M(K\xi), \quad
\forall \xi\in \mathbb{R},\,\forall h\in [0,1]\,.
$$
Let $\Omega$ be a bounded regular domain in $\mathbb{R}^N$.
In this case $W_0^{1,p}(\Omega)\not \subset L^{\infty}(\Omega)$ but
$W_0^{1,p}(\Omega)\subset E_{M_1}(\Omega)$ \cite{Ad}
where
$$
M_1(\xi)=\exp(|\xi|^{p'})-1,\quad \mbox{or}\quad \frac{1}{p}+\frac{1}{p'}=1.
$$
So, we can get the following Theorem.
\begin{theorem} \label{thm3.2}
Let $f$ and $g$ be two positive functions which are Caratheodory and
satisfy (H1) and (H2). Assume also that there exists a Young function of
exponential type $M$ such that: \begin{itemize}
\item[i)] The imbedding $W_0^{1,p}(\Omega) \hookrightarrow E_M(\Omega)$ is
compact.
\item[ii)] $M$ is super-homogeneous of degree $\sigma_1+1>p$.
\item[iii)] There are some $c_1>0$ and $K_1>0$ such that for a.e
$x\in \Omega$ and
for all $(\xi,\eta)\in \mathbb{R}^2$,
$$
\xi f(x,\xi,\eta) \leq c_1 M(\frac{\xi}{K_1})\quad\mbox{and}\quad
\eta g(x,\xi,\eta) \leq c_1 M(\frac{\eta}{K_1}).
$$
\item[iv)] For all $K>0$, we have
$$\lim_{|\xi|+|\eta|\to +\infty}\frac{f(x,\xi,\eta)}{M'(\frac{\xi}{K})}=0
\quad\mbox{and}\quad
\lim_{|\xi|+|\eta|\to+\infty}\frac{g(x,\xi,\eta)}{M'(\frac{\eta}{K})}=0
$$
almost every where in $x\in \Omega$.
\end{itemize}
Then there is at least one positive solution $(u,v)\in
(W_0^{1,p}(\Omega)\cap C^{1,\nu}(\bar\Omega))^2$ of \eqref{E}.
\end{theorem}
The proof of this Theorem needs the following lemma.
\begin{lemma} \label{lm3.4}
Under the hypotheses of Theorem \ref{thm3.2},
$J\in C^1((W_0^{1,p}(\Omega))^2$ and satisfies the Palais-Smale condition.
\end{lemma}
\paragraph{Proof.}
Let $\{(u_j,v_j)\}_{j\geq 0}$ be a bounded sequence in
$W_0^{1,p}(\Omega)\times W_0^{1,p}(\Omega)$. By i) there exist some
$K>0$ such that
$$
\int_\Omega M\big(\frac{u_j}{K}\big)\leq1,\quad
\int_\Omega M\big(\frac{v_j}{K}\big)\leq 1.
$$
Let $c>0$ be large enough such that
$M^*(\frac{1}{c})\mathop{\rm meas}(\Omega)<1$. From iv)
for all $(\xi,\eta)\in \mathbb{R}^2$ and for a.e $x\in \Omega$ we
have
$$|f(x,\xi,\eta)|+|g(x,\xi,\eta)|\leq
\frac{c}{2}+\frac{1}{4}\big(M'(\frac{\xi}{K})+M'(\frac{\eta}{K})\big),
$$
or $M^*$ is a Young function satisfies the \lq\lq $\Delta_2$-condition".
Then
\begin{eqnarray*}
M^*\big(\frac{f(x,u_j,v_j)}{c^2}\big)
& \leq & \frac{1}{2}M^*(\frac{1}{c})+\frac{1}{2}M^*
\big(\frac{1}{2}M'(\frac{u_j}{c^2K})+\frac{1}{2}M'(\frac{v_j}{c^2K})\big)\\
&\leq & \frac{1}{2}M^*(\frac{1}{c})+\frac{1}{4}
\big(M(\frac{2u_j}{c^2K})+M(\frac{2v_j}{c^2K})\big)\\
&\leq & \frac{1}{2}M^*(\frac{1}{c})+\frac{1}{4}
\big(M(\frac{u_j}{K})+M(\frac{v_j}{K})\big).
\end{eqnarray*}
Hence
\begin{equation}
\int_\Omega M^*\big(\frac{f(x,u_j,v_j)}{c^2}\big)\leq 1.\label{3.5}
\end{equation}
In the same we obtain
\begin{equation}
\int_\Omega M^*\big(\frac{g(x,u_j,v_j)}{c^2}\big)\leq 1.\label{3.6}
\end{equation}
Let $\{(u_j,v_j)\}_{j\geq 0}$ be a subsequent of the least sequence of
element in $(W_0^{1,p}(\Omega))^2$ converges to $(u,v)\in
(W_0^{1,p}(\Omega))^2$. For $\delta>0$ sufficiently small, for all
$\epsilon>0$ and $A\subset \Omega$ such that
$\mathop{\rm meas} (A)\leq \delta$ we have
\begin{align*}
\int_A &M^*\big(\frac{f(x,u_j,v_j)}{c^2}\big)\\
\leq & \frac{1}{2}M^*\big(\frac{1}{c}\big)\mathop{\rm meas} (A)
+\frac{1}{4}\int_A\Big[M\big(\frac{2u_j}{c^2K}\big)
+M\big(\frac{2v_j}{c^2K}\big)\Big]\\
\leq & \frac{1}{2}M^*\big(\frac{1}{c}\big)\mathop{\rm meas}
(A)+\frac{1}{8}\int_A \Big[M\big(\frac{u_j-u}{K}\big)
+M\big(\frac{u}{K}\big)+M\big(\frac{v_j-v}{K}\big)+
M\big(\frac{v}{K}\big)\Big]\\
\leq & \epsilon,
\end{align*}
then $M^*\big(\frac{f(x,u_j,v_j)-f(x,u,v)}{c^2}\big)$ is equi-summable and
$$
\lim_{j\to +\infty}\int_\Omega
M^*\big(\frac{f(x,u_j,v_j)-f(x,u,v)}{c^2}\big)=0
$$
By ii) and since $M^*$ satisfies \lq\lq $\Delta_2$-condition" we
have
$$\lim_{j\to +\infty}\|f(.,u_j,v_j)-f(.,u,v)\|_{M^*}=0.
$$
In the same way we have
$$
\lim_{j\to +\infty}\|g(.,u_j,v_j)-g(.,u,v)\|_{M^*}=0
$$
Whence $J\in C^1((W_0^{1,p}(\Omega))^2$.
Let $\{(u_j,v_j)\}_{j\geq 0}$ be a sequence satisfying \eqref{PS1} and
\eqref{PS2} then by lemma \ref{lm3.1} the sequence $\{(u_j,v_j)\}_{j\geq 0}$
is
bounded in $(W_0^{1,p}(\Omega))^2$ ,hence $\{(u_j,v_j)\}_{j\geq 0}$
converges weakly
to $(u,v)\in (W_0^{1,p}(\Omega))^2$ and strongly in $(E_M(\Omega))^2$.
In view of \eqref{3.5} \eqref{3.6} we deduce that $f(x,u_j,v_j)$,
$g(x,u_j,v_j)$
converge with $\sigma(L_M\times L_M,\, E_M\times E_M)$. So the same
proof of lemma \ref{lm3.3} shows that the Palais-Smale condition is
satisfied.
\hfill$\square$
\paragraph{Proof of Theorem \ref{thm3.2}}
Let us show that for $\|(u,v)\|=r$ sufficiently small,
$J(u,v)\geq \alpha>0$.
By (H2) and iii), for a.e $x\in \Omega$, for all $\xi\in
\mathbb{R}$,and for all $h\in [0,\;1]$, we have
\begin{eqnarray*}
G(x,\xi,\eta) & \leq & \frac{1}{2}\Big[\frac{1}{\sigma_0+1}\xi
f(x,\xi,\eta)+\frac{1}{\theta_0+1}\eta g(x,\xi,\eta)\Big]\\
& \leq &
\frac{c_1}{2}\Big[\frac{1}{\sigma_0+1}M\big(\frac{\xi}{K_1}\big)
+\frac{1}{\theta_0+1}M\big(\frac{\eta}{K_1}\big)\Big]\\
&\leq &
\frac{c_1}{2}\Big[h^{\sigma_1+1}M\big(\frac{K\xi}{hK_1}\big)
+h^{\theta_1+1}M\big(\frac{K\eta}{hK_1}\big)\Big]
\end{eqnarray*}
on the other hand, in virtue of i) there exists $c>0$ such that for all
$(u,v)\in W_0^{1,p}(\Omega)^2$ we have
$$\|u\|_M+\|v\|_M\leq c\|(u,v)\|.
$$
Whence for $\|(u,v)\|=r\leq \frac{K_1}{cK}$ and $h=\frac{cKr}{K_1}$ we
get
$$ \int_\Omega M(\frac{u}{cr})\leq 1\quad\mbox{and}\quad
\int_\Omega M(\frac{v}{cr})\leq 1.
$$
Hence \begin{eqnarray*}
\int_\Omega G(x,u,v)dx &\leq &\frac{c_1}{2}\left
[h^{\sigma_1+1}+h^{\theta_1+1}\right]\\
&\leq & c'\left[ \|(u,v)\|^{\sigma_1+1}+\|(u,v)\|^{\theta_1+1}\right]
\end{eqnarray*}
The same proof as in Theorem \ref{thm3.1} gives
$(u,v)\in (W_0^{1,p}(\Omega))^2$,
$u\not \equiv 0$, $v\not \equiv 0$, solution of \eqref{E}. The rest of the
proof is a consequence of the following lemma.
\hfill$\square$
\begin{lemma} \label{lm3.5}
Under the hypotheses of Theorem \ref{thm3.2}, if $(u,v)$ is a solution of
\eqref{E}
then
$(u,v)\in C^{1,\nu}(\bar\Omega)\times C^{1,\nu}(\bar\Omega)$.
\end{lemma}
\paragraph{Proof.}
This proof is inspired by the work of De Th\'elin \cite{Th2} and Otani
\cite{Ot} (see also \cite{Th1}).\\
In view of iii), there exists $s>1$ such that
$uf(x,u,v)\in L^s(\Omega)$
and $vg(x,u,v)\in L^s(\Omega)$.
Consider the following sequences:
\begin{gather*}
q_1=2ps^*=\frac{2ps}{s-1}, \quad q_{k+1}=2(p+q_k)\\
m_k=s^*q_k.
\end{gather*}
Multiplying the first equation of \eqref{E} by $|u|^{q_k}u$ and the second
equation by $|v|^{q_k}v$, we obtain:
\begin{gather*}
\int_\Omega |\nabla u|^{p-2}\nabla u \nabla (|u|^{q_k}u)
=\int_\Omega uf(x,u,v)|u|^{q_k}\\
\int_\Omega |\nabla v|^{p-2}\nabla v \nabla (|v|^{q_k}v)
=\int_\Omega vg(x,u,v)|u|^{q_k}
\end{gather*}
by H\"older's inequality we deduce that
\begin{equation} \label{3.7}
\begin{aligned}
\big( \frac{p}{p+q_k}\big)^p\int_\Omega
|\nabla u^\frac{p+q_k}{p}|^p
= &\int_\Omega f(x,u,v)|u|^{q_k}u\\
\leq & \|uf(.,u,v)\|_s\|u^{q_k}\|_{s^*}\\
\leq & c\|u\|_{s^*}^{q_k}.
\end{aligned}
\end{equation}
Since the imbedding $W_0^{1,p}(\Omega)\hookrightarrow L^{2ps^*}(\Omega)$
is compact, there exists $K>0$ such that
\begin{equation}
\|u\|_{2s^*(p+q_k)}^{p+q_k}\leq K^p
\int_\Omega |\nabla u^\frac{p}{p+q_k}|^p.\label{3.8}
\end{equation}
By combining \eqref{3.7} and \eqref{3.8} we have
$$
\|u\|_{2s^*(p+q_k)}^{m_{k+1}/(2s^*)}
\leq c\big(\frac{K(p+q_k)}{p}\big)^p \|u\|_{m_k}^{m_k/s^*}.
$$
Since $p+q_k\leq 4^kps^*$ we get
$$
\|u\|_{m_{k+1}}^{m_k+1}
\leq c^{2s^*}(4Ks^*)^{2ps^*}4^{2(k-1)ps^*}\|u\|_{m_k}^{2m_k}.
$$
Set $E_k=m_k \log \|u\|_{m_k}$, $a=4^{2ps^*}$,
$b=\log[c^{2s^*}(2Ks^*)^{2ps^*}]$ and $r_k=b+(k-1)\log a$.
We obtain
$$E_{k+1}\leq r_k+2E_k$$
then, by the result's of Otani \cite{Ot} we deduce that
$$\|u\|_{\infty}\leq
{\limsup_{k\to +\infty}}\exp\big(\frac{E_k}{m_k}\big)<+\infty.
$$
Finally, by the regularity of Tolksdorf's results $u\in
C^{1,\nu}(\bar\Omega)$.
In the same way we have $v\in C^{1,\nu}(\bar\Omega)$.
\hfill$\square$
\paragraph{Example} %3.2
Let $f(x,\xi,\eta)=\xi^{\sigma} \exp(\xi^q-\eta^r)$,
$g(x,\xi,\eta)=\eta^{\theta} \exp(-\xi^q+\eta ^r)$,
$\sigma > 2p-1$, $\theta >2p-1$, $N\geq 2$, $0