\documentclass[twoside]{article} \usepackage{amsfonts, amsmath} % used for R in Real numbers \pagestyle{myheadings} \markboth{Function spaces of $BMO$ and Campanato type } { Azzeddine El Baraka } \begin{document} \setcounter{page}{109} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent 2002-Fez conference on Partial Differential Equations,\newline Electronic Journal of Differential Equations, Conference 09, 2002, pp 109--115. \newline http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \vspace{\bigskipamount} \\ % Function spaces of $BMO$ and Campanato type % \thanks{ {\em Mathematics Subject Classifications:} 46E35, 46B70. \hfil\break\indent {\em Key words:} $BMO$-space, Campanato spaces, Real interpolation, Sobolev embeddings. \hfil\break\indent \copyright 2002 Southwest Texas State University. \hfil\break\indent Published December 28, 2002.} } \date{} \author{Azzeddine El Baraka} \maketitle \begin{abstract} To obtain the Littlewood-Paley characterization for Campanato spaces $\mathcal{L}^{2,\lambda}$ modulo polynomials (which contain as special case the John and Nirenberg space $BMO$), we define and study a scale of function spaces on $\mathbb{R}^{n}$. We discuss the real interpolation of these spaces and some embeddings between these spaces and the classical spaces. These embeddings cover some classical results obtained by Campanato, Strichartz, Stein and Zygmund. \end{abstract} \newtheorem{theorem}{Theorem}[section] \newtheorem{corollary}[theorem]{Corollary} \newtheorem{definition}[theorem]{Definition} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \numberwithin{equation}{section} \section{Introduction} In this work, we introduce and study a scale of function spaces on $\mathbb{R}^{n}$. The homogeneous version of these spaces contains Campanato spaces $\mathcal{L}^{2,\lambda}$ and John and Nirenberg space $BMO=\mathcal{L}^{p,n}$. It is classical that the homogeneous space of Triebel-Lizorkin $\dot{F}_{p,q}^{s}(\mathbb{R}^{n})$ coincides with $BMO$ modulo polynomials for some values of $p,q$ and $s$. Namely, $BMO=\dot % {F}_{\infty,2}^{0}$ \cite[chapter 5]{tr} and $I^{s}(BMO)=\dot {F}_{\infty,2}^{s}$, where $I^{s}=\mathcal{F}^{-1}(|.|^{-s}\mathcal{F}) $ is the Riesz potential operator. The spaces $I^{s}(BMO)$ were studied by Strichartz \cite{str}. We use a Littlewood-Paley partition to define these spaces denoted by $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^{n})$ and their homogeneous version $\dot {\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^{n})$. These spaces allow us to give the Littlewood-Paley characterization of Campanato spaces $\mathcal{L}^{2,\lambda}$ and more generally of $I^{s}(\mathcal{L}^{2,\lambda})$ modulo polynomials (cf. Theorem \ref{223a}). If we denote $L_{p}^{s}$ the local approximation Campanato spaces defined for instance in the book \cite[Definition 1.7.2. (5)]{tr2} for $s\geq-n/p$ and $1\leq p<+\infty$, then we recall that $L_{p}^{s}=C^{s}$ for any $s>0$, $L_{p}^{-n/p}=L^{p}$ and $L_{p}^{0}=bmo$ the local version of $BMO$, cf. \cite{c2}, \cite{jn}, \cite{wa} and \cite{tr2} for the proof and more references. The spaces of Campanato $\mathcal{L}^{p,\lambda}$\ considered here (Definition \ref{camp}) coincide with the local approximation Campanato spaces $L_{p}^{s}$ with$\;s=(\lambda-n)/p$ for $-\frac{n}{p}n+p$.\\ Let us denote $BMO$ the space $\mathcal{L}^{2,n}(\mathbb{R}^{n})$. Note that $BMO$ is equal to $\mathcal{L}^{p,n}(\mathbb{R}^{n})$ for any $1\leq p<+\infty$, cf. \cite{jn}. \noindent (ii) For $0\leq\lambda1$. Let $(u_{j})_{j\geq0}$ be a sequence of $L_{\rm loc}^{p}(\mathbb{R}^{n})$ satisfying the following assumptions: \begin{itemize} \item[(i)] $\mathop{\rm supp}\mathcal{F}u_{0}\subset\{| \xi| \leq R\}$ and $\mathop{\rm supp}\mathcal{F}u_{j}\subset\{\frac{1}{R}2^{j}\leq| \xi| \leq R2^{j}\}$ for $j\geq1$. \item[(ii)] \[ M:=( \sup_{B}\frac{1}{| B| ^{\lambda/n}} \sum_{j\geq J^{+}} 2^{jsq}\| u_{j}\| _{L^{p}( B) }^{q}) ^{1/q}<+\infty \] where the supremum is taken over all $J\in\mathbf{Z}$ and all balls $B$ of $\mathbb{R}^{n}$ of radius $2^{-J}$. \end{itemize} Then the series $\sum_{j}u_{j}$ converges in $\mathcal{S}'(\mathbb{R}^{n})$, and its sum $u$ belongs to $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^{n})$ with $\|u\| _{\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^{n})}\leq CM$, where the constant $C$ depends only from $s,p,n,R$ and the partition $(\Delta_{j})_{j\geq0}$. We have an analogous result for the dotted spaces. \end{lemma} \begin{corollary} \label{coro10} The derivation $D_{x}^{\alpha}$ is a bounded operator from the sapce $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^{n})$ to the space $\mathcal{L}_{p,q}^{\lambda,s-| \alpha| }(\mathbb{R}% ^{n})$ and from $\dot {\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^{n})$ to $\dot {\mathcal{L}}_{p,q}^{\lambda,s-| \alpha| }(\mathbb{R}^{n})$. \end{corollary} For this it suffices to note that $D_{x}^{\alpha}u=\sum_{j\geq0}\Delta _{j}D_{x}^{\alpha}u=\sum_{j\geq0}2^{j|\alpha|}L_{j}u$, where $\mathcal{F}% L_{j}u(\xi)=\theta_{\alpha}(2^{-j}\xi)\mathcal{F}u(\xi)$, with $\theta _{\alpha}(\xi)=\xi^{\alpha}\theta(\xi)$. We apply lemma \ref{w0} then. We can remove the spectral assumption (i) of lemma \ref{w0} by giving a result dealing with the real interpolation of these spaces: \begin{theorem}[Interpolation]\label{inter} Let $N$, be an integer $\geq1$, $00$. \end{itemize}\end{lemma} \begin{remark} \label{rmk14} \rm It follows that if $s>0$ then \[ L^{p}(\mathbb{R}^{n})\cap\dot {\mathcal{L}}_{p,q}^{\lambda,s}( \mathbb{R}^{n}) =L^{p}(\mathbb{R}^{n})\cap\mathcal{L}_{p,q}^{\lambda ,s}( \mathbb{R}^{n}) . \] \end{remark} Finally we give the connection between these spaces and the classical spaces. For the definitions of the spaces $B_{p,q}^{s},C^{s},F_{p,q}^{s}$ and the dotted ones we refer to \cite{tr}. \begin{theorem} \label{221} Let $s\in\mathbb{R}$, $1\leq p<+\infty,\,1\leq q<+\infty$ and $\lambda\geq0$. We have the following continuous embeddings \begin{gather*} \mathcal{L}_{p,q}^{\lambda,s+\frac{n}{p}-\frac{\lambda}{q}}( \mathbb{R}^{n}) \hookrightarrow C^{s}( \mathbb{R}^{n}) \\ F_{p,q}^{s+\frac{n}{p}}( \mathbb{R}^{n}) \hookrightarrow \mathcal{L}_{p,q}^{\lambda,s+\frac{n}{p}-\frac{\lambda}{q}}( \mathbb{R}^{n}) \quad \text{provided }q\geq p \\ F_{p,q}^{s+\frac{n}{p}}( \mathbb{R}^{n}) \hookrightarrow \mathcal{L}^{p,\lambda,s-\frac{\lambda-n}{p}}( \mathbb{R}^{n}) \quad\text{provided }p\geq q \\ B_{\infty,q}^{s-\frac{n}{p}+\frac{\lambda}{q}}( \mathbb{R}^{n}) \hookrightarrow\mathcal{L}_{p,q}^{\lambda,s}( \mathbb{R}^{n}) \quad \text{ provided }\lambda\geq n\frac{q}{p} \end{gather*} and finally \[ \sum_{j\geq0}2^{jq(s+\frac{\lambda-n}{q})}| \Delta_{j}u| ^{q}\in L^{\infty }(\mathbb{R}^{n})\text{ implies }u\in\mathcal{L}^{q,\lambda,s}( \mathbb{R}^{n}) \text{ provided }\lambda\geq n \] We have also the same continuous embeddings if we replace $B,C,F$ and $\mathcal{L}$ respectively by the dotted spaces $\dot {B},\dot {C},\dot {F}$ and $\dot {\mathcal{L}}$. \end{theorem} \begin{remark} \label{strich} \rm \begin{itemize} \item[(i)] These embeddings cover theorem 2.1 of \cite{ab} and theorem 3.4 of \cite{str} which asserts that $\overset{\cdot}{B}_{\infty,2}^{s}( \mathbb{R}^{n}) \hookrightarrow I^{s}(BMO)\hookrightarrow\overset {\cdot}{C}^{s}( \mathbb{R}^{n}) $, where $I^{s}$ is the Riesz potential operator and $I^{s}(BMO)=\dot {\mathcal{L}}^{2,n,s} (\mathbb{R}^{n})$, $BMO$ is defined modulo polynomials. \item[(ii)] In the case $s=0$, S. Campanato \cite{c1} and \cite{c2} showed that if $n<\lambda