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Existence of stable periodic solutions for

quasilinear parabolic problems in the presence of

well-ordered lower and upper-solutions ∗

Abderrahmane El Hachimi & Abdelilah Lamrani Alaoui

Abstract

We present existence and stability results for periodic solutions of
quasilinear parabolic equation related to Leray-Lions’s type operators.
To prove existence and localization, we use the penalty method; while for
stability we use an approximation scheme.

1 Introduction

In the last few years, many works have been devoted to the existence and sta-
bility of periodic solutions of problem

∂u

∂t
+ A(u) + F (u,∇u) = 0 in Ω× R+,

u = 0 on ∂Ω× R+,

u(0) = u(T ) in Ω,

(1.1)

where Ω is a bounded and open subset of RN , N ≥ 1. For the usual Leray-
Lions’s operator A, Deuel and Hess [4] obtained existence of periodic solutions
under the presence of well-ordered lower and upper-solutions. Unfortunately,
uniqueness and therefore stability, can not be derived from the definition they
used for solutions of (1.1).

For A(u) = −∆g(u) and F depending only on (x, t), Harraux and Kenmochi
[7] proved both existence and stability results by using subdifferential theory on
Hilbert spaces.

Recently, Boldrini and Crema [2] considered the case where A(u) is the p-
laplacian operator, with p ≥ 2, and F is independent of ∇u. They obtained an
existence result via Shauder’s fixed point theorem.
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118 Existence of stable periodic solutions

More recently, De coster and Omari [3] considered problem (1.1) with a
linear uniformly elliptic operator A

Au := −
N∑

i,j=1

∂xi
(ai,j∂xj

u) +
N∑

i=1

ai∂xi
u + a0u

and F independent of ∇u. These last authors obtained stability in a suitable
sense of the maximal and minimal solutions in the presence of well-ordered lower
and upper-solutions.

The aim of this paper is to show that the result of De Coster and Omari
still holds for general problem (1.1). Our existence result is obtained by using
a classical method of penalization as it was done by Grenon in [4]; while the
stability one follows essentially the principal arguments of De Coster and Omari
with some changes imposed by the nonlinear character of the equation in (1.1).

This paper is organized as follows: In section 2 we recall some known results
related to the initial boundary value problem associated with (1.1), and give
hypotheses and definitions of solutions. In section 3, we give existence and
uniqueness results concerning periodic solutions of problem (1.1), while section
4 is devoted to the stability result of periodic solutions. Finally, in section 5 we
give an application to a periodic-parabolic problem associated to the p-laplacian
operator.

2 Hypotheses, definitions, and known results

Let Ω be an open bounded subset of RN with boundary ∂Ω and T > 0 a fixed
real. We shall denote

QT := Ω×]0, T [, ΣT := ∂Ω×]0, T [,

and for a real p with 1 < p < +∞, we denote by V the space V := Lp(0, T ;W 1,p
0 )

and by V ′ := Lp′
(0, T ;W−1,p′

) its dual, with p′ the real conjugate of p : 1
p + 1

p′ =
1.

Let us consider the Leray-Lions’s operator

A(v) := −
N∑

i=1

∂

∂xi
Ai(x, t, v,∇v), for each v ∈ V. (2.1)

We shall use the following assumptions:

(A1) Ai are caratheodory functions such that there exists βi > 0, and ki ∈
Lp′

(QT ), so that for all s ∈ R and all ξ ∈ RN :

|Ai(x, t, s, ξ)| ≤ βi(|s|p−1 + |ξ|p−1 + ki(x, t)),∀i = 1, . . . , N,

(A2) For all s ∈ R and all ξ, ξ∗ ∈ RN , with ξ 6= ξ∗, we have

N∑
i=1

[Ai(x, t, s, ξ)−Ai(x, t, s, ξ∗)](ξ − ξ∗) > 0 a.e. in QT .
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(A3) There exists α > 0, so that for all s ∈ R and all ξ ∈ RN , we have
N∑

i=1

Ai(x, t, s, ξ)ξi ≥ α|ξ|p a.e. in QT .

(A4) The function f is of caratheodory type on QT × R× RN , and there exist
functions b : R+ → R+ increasing, and h ∈ L1(QT ), h ≥ 0, such that

|f(x, t, s, ξ)| ≤ b(|s|)(h(x, t) + |ξ|p), for (x, t, s, ξ) ∈ QT × R× RN .

We denote by F the Nemyskii operator related to f and defined by

F (u,∇u)(x, t) := f(x, t, u,∇u).

To obtain (among other results) global existence for initial boundary-value prob-
lems associated with (1.1), we shall assume the following.

(A5) There exists ci > 0 and li ∈ Lp′
(QT ) with li ≥ 0, such that for all s, s∗ ∈ R

and all ξ ∈ RN ,

|Ai(x, t, s, ξ)−Ai(x, t, s∗, ξ)| ≤ ci|s− s∗|[li(x, t) + |ξ|p−1] a.e. in QT .

(A6) All data (coefficients and second member) are periodic in time with period
T .

We are interested in the existence and stability of the solutions of problem

∂u

∂t
+ A(u) + F (u,∇u) = 0 in QT ,

u = 0 on ΣT ,

u(0) = u(T ) in Ω.

(2.2)

To this end, we consider the problem (Pt1,t2;u0):

∂u

∂t
+ A(u) + F (u,∇u) = 0 in Ω×]t1, t2[,

u = 0 on ∂Ω×]t1, t2[,
u(t1) = u0 in Ω,

(2.3)

where 0 ≤ t1 < t2 ≤ +∞ and u0 is a given function in L∞(Ω).

Definition We say that α is a lower-solution of (2.2) if

α ∈ V ∩ L∞(QT ),
∂α

∂t
∈ V ′ + L1(QT )

and (in the distributional sense)

∂α

∂t
+ A(α) + F (α,∇α) ≤ 0 in QT ,

α(0) ≤ α(T ) in Ω.

An upper-solution is defined by reversing the sense of inequalities. And a solu-
tion is a function which is simultaneously lower and upper-solution.
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Definition We say that α is a lower-solution of problem (Pt1,t2;u0) if: α ∈
Lp(t1, t2;W 1,p) ∩ L∞(Ω×]t1, t2[), ∂α

∂t ∈ Lp′
(t1, t2;W−1,p′

) + L1(Ω×]t1, t2[) and

∂α

∂t
+ A(α) + F (α,∇α) ≤ 0 in Ω×]t1, t2[,

α ≤ 0 on ∂Ω×]t1, t2[,
α(0) ≤ u0 in Ω.

Upper-solutions and solutions of (Pt1,t2;u0) are defined exactly as in the periodic
case.

Remarks 1.) As the function f does not satisfy any Lipschitz condition, the
use of systematic results concerning stability questions, as the Poincaré operator
in connection with the theory of monotone operators and discrete dynamical
systems (see [8] or [1]), seems not to be possible.
2.) As in [5], our definitions allow us to use solutions as lower or upper-solutions.
This enables us to prove an uniqueness result among a class of periodic solutions.
This can not be done when using the definitions of [4], where it is supposed that
lower and upper-solutions are more regular than solutions.

Now, we recall some known results concerning solutions of (Pt1,t2;u0) with
T ′ > 0 and u0 ∈ L∞(Ω). We refer the reader to [5] for proofs.

Lemma 2.1 Assume (A1)–(A5) and let (α1, α2) and (β1, β2) be respectively
pairs of lower and upper-solutions of (P0,T ′;u0) such that

sup(α1, α2) ≤ inf(β1, β2) a.e. in QT ′ .

Then, there exists a solution u ∈ C([0, T ′];Lq(Ω)) for any q ≥ 1, of (Pt1,t2;u0)
such that sup(α1, α2) ≤ u ≤ inf(β1, β2) a.e. in QT ′ . Moreover, when α1 = α2

and β1 = β2, the Hypothesis (A5) can be removed.

Lemma 2.2 Assume (A1)–(A5) and let α and β be respectively lower and
upper-solutions of (P0,T ′;u0), for any T ′ > 0. Then, there exists u (resp. v)
∈ C([0,+∞[;Lq(Ω)), ∀q ≥ 1 such that for any T ′ > 0, the restriction of u
(resp. v) on [0, T ′] is the minimal (resp. maximal) solution of (P0,T ′;u0) located
between α and β. Moreover, if u0 and v0 are in L∞(Ω) and satisfy

α(0) ≤ u0 ≤ v0 ≤ β(0) a.e. in Ω

and umin(u0) (resp. umin(v0)) is the minimal solution of (P0,T ′;u0) with u0 (resp.
(P0,T ′;v0) with v0) laying between α and β, then

umin(u0) ≤ umin(v0), a.e. in QT ′ .

Furthermore, the same holds for maximal solutions.

Lemma 2.3 Assume (A1)–(A5). Let 0 < T1 < T2 and α and β be respectively
lower and upper-solution of (P0,T ′;u0) with T ′ > 0. Let u1 (resp. u2) be the
minimal solution of (P0,T1;u0) (resp. (P0,T2;u0)) located between α and β. Then
u1 is the restriction of u2 on [0, T2] and the same holds for maximal solutions.
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3 Existence and uniqueness of periodic solutions

The first result of this section is the following.

Theorem 3.1 Assume (A1)–(A4) and let α and β be respectively lower and
upper-solutions of (2.2) with α ≤ β a.e. in QT . Then, problem (2.2) has a weak
solution u satisfying u ∈ C([0, T ];Lq(Ω)), for any q ≥ 1, and α ≤ u ≤ β a.e. in
QT .

Proof The proof is similar to that of the corresponding initial boundary-value
problem treated in [5]. We shall give here only a sketch.
(i) We regularize (2.2) by taking

A∗
i (u,∇u) := Ai(Su,∇u), i ∈ {1, . . . , N}

F ∗
ε (u,∇u) :=

F (Su,∇Su)
1 + ε|F (Su,∇Su)|

where Su := u+(α−u)+− (u−β)−, ε > 0, and using the penalization operator
θη related to the convex

K := {v ∈ V such that − k ≤ v ≤ k a.e. in QT },

where k is such that −k ≤ α − 1 ≤ β + 1 ≤ k. For η and ε > 0 fixed, consider
the problem

uη,ε ∈ V,
∂uη,ε

∂t
∈ V ′,

∂uη,ε

∂t
+

N∑
i=1

∂

∂xi
A∗

i (uη,ε,∇uη,ε) + F ∗
ε (uη,ε,∇uη,ε) + θη(uη,ε) = 0 in QT ,

uη,ε(0) = uη,ε(T ) in Ω.
(3.1)

By [9, Theorem 1.1] (see also section 2.2 of chapter 3, p. 328), this problem has
a solution uη,ε. moreover the estimates of [5, lemmas 3.6, 39] still apply and
eventually after extracting a subsequence, we get

lim
η→0+

uη,ε = uε in V,

with uε a solution of the variational inequality

〈∂uε

∂t
, v − uε〉+

∫
QT

A∗(uε,∇uε)∇(v − uε) +
∫

QT

F ∗
ε (uε,∇uε)(v − uε) ≥ 0

uε ∈ K, for v ∈ K.
(3.2)

and of the system of equations

∂uε

∂t
− div(A∗(uε,∇uε)) + F ∗

ε (uε,∇uε) + gε = 0 in QT

uε = 0 on ΣT ,

uε(0) = uε(T ) in Ω,

(3.3)



122 Existence of stable periodic solutions

where
lim

η→0+
θη(uη,ε) = gε in Lp′

(QT ) weak .

As in [5, p. 93], there exists u ∈ V such that limε→0+ uε = u in V and
limε→0+

∂uε

∂t = ∂u
∂t in V ′ + L1(QT ), with u satisfying

∂u

∂t
= div(A(Su,∇u)) + F (Su,∇Su).

To conclude that u ∈ C([0, T ];Lq(Ω)) for any q ≥ 1, it suffices to show that
u(0) ∈ L∞(Ω) and then use [5, Lemma 3.2]. In fact, uε ∈ Lp(0, T ;W 1,p

0 (Ω) ∩
L∞(Ω)), and ∂uε

∂t ∈ V ′ so that uε ∈ C([0, T ];L2(Ω)) by Lions’s lemma [9, p.
156]. But uε ∈ K, so the following claim gives −k ≤ uε(0) ≤ k a.e. in Ω.

Claim. Let u, v ∈ C([0, T ];L1(Ω)) with u ≥ v a.e. in QT . Then u(t) ≥ v(t)
a.e. in Ω for all t ∈ [0, T ].
To prove this claim take w := (v−u)+, so that w = 0 a.e. in QT . The continuity
and the non negativity of t →

∫
Ω

w(x, t)dx on [0, T ] gives the result.
(ii) A careful application of [5, Lemma 3.1] shows that

〈〈∂α

∂t
− ∂uε

∂t
, (α− uε)+〉〉 ≥ 0.

Where 〈〈., .〉〉 is the duality between V ∩L∞(QT ) and V ′ + L1(QT ). So we get:
α ≤ u a.e. in QT and by similar arguments, we also obtain u ≤ β a.e. in QT .

Now we state a uniqueness result concerning maximal and minimal solutions.

Theorem 3.2 Assume (A1)–(A5) and let α and β be respectively lower and
upper-solutions of (2.2) such that α ≤ β. Then, there exist a minimal solution
v and a maximal solution w of (2.2) such that α ≤ v ≤ w ≤ β a.e. in QT .

The proof is based on the following lemma.

Lemma 3.3 Assume (A1)–(A5) and let α1, α2 be two lower-solutions and β be
an upper-solutions of (2.2) such that sup(α1, α2) ≤ β1 a.e. in QT . Then, there
exists at least one weak solution of (2.2) such that sup(α1, α2) ≤ u ≤ β a.e. in
QT

The proof of this lemma is the same as that in [5, Theorem 3.2], except for
what concerns the inequality of [5, Lemma 3.18], which must be replaced by

〈〈∂α1

∂t
, [1− βδ(α2 − α1)]ωδ〉〉+ 〈〈∂α2

∂t
, βδ(α2 − α1)ωδ〉〉+ 〈−∂uε

∂t
, ωδ〉 ≥ ϕ(δ)

where γδ, βδ and ωδ are defined as in [5, p. 31], ϕ is given by the uniform
continuity of the function s → s+ on some compact set associated to K and is
such that ϕ(δ) → 0 as δ → 0+, and where 〈., .〉 designates the duality between
V an V ′.



Abderrahmane El Hachimi & Abdelilah Lamrani Alaoui 123

4 Stability result

The aim of this section is to prove the following theorem.

Theorem 4.1 Assume (A1)–(A6) and let α and β be respectively lower and
upper-solution of (2.2) with α ≤ β a.e. in QT and α(0), β(0) ∈ L∞(Ω). Denote
by v (resp. ω) the minimal (resp. maximal) solution of (2.2) located between
α and β. Then, for all u0 ∈ L∞(Ω) satisfying α(0) ≤ u0 ≤ v(0) (resp. ω(0) ≤
u0 ≤ β(0)), the set U(u0, α, v) (resp. U(u0, β, ω)) of all solutions u of (P0,+∞;u0)
satisfying α ≤ u ≤ v (resp. ω ≤ u ≤ β)in Ω× (0,+∞), is nonempty and is such
that for any q ≥ 1, we have

lim
t→+∞

‖u(., t)− v(., t)‖Lq(Ω) = 0

(resp. lim
t→+∞

‖u(., t)− ω(., t)‖Lq(Ω) = 0),
(4.1)

This theorem is a consequence of the following lemma.

Lemma 4.2 Assume (A1)–(A6) and let Z be a solution of (2.2) such that
Z(0) ∈ L∞(Ω). Then, we have:
(a) If α is a lower-solution of (2.2) with α(0) ∈ L∞(Ω) such that α ≤ Z a.e. in
QT , with strict inequality in a subset of positive measure, and such that every
solution v of (2.2) satisfying α ≤ v ≤ Z is equal to Z. Then the minimal
solution α̃ of (P0,+∞;α(0)) is such that α ≤ α̃ ≤ Z, and

lim
t→+∞

‖α̃(., t)− Z(., t)‖Lq(Ω) = 0, ∀q ≥ 1. (4.2)

(b) If β is an upper-solution of (2.2) with β(0) ∈ L∞(Ω) such that Z ≤ β a.e.
in QT , with strict inequality in a subset of positive measure, and such that every
solution v of (2.2) satisfying Z ≤ v ≤ β is equal to Z. Then the maximal
solution β̃ of (P0,+∞;β(0)) is such that Z ≤ β̃ ≤ β, and

lim
t→+∞

‖β̃(., t)− Z(., t)‖Lq(Ω) = 0, ∀q ≥ 1.

Proof. With the help of the lemmas in section 2, we apply the method of
De coster and Omari [3]. First we show (a), and then (b) can be obtained by
similar way. The proof is divided into three steps.
(i) We construct a sequence of lower-solutions of (2.2) converging to Z: Let α be
a lower-solution of (P0,T ;α(0)), and Z verify Z(0) ≥ α(0). Then Z is an upper-
solution of (P0,T ;α(0)). By lemma 2.2, there exists a minimal solution α̃0 of
(P0,T ;α(0)) such that α ≤ α̃0 ≤ Z a.e. in QT . So α̃0(T ) ≥ α(T ) ≥ α(0) = α̃0(0).
Now, we define by induction, the sequence (α̃n)n such that α̃n is the minimal
solution u of

∂u

∂t
+ A(u) + F (u,∇u) = 0 in QT ,

u = 0 on ΣT ,

u(0) = α̃n−1(T ) in Ω,
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satisfying
α̃n−1 ≤ u ≤ Z a.e. in QT .

Hence α̃n is a lower-solution of (2.2). Consequently,

α ≤ α̃n−1 ≤ α̃n ≤ Z, for all n. (4.3)

and
α̃n−1(T ) = α̃n(0), for all n. (4.4)

By Lebesgue dominated convergence theorem, there exists u ∈ L∞(QT ) such
that α ≤ u ≤ Z a.e. in QT and limn→+∞ α̃n = u in Lq(QT ), for any q ≥ 1.
Moreover, α̃n, u ∈ C([0, T ];Lq(Ω)). By (4.3) and this claim, we get

lim
n→+∞

α̃n(t) = u(t) in Lq(Ω),∀q ≥ 1. (4.5)

Let fn(t) :=
∫
Ω
(u− α̃n)q(x, t)dx, for any n ≥ 1. We have, (fn)n ⊂ C([0, T ]; R)

and converges simply to zero. By Dini’s theorem one has

lim
n→+∞

sup
[0,T ]

‖α̃n(t)− u(t)‖q = 0.

(ii) Using [5, Theorem 3.6], we deduce that u satisfies the first two equations in
(2.2). The third equation, the periodicity condition, is a consequence of (4.4).
Then u is a solution of (2.2) with α ≤ u ≤ β. Therefore, we have u = Z a.e. in
QT and

lim
n→+∞

sup
[0,T ]

‖α̃n(t)− Z(t)‖q = 0. (4.6)

Let α̃(x, t) := α̃n(x, t−nT ) for (x, t) ∈ Ω× [nT, (n + 1)T [. Then α̃ is a solution
of (P0,α(0)) satisfying (4.2). Indeed, we have

‖α̃(., t)− Z(., t)‖Lq(Ω) ≤ sup
θ∈[0,T ]

‖α̃nt
(., θ)− Z(., θ)‖Lq(Ω),

where nt = [t/T ] is the integer part of t/T . Now, (4.2) is a consequence of (4.6).
(iii)The minimality of α̃ as a solution of (P0,α(0)) satisfying α ≤ α̃ ≤ Z is
obtained exactly as in [3]. �

Remark In the sequel we shall identify a lower or an upper-solution φ defined
on Ω×[0, T ) to its prolongment on Ω×[0,+∞) defined by φ̃(x, t) := φ(x, t−nT )
∀(x, t) ∈ Ω× [nT, (n + 1)T [.

Proof of Theorem 4.1 We prove the result concerning the minimal solution,
the one corresponding to the maximal solution is obtained in a similar way. Let
u0 be such that α(0) ≤ u0 ≤ v(0). We first show that: U(u0, α, v) 6= ∅. v (resp.
α) is an upper (resp. lower) solution of (P0,T ′;u0), for any T ′ > 0. By lemma
2.3 the maximal and minimal solutions of P0,+∞;u0 are defined globally. Let
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u ∈ U(u0, α, v) and umin the minimal solution of (P0,T ′;u0), T ′ > 0. We have
α ≤ umin ≤ u ≤ v on Ω× (0,+∞). And from lemma 2.2, we get

α ≤ α̃ ≤ umin ≤ u ≤ v, (4.7)

where α̃ is the minimal solution of (P0,α(0)) and u0 satisfying α(0) ≤ u0. Hence
the proof is completed �

5 Applications

In this section we give some sufficient conditions on the data in order to obtain
existence of lower and upper-solutions for a periodic-parabolic problem associ-
ated with the p-laplacian operator. Consider the problem

∂u

∂t
−∆pu + g(u) = h(x, t) in Ω× R+,

u = 0 on ∂Ω× R+,

u(0) = u(T ) in Ω,

(5.1)

where ∆pu = div(|∇u|p−2∇u), with p such that 1 < p < +∞ and T a fixed
positive real number. h ∈ L∞(Ω × R) is a caratheodory function which is T -
periodic in time, and g is continuous function from [0,+∞[ to [0,+∞[ such that
there is a non decreasing function b from R+ to R+ with g(s) ≤ b(|s|) for any
s ∈ R. We denote by G the primitive of g vanishing at zero: G(t) :=

∫ t

0
g(s)ds.

By applying [6, Theorem 2.1] successively to the elliptic problems

−∆pu + g(u) = −‖h‖∞ in Ω,

u = 0 on ∂Ω,
(5.2)

and
−∆pu + g(u) = ‖h‖∞ in Ω,

u = 0 on ∂Ω,
(5.3)

we obtain the following

Theorem 5.1 Suppose that

lim inf
|s|→+∞

pG(s)
|s|p

< µ′ :=
1

R(Ω)p
p− 1

p
β(

1
p
, 1− 1

p
),

where R(Ω) and β(r, s) are as in [6]. Then the conclusions of Theorem 4.1 are
verified.
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