\documentclass[twoside]{article}
\usepackage{amsfonts, amsmath} % used for R in Real numbers
\pagestyle{myheadings}
\markboth{Existence of stable periodic solutions }
{ Abderrahmane El Hachimi \& Abdelilah Lamrani Alaoui }
\begin{document}
\setcounter{page}{117}
\title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent
2002-Fez conference on Partial Differential Equations,\newline
Electronic Journal of Differential Equations,
Conference 09, 2002, pp 117--126. \newline
http://ejde.math.swt.edu or http://ejde.math.unt.edu
\newline ftp ejde.math.swt.edu (login: ftp)}
\vspace{\bigskipamount} \\
%
Existence of stable periodic solutions for quasilinear
parabolic problems in the presence of well-ordered
lower and upper-solutions
%
\thanks{ {\em Mathematics Subject Classifications:} 35K55, 35B20, 35B40.
\hfil\break\indent
{\em Key words:} Leray-lions operator, penalization, lower and upper-solutions,
\hfil\break\indent
monotone process, periodic solutions, stabilization.
\hfil\break\indent
\copyright 2002 Southwest Texas State University. \hfil\break\indent
Published December 28, 2002. } }
\date{}
\author{Abderrahmane El Hachimi \& Abdelilah Lamrani Alaoui}
\maketitle
\begin{abstract}
We present existence and stability results for periodic solutions of
quasilinear parabolic equation related to Leray-Lions's type
operators. To prove existence and localization, we use the
penalty method; while for stability we use an approximation scheme.
\end{abstract}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\numberwithin{equation}{section}
\section{Introduction}
In the last few years, many works have been devoted to the
existence and stability of periodic solutions of problem
\begin{equation} \label{P}
\begin{gathered}
\frac{\partial u}{\partial t}+A(u)+F(u,\nabla u) =0 \quad\mbox{in }
\Omega \times \mathbb{R}^{+}, \\
u = 0 \quad \mbox{on }\partial \Omega \times \mathbb{R}^{+}, \\
u(0) = u(T) \quad \mbox{in }\Omega ,
\end{gathered}
\end{equation}
where $\Omega $ is a bounded and open subset of
$\mathbb{R}^N$, $N\geq 1$. For the usual Leray-Lions's
operator $A$, Deuel and Hess \cite{DH} obtained existence of
periodic solutions under the presence of well-ordered lower and
upper-solutions. Unfortunately, uniqueness and therefore
stability, can not be derived from the definition they used for
solutions of \eqref{P}.
For $A(u)=-\Delta g(u)$ and $F$ depending only on $(x,t)$,
Harraux and Kenmochi \cite{HK}
proved both existence and stability results by using
subdifferential theory on Hilbert spaces.
Recently, Boldrini and Crema \cite{BC} considered the case where $A(u)$
is the p-laplacian operator, with $p\geq 2$, and $F$ is
independent of $\nabla u.$ They obtained an existence result via
Shauder's fixed point theorem.
More recently, De coster and
Omari \cite{CO} considered problem \eqref{P} with a linear
uniformly elliptic operator $A$ $$Au := -\sum_{i,j=1}^N \partial
_{x_i}(a_{i,j}\partial
_{x_j}u)+\sum_{i=1}^Na_{i}\partial_{x_i}u+a_{0}u$$ and $F$
independent of $\nabla u$. These last authors obtained stability
in a suitable sense of the maximal and minimal solutions in the
presence of well-ordered lower and upper-solutions.
The aim of
this paper is to show that the result of De Coster and Omari still
holds for general problem \eqref{P}. Our existence result
is obtained by using a classical method of penalization as it was
done by Grenon in \cite{DH}; while the stability one follows
essentially the principal arguments of De Coster and Omari with
some changes imposed by the nonlinear character of the equation in
\eqref{P}.
This paper is organized as follows: In
section 2 we recall some known results related to the initial
boundary value problem associated with \eqref{P}, and give
hypotheses and definitions of solutions. In section 3, we give
existence and uniqueness results concerning periodic solutions of
problem \eqref{P}, while section 4 is devoted to the
stability result of periodic solutions. Finally, in section 5 we
give an application to a periodic-parabolic problem associated to
the $p$-laplacian operator.
\section{Hypotheses, definitions, and known results}
Let $\Omega $ be an open bounded subset of $\mathbb{R}^N$ with
boundary $\partial \Omega$ and $T>0$ a fixed real. We shall
denote
$$
Q_T:=\Omega \times ]0,T[,\quad \Sigma_T:=\partial
\Omega \times ]0,T[, $$ and for a real $p$ with $1
0$, and $k_{i}\in L^{p'}(Q_T)$, so that
for all $s\in \mathbb{R}$ and all $\xi \in \mathbb{R}^N$:
\[
|A_{i}(x,t,s,\xi )|\leq \beta
_{i}(|s|^{p-1}+|\xi|^{p-1}+k_{i}(x,t)),\forall i=1,\dots,N,
\]
\item[(A2)] For all $s\in \mathbb{R}$ and all $\xi,\xi^{*}\in \mathbb{R}^N$,
with $\xi \neq \xi^{*}$, we have
\[
\sum_{i=1}^N[A_{i}(x,t,s,\xi )-A_{i}(x,t,s,\xi ^{*})](\xi -\xi
^{*})>0 \quad\mbox {a.e. in }Q_T.
\]
\item[(A3)] There exists $\alpha >0$, so that for all $s\in \mathbb{R}$ and all
$\xi \in \mathbb{R}^N$, we have
\[
\sum_{i=1}^NA_{i}(x,t,s,\xi )\xi _{i}\geq
\alpha |\xi|^{p} \quad\mbox {a.e. in }Q_T.
\]
\item[(A4)] The function $f$ is of caratheodory type on
$Q_T\times \mathbb{R}\times \mathbb{R}^N$, and
there exist functions $b :{\mathbb{R}^{+}
\to \mathbb{R}^{+}}$ increasing, and $h\in L^{1}(Q_T),\; h\geq 0$,
such that
\[
|f(x,t,s,\xi )| \leq b(|s|)(h(x,t)+|\xi
|^{p}),\quad\mbox{for } (x,t,s,\xi)\in Q_T\times \mathbb{R}\times \mathbb{R}^N.
\]
\end{itemize}
We denote by $F$ the Nemyskii operator related to $f$
and defined by
$$
F(u,\nabla u)(x,t):=f(x,t,u,\nabla u).
$$
To obtain (among other results) global existence for
initial boundary-value problems associated with \eqref{P},
we shall assume the following.
\begin{itemize}
\item[(A5)]
There exists $c_{i}>0$ and
$l_{i}\in L^{p'}(Q_T)$ with $l_{i}\geq 0$, such that for
all $s,s^{*}\in \mathbb{R}$ and all $\xi \in \mathbb{R}^N$,
\[
|A_{i}(x,t,s,\xi )-A_{i}(x,t,s ^{*},\xi )| \leq
c_{i}|s-s^{*}|[l_{i}(x,t)+|\xi |^{p-1}] \quad\mbox{a.e. in }Q_T.
\]
\item[(A6)]
All data (coefficients and second member)
are periodic in time with period $T$.
\end{itemize}
%
We are interested in the existence and stability of
the solutions of problem
\begin{equation} \label{POT}
\begin{gathered}
\frac{\partial u}{\partial t}+A(u)+F(u,\nabla u) =0 \quad
\mbox{ in }Q _T, \\
u = 0 \quad \mbox{on }\Sigma_T, \\
u(0) = u(T) \quad\mbox{in }\Omega .
\end{gathered}
\end{equation}
To this end, we consider the problem $(\mathcal{P}_{t_1,t_2;u_{0}})$:
\begin{equation} \label{Pt1} %{P}_{t_1,t_2;u_{0}})
\begin{gathered}
\frac{\partial u}{\partial t}+A(u)+F(u,\nabla u) =0
\quad \mbox{in }\Omega\times ]t_1,t_2[,\\
u = 0 \quad \mbox{on }\partial\Omega \times ]t_1,t_2[,\\
u(t_1) = u_{0} \quad \mbox{in }\Omega ,
\end{gathered}
\end{equation}
where $0\leq t_10$ and $u_{0}\in L^{\infty}(\Omega)$.
We refer the reader to \cite{grenon} for proofs.
\begin{lemma} \label{lm2.1}
Assume (A1)--(A5) and let $(\alpha_1,\alpha_2)$ and
$(\beta_1,\beta_2)$ be respectively pairs of lower and
upper-solutions of $(\mathcal{P}_{0,T';u_0})$ such that
$$
\sup (\alpha_1 ,\alpha_2 )\leq \inf (\beta_1 ,\beta_2)
\quad \mbox{a.e. in } Q_{T'}.
$$
Then, there exists a solution $u\in C([0,T' ]; L^{q}(\Omega) )$ for any
$q\geq 1,$ of $(\mathcal{P}_{t_1,t_2;u_{0}})$ such that $\sup (\alpha_1 ,\alpha_2 )\leq u
\leq \inf (\beta_1 ,\beta_2)$ a.e. in $Q_{T'}$. Moreover, when
$\alpha_1 = \alpha_2 $ and $\beta_1 = \beta_2 $, the Hypothesis (A5)
can be removed.
\end{lemma}
\begin{lemma} \label{lm2.2}
Assume (A1)--(A5) and let $\alpha$ and $\beta$ be respectively
lower and upper-solutions of $(\mathcal{P}_{0,T';u_{0}})$, for any $T'>0$.
Then, there exists $u$ (resp. $v$) $\in C([0,+\infty[;L^{q}(\Omega ))$,
$\forall q\geq 1$ such that for any $T'> 0$, the restriction
of $u$ (resp. $v$) on $[0,T']$ is the minimal (resp. maximal)
solution of $(\mathcal{P}_{0,T';u_0})$ located between $\alpha
$ and $\beta $.
Moreover, if $u_0$ and $v_0$ are in $L^{\infty}(\Omega)$ and satisfy
$$
\alpha(0)\leq u_{0}\leq v_{0}\leq \beta (0) \quad\mbox{a.e. in }\Omega
$$
and $u_{\rm min } (u_0 )$ (resp. $u_{\rm min } (v_0 )$) is the minimal
solution of $(\mathcal{P}_{0,T';u_{0}})$ with $u_0$
(resp. $(\mathcal{P}_{0,T';v_{0}})$ with $v_0$) laying between
$\alpha $ and $\beta $, then
$$
u_{\rm min}(u_0)\leq u_{\rm min}(v_0 ), \quad\mbox{ a.e. in } Q_{T'} .
$$
Furthermore, the same holds for maximal solutions.
\end{lemma}
\begin{lemma} \label{lm2.3}
Assume (A1)--(A5). Let $0< T_1 < T_2$
and $\alpha$ and $\beta $ be respectively lower and upper-solution
of $(\mathcal{P}_{0,T';u_{0}})$ with $T' > 0$.
Let $u_1 $ (resp. $u_2$) be the minimal solution of
$(\mathcal{P}_{0,T_1; u_0})$ (resp. $(\mathcal{P}_{0,T_2;u_0})$)
located between $\alpha $ and $\beta $.
Then $u_1$ is
the restriction of $u_2$ on $[0,T_2]$ and the same holds for
maximal solutions.
\end{lemma}
\section{Existence and uniqueness of periodic solutions}
The first result of this section is the following.
\begin{theorem} \label{thm3.1}
Assume (A1)--(A4) and let $\alpha $ and $\beta $ be
respectively lower and upper-solutions of \eqref{POT}
with $\alpha \leq \beta $ a.e. in $Q_T.$ Then, problem
\eqref{POT} has a weak solution $u$ satisfying $u\in
C([0,T];L^{q}(\Omega ))$, for any $q\geq 1$, and $\alpha \leq u
\leq \beta $ a.e. in $Q_T$.
\end{theorem}
\paragraph{Proof}
The proof is similar to that of the corresponding initial
boundary-value problem treated in \cite{grenon}. We shall give here only a
sketch.\\
(i) We regularize \eqref{POT} by taking
\begin{gather*}
A_{i}^{*}(u,\nabla u):=A_{i}(Su,\nabla u),\ i\in \{1,\dots,N\} \\
F^{*}_{\epsilon}(u,\nabla u):=\frac{F(Su,\nabla
Su)}{1+\epsilon|F(Su,\nabla Su)|}
\end{gather*}
where $Su:=u+(\alpha-u)^{+}-(u-\beta)^{-}$, $\epsilon > 0$, and
using the penalization operator $\theta _{\eta}$ related to the
convex $$ {\cal{K}}:=\{v\in V{\mbox{ such that }}-k \leq v \leq k
\mbox{ a.e. in }Q_T\}, $$ where $k$ is such that $-k \leq\alpha
-1\leq\beta + 1\leq k$. For $\eta$ and $\epsilon > 0$ fixed,
consider the problem
\begin{equation} \label{Pee} %%$(\mathcal{P}_{\eta,\epsilon})$
\begin{gathered}
u_{\eta,\epsilon}\in V, \quad \frac{\partial
u_{\eta,\epsilon}}{\partial t}\in V',\\
\frac{\partial u_{\eta,\epsilon}}{\partial t}+
\sum_{i=1}^N\frac{\partial}{\partial
x_{i}}A_{i}^{*}(u_{\eta,\epsilon},\nabla
u_{\eta,\epsilon})+F^{*}_{\epsilon}(u_{\eta,\epsilon},\nabla
u_{\eta,\epsilon})+\theta _{\eta}(u_{\eta,\epsilon})= 0\quad\mbox{in }
Q_T,\\
u_{\eta,\epsilon}(0)=u_{\eta,\epsilon}(T)\quad \mbox{in }\Omega .
\end{gathered}
\end{equation}
By \cite[Theorem 1.1]{Lions} (see also section 2.2 of chapter 3, p. 328),
this problem has a solution $u_{\eta,\epsilon}$. moreover the estimates of
\cite[lemmas 3.6, 39]{grenon} still
apply and eventually after extracting a subsequence, we get
$$
\lim _{\eta \to 0^{+}}
u_{\eta,\epsilon}=u_{\epsilon}\mbox{ in } V,
$$
with $ u_{\epsilon}$ a solution of the variational inequality
\begin{equation} \label{Ie} % (I_{\epsilon })
\begin{gathered}
\langle\frac{\partial u_{\epsilon }}{\partial t},v-u_{\epsilon
}\rangle + \int_{Q_T}A^{*}(u_{\epsilon },\nabla u_{\epsilon
})\nabla (v-u_{\epsilon })
+\int_{Q_T}F^{*}_{\epsilon}(u_{\epsilon },
\nabla u_{\epsilon })(v-u_{\epsilon })\geq 0 \\
u_{\epsilon }\in {\cal{K}} ,\quad\mbox{for } v\in \cal{K}.
\end{gathered}
\end{equation}
and of the system of equations
\begin{equation} \label{Ee} %E_\epsilon
\begin{gathered}
\frac{\partial u_{\epsilon }}{\partial t}
-\mathop{\rm div}(A^{*}(u_{\epsilon},\nabla u_{\epsilon }))
+F^{*}_{\epsilon }(u_{\epsilon },\nabla u_{\epsilon })+ g_{\epsilon } = 0
\quad \mbox{in } Q_T\\
u_{\epsilon } = 0 \quad\mbox{on } \Sigma _T,\\
u_{\epsilon}(0) = u_{\epsilon }(T)\quad \mbox{in } \Omega ,
\end{gathered}
\end{equation}
where $$\lim_{\eta \to 0^{+}}{\theta _{\eta}(u_{\eta,\epsilon
})}=g_{\epsilon} \quad\mbox{in } L^{p'}(Q_T) \mbox{ weak }. $$ As
in \cite[p.\ 93]{grenon}, there exists $u\in V$ such that
$\lim_{\epsilon \to 0^{+}}u_{\epsilon }=u$ in $V$ and $ \lim
_{\epsilon \to 0^{+}}\frac{\partial u_{\epsilon}}{\partial
t}=\frac{\partial u}{\partial t}\mbox{ in }V'+L^{1}(Q_T),$ with
$u$ satisfying $$ \frac{\partial u}{\partial t}=\mathop{\rm div}
(A(Su,\nabla u))+F(Su,\nabla Su). $$ To conclude that $u\in
C([0,T];L^{q}(\Omega ))$ for any $q\geq 1$, it suffices to show
that $u(0)\in L^{\infty }(\Omega )$ and then use \cite[Lemma
3.2]{grenon}.
In fact,
$u_{\epsilon} \in L^{p}(0,T;W_{0}^{1,p}(\Omega )\cap L^{\infty }(\Omega ))$,
and $\frac{\partial u_{\epsilon }}{\partial t}\in V'$ so that
$u_{\epsilon} \in C([0,T];L^{2}(\Omega ))$ by Lions's lemma
\cite[p.\ 156]{Lions}. But $u_{\epsilon}\in {\cal{K}}$, so the
following claim gives $-k \leq u_{\epsilon}(0) \leq k $ a.e. in
$\Omega $.
\paragraph{Claim.} Let $u,v \in C([0,T];L^{1}(\Omega ))$
with $u\geq v$ a.e. in $Q_T$. Then $u(t)\geq v(t)$ a.e. in $\Omega
$ for all $t\in [0,T]$.\\ To prove this claim take
$w:=(v-u)^{+}$, so that $w=0$ a.e. in $Q_T$. The continuity and
the non negativity of $t\to \int_{\Omega }w(x,t)dx$ on $[0,T]$
gives the result.
\noindent (ii) A careful application of \cite[Lemma 3.1]{grenon} shows that
$$
\langle\langle\frac{\partial \alpha}{\partial t}
- \frac{\partial u_{\epsilon }}{\partial t},(\alpha - u_{\epsilon })^{+}
\rangle\rangle \geq 0.
$$
Where $\langle\langle . ,. \rangle \rangle$ is the duality
between $V\cap L^{\infty }(Q_T)$ and $V'+L^{1}(Q_T)$. So
we get: $\alpha \leq u$ a.e. in $Q_T$ and by similar arguments,
we also obtain $u\leq \beta$ a.e. in $Q_T$. \smallskip
Now we state a uniqueness result concerning maximal and minimal solutions.
\begin{theorem} \label{thm3.2}
Assume (A1)--(A5) and let $\alpha $ and $\beta $ be
respectively lower and upper-solutions of \eqref{POT}
such that $\alpha \leq \beta $. Then, there exist a minimal
solution $v$ and a maximal solution $w$ of \eqref{POT}
such that $\alpha \leq v\leq w \leq \beta $ a.e. in $Q_T$.
\end{theorem}
The proof is based on the following lemma.
\begin{lemma} \label{lm3.1}
Assume (A1)--(A5) and let $\alpha _1 , \alpha _2$ be two
lower-solutions and $\beta $ be an upper-solutions of
\eqref{POT} such that $sup(\alpha_1 ,\alpha_2)\leq
\beta_1 $ a.e. in $Q_T$. Then, there exists at least one weak
solution of \eqref{POT} such that
$\sup(\alpha_1,\alpha_2)\leq u \leq \beta $ a.e. in $Q_T$
\end{lemma}
The proof of this lemma is the same as that in \cite[Theorem 3.2]{grenon},
except for what concerns the inequality of \cite[Lemma 3.18]{grenon},
which must be replaced by
$$
\langle \langle \frac{\partial \alpha _1}{\partial t
},[1-\beta_{\delta}(\alpha_2-\alpha_1)]\omega_{\delta
}\rangle\rangle + \langle\langle \frac{\partial \alpha
_2}{\partial t
},\beta_{\delta}(\alpha_2-\alpha_1)\omega_{\delta
}\rangle\rangle + \langle- \frac{\partial u_{\epsilon}}{\partial t
},\omega _{\delta}\rangle \geq \varphi(\delta)
$$
where $\gamma _\delta,\ \beta _\delta $ and $\omega _\delta$ are
defined as in \cite[p.~31]{grenon}, $\varphi$ is given by the uniform
continuity of the function $s\to s^{+}$ on some compact set
associated to $\cal{K}$ and is such that
$\varphi(\delta)\to 0 $ as $\delta \to 0^{+}$, and
where $\langle.,.\rangle$ designates the duality between $V$ an
$V'$.
\section{Stability result}
The aim of this section is to prove the following theorem.
\begin{theorem} \label{thm4.1}
Assume (A1)--(A6) and let $\alpha $ and $\beta $ be respectively
lower and upper-solution of \eqref{POT} with $\alpha \leq \beta $
a.e. in $Q_T$ and $\alpha (0),\beta (0)\in L^{\infty }(\Omega)$.
Denote by $v$ (resp. $\omega $) the minimal (resp. maximal)
solution of \eqref{POT} located between $\alpha $ and
$\beta $. Then, for all $u_{0}\in L^{\infty }(\Omega )$ satisfying
$\alpha (0)\leq u_{0} \leq v(0)$ (resp. $\omega (0)\leq u_{0} \leq \beta (0)$),
the set $\mathcal{U}(u_{0},\alpha ,v )$
(resp. $\mathcal{U}(u_{0},\beta ,\omega )$) of all solutions
$u$ of $(\mathcal{P}_{0,+\infty;u_{0}})$ satisfying
$\alpha \leq u \leq v $ (resp. $\omega \leq u \leq \beta $)in
$\Omega \times (0,+\infty )$, is nonempty and is such that for any
$q \geq 1$, we have
\begin{equation} \label{4.1}
\begin{gathered}
{ \lim _{t\to +\infty }}\| u(.,t)-v(.,t)\|_{L^{q}(\Omega )}=0 \\
(\mbox{resp. } \lim _{t\to +\infty
}\| u(.,t)-\omega (.,t)\|_{L^{q}(\Omega )}=0),
\end{gathered}
\end{equation}
\end{theorem}
This theorem is a consequence of the following lemma.
\begin{lemma} \label{lm4.1}
Assume (A1)--(A6) and let $Z$ be a solution of
\eqref{POT} such that $Z(0)\in L^{\infty }(\Omega )$.
Then, we have:
\noindent (a) If $\alpha $ is a lower-solution of
\eqref{POT} with $\alpha (0)\in L^{\infty }(\Omega )$
such that $\alpha \leq Z $ a.e. in $Q_T,$ with strict inequality
in a subset of positive measure, and such that every solution $v$
of \eqref{POT} satisfying $\alpha \leq v \leq Z $ is
equal to $Z$. Then the minimal solution ${\tilde{\alpha }}$ of
$(\mathcal{P}_{0,+\infty;\alpha (0)})$ is such that $\alpha \leq
{\tilde{\alpha }}\leq Z$, and
\begin{equation} \label{4.2}
\lim _{t\to +\infty}\| {\tilde{\alpha}}(.,t)-Z(.,t)\|_{L^{q}(\Omega
)}=0,\ \forall q\geq 1.
\end{equation}
(b) If $\beta $ is an upper-solution
of \eqref{POT} with $\beta(0)\in L^{\infty }(\Omega )$
such that $ Z \leq \beta $ a.e. in $Q_T,$ with strict inequality
in a subset of positive measure, and such that every solution $v$
of \eqref{POT} satisfying $ Z\leq v \leq \beta $ is
equal to $Z$. Then the maximal solution ${\tilde{\beta }}$ of
$(\mathcal{P}_{0,+\infty;\beta (0)})$ is such that $Z \leq {\tilde{\beta
}}\leq \beta,$ and
$$
\lim _{t\to +\infty
}\| {\tilde{\beta}}(.,t)-Z(.,t)\|_{L^{q}(\Omega
)}=0,\ \forall q\geq 1 .
$$
\end{lemma}
\paragraph{Proof.}
With the help of the lemmas in section 2, we apply
the method of De coster and Omari \cite{CO}.
First we show (a), and then (b) can be obtained by similar way.
The proof is divided into three steps.
\noindent (i) We construct a
sequence of lower-solutions of \eqref{POT} converging to
$Z$: Let $\alpha $ be a lower-solution of
$(\mathcal{P}_{0,T;\alpha(0)})$, and $Z$ verify $Z(0)\geq \alpha (0)$.
Then $Z$ is an upper-solution of $(\mathcal{P}_{0,T;\alpha(0)})$.
By lemma \ref{lm2.2}, there exists a minimal solution ${\tilde{\alpha}}_{0}$ of
$(\mathcal{P}_{0,T;\alpha(0)})$ such that
$\alpha \leq {\tilde{\alpha}}_{0} \leq Z$ a.e. in $Q_T$.
So ${\tilde{\alpha}}_{0}(T)\geq \alpha (T) \geq \alpha (0)
={{\tilde{\alpha}}_{0}}(0)$.
Now, we define by induction, the sequence $({\tilde{\alpha}}_{n})_{n}$
such that
${{\tilde{\alpha}}_{n}}$ is the minimal solution $u$ of
\begin{equation*} %\leqno(\mathcal{P}_{n})
\begin{gathered}
\frac{\partial u}{\partial t}+A(u)+F(u,\nabla u) =0 \quad \mbox{in } Q_T,\\
u = 0 \quad \mbox{on } \Sigma _T,\\
u(0) ={{\tilde{\alpha}}_{n-1}}(T) \quad \mbox{in }\Omega ,
\end{gathered}
\end{equation*}
satisfying
$${{\tilde{\alpha}}_{n-1}}\leq u \leq Z
\quad \mbox{a.e. in }Q_T.
$$
Hence ${{\tilde{\alpha}}_{n}}$
is a lower-solution of \eqref{POT}. Consequently,
\begin{equation} \label{4.3}
\alpha \leq {{\tilde{\alpha}}_{n-1}} \leq {{\tilde{\alpha}}_{n}} \leq Z,
\mbox{ for all } n.
\end{equation}
and
\begin{equation} \label{4.4}
{{\tilde{\alpha}}_{n-1}}(T)={{\tilde{\alpha}}_{n}}(0), \quad
\mbox{for all }n.
\end{equation}
By Lebesgue dominated convergence theorem, there exists
$u\in L^{\infty}(Q_T)$ such that $\alpha \leq u \leq
Z$ a.e. in $Q_T$ and
$ \lim_{n\to +\infty }{{\tilde{\alpha}}_{n}}=u$ in
$L^{q}(Q_T)$, for any $q\geq 1$. Moreover,
${{\tilde{\alpha}}_{n}}$, $u\in C([0,T];L^{q}(\Omega))$. By
(4.3) and this claim, we get
\begin{equation} \label{4.5}
{\lim _{n\to +\infty }}{{\tilde{\alpha}}_{n}}(t)
=u(t)\quad\mbox{in } L^{q}(\Omega ),
\forall q\geq 1.
\end{equation}
Let $f_{n}(t):=\int_{\Omega }(u-{{\tilde{\alpha}}_{n}})^{q}(x,t)dx$,
for any $n\geq 1$. We have, $(f_{n})_{n}\subset
C([0,T];\mathbb{R})$ and converges simply to zero. By Dini's
theorem one has
$$
{\lim _{n\to +\infty }} \sup _{[0,T]}
\|{{\tilde{\alpha}}_{n}}(t)-u(t)\|_{q}=0.
$$
(ii) Using \cite[Theorem 3.6]{grenon}, we deduce that $u$ satisfies
the first two equations in \eqref{POT}. The third equation, the
periodicity condition, is a consequence of (4.4). Then $u$ is a solution
of \eqref{POT} with
$\alpha \leq u \leq \beta$. Therefore, we have $u=Z$ a.e. in $Q_T$
and
\begin{equation} \label{4.6}
\lim _{n\to +\infty}\sup_{[0,T]}\|{{\tilde{\alpha}}_{n}}(t)-Z(t)
\|_{q}=0.
\end{equation}
Let
${{\tilde{\alpha}}}(x,t):={{\tilde{\alpha}}_{n}}(x,t-nT)$
for $(x,t)\in \Omega \times [nT,(n+1)T[$. Then ${{\tilde{\alpha}}}$
is a solution of $(\mathcal{P}_{0,\alpha(0)})$ satisfying (4.2).
Indeed, we have
$$
\|{{\tilde{\alpha}}}(.,t)-Z(.,t)\|_{L^{q}(\Omega)}\leq
\sup_{\theta \in
[0,T]}\|{{\tilde{\alpha}}_{n_{t}}}(.,\theta)-Z(.,\theta)\|_{L^{q}(\Omega)},
$$
where $n_{t}=[t/T]$ is the integer part of
$t/T$. Now, (4.2) is a consequence of (4.6).
\noindent (iii)The minimality of ${{\tilde{\alpha}}}$ as a solution of
$(\mathcal{P}_{0,\alpha(0)})$ satisfying $\alpha \leq
{\tilde{\alpha}} \leq Z$ is obtained exactly as in \cite{CO}.
\hfill$\square$
\paragraph{Remark} % 4.1
In the sequel we shall identify a lower or an
upper-solution $\phi$ defined on $\Omega \times [0,T)$ to its
prolongment on $\Omega \times [0,+\infty)$ defined by
${\tilde{\phi}}(x,t):=\phi (x,t-nT)$ $\forall (x,t)\in \Omega
\times [nT,(n+1)T[$.
\paragraph{Proof of Theorem \ref{thm4.1}} We prove the
result concerning the minimal solution, the one corresponding to
the maximal solution is obtained in a similar way. Let $u_{0}$
be such that $\alpha (0)\leq u_{0}\leq v(0)$. We first show that:
${\cal{U}}(u_{0},\alpha,v)\neq \emptyset $. $v$ (resp. $\alpha
$) is an upper (resp. lower) solution of
$(\mathcal{P}_{0,T';u_{0}})$, for any $T'>0$. By lemma \ref{lm2.3} the
maximal and minimal solutions of $\mathcal{P}_{0,+\infty;u_{0}}$ are defined
globally. Let $u\in {\cal{U}}(u_{0},\alpha,v)$ and $u_{\rm min}$ the
minimal solution of $(\mathcal{P}_{0,T';u_{0}})$, $T'>0$. We
have $\alpha \leq u_{\rm min}\leq u\leq v$ on
$\Omega \times (0,+\infty )$. And from lemma \ref{lm2.2}, we get
\begin{equation} \label{4.7}
\alpha \leq {\tilde{\alpha}}\leq u_{\rm min}\leq u \leq v,
\end{equation}
where ${\tilde{\alpha}}$ is the minimal solution of
$(\mathcal{P}_{0,\alpha (0)})$ and $u_0$ satisfying
$\alpha (0)\leq u_{0}$. Hence the proof is completed \hfill$\square$
\section{Applications}
In this section we give some sufficient conditions on the data in
order to obtain existence of lower and upper-solutions for a
periodic-parabolic problem associated with the $p$-laplacian operator.
Consider the problem
\begin{equation} \label{5P} %\mathcal{P}
\begin{gathered}
\frac{\partial u}{\partial t}-{\Delta_ p} u+g(u) =h(x,t)
\quad \mbox{in }\Omega \times \mathbb{R}^{+} ,\\
u = 0 \quad \mbox{on }\partial \Omega \times \mathbb{R}^{+} , \\
u(0) = u(T) \quad \mbox{in }\Omega ,
\end{gathered}
\end{equation}
where $\Delta_{p}u=\mathop{\rm div}(|\nabla u|^{p-2}\nabla u)$, with
$p$ such that $1