\documentclass[twoside]{article} \usepackage{amsfonts, amsmath} % used for R in Real numbers \pagestyle{myheadings} \markboth{Strongly nonlinear degenerated unilateral problems} { Elhoussine Azroul, Abdelmoujib Benkirane \& Ouidad Filali } \begin{document} \setcounter{page}{49} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent 2002-Fez conference on Partial Differential Equations,\newline Electronic Journal of Differential Equations, Conference 09, 2002, pp 49--64. \newline http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \vspace{\bigskipamount} \\ % Strongly nonlinear degenerated unilateral problems with $L^1$ data % \thanks{ {\em Mathematics Subject Classifications:} 35J15, 35J70, 35J85. \hfil\break\indent {\em Key words:} Weighted Sobolev spaces, Hardy inequality, \hfil\break\indent quasilinear degenerated elliptic operators. \hfil\break\indent \copyright 2002 Southwest Texas State University. \hfil\break\indent Published December 28, 2002.} } \date{} \author{Elhoussine Azroul, Abdelmoujib Benkirane \& Ouidad Filali} \maketitle \begin{abstract} In this paper, we study the existence of solutions for strongly nonlinear degenerated unilateral problems associated to nonlinear operators of the form $Au+g(x,u,\nabla u)$. Here $A$ is a Leray-Lions operator acting from $W_0^{1,p}(\Omega,w)$ into its dual, while $g(x,s,\xi)$ is a nonlinear term which has a growth condition with respect to $\xi$ and no growth condition with respect to $s$, the second term belongs to $L^{1}(\Omega )$. \end{abstract} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{coro}[theorem]{Corollary} \numberwithin{equation}{section} \section{Introduction} Let $\Omega$ be a bounded open set of $\mathbb{R}^N$, $p$ be a real number such that $10\\ u\in W_0^{1,p}(\Omega,w)\quad u\geq\psi\mbox{ a.e. in }\Omega\\ g(x,u,\nabla u)\in L^1(\Omega). \end{gathered} \end{equation} For that, we assume in addition that the nonlinearity $g$ satisfies some coercivity conditions (see (2.10)). Concerning the existence result for the degenerated elliptic equations where the second member lies in the dual $ W^{-1,p'}(\Omega,w^*)$ (resp. for the quasilinear equation where the second member is in $L^1(\Omega)$), we refer the reader to [6-7-8](resp. [1-2]). \paragraph{Remarks} \begin{enumerate} \item[1)] Note that the use of the truncation operator in \eqref{1.1} is justified by the fact that the solution does not in general belong to $L^{\infty}(\Omega)$ for $f\in L^{1}(\Omega)$. \item[2)] An other work in this direction can be found in [5] in non-weighted case. \end{enumerate} The paper is organized as follows: Section 2 contains some preliminaries and is concerned with the basic assumptions and some technical lemmas. In section 3, we state and prove main results. The last section is devoted to an example which illustrates our abstract conditions. \section{Preliminaries} Let $\Omega$ be a bounded open subset of $\mathbb{R}^N\ (N\geq 1)$, let $10$ independent of $u$, and moreover, the imbedding $$ W_0^{1,p}(\Omega,w)\hookrightarrow\hookrightarrow L^q(\Omega,\sigma), \eqno{(2.4)} $$ determined by the inequality $(2.3)$ is compact. Note that $(W_0^{1,p}(\Omega,w),\||.|\|)$ is a uniformly convex and thus reflexive Banach space. Let $A$ be a nonlinear operator from $W_0^{1,p}(\Omega, w)$ into its dual $W^{-1,p'}(\Omega, w^*)$ defined by $$ Au=-{\rm div}(a(x,u,\nabla u)), $$ where $a:\Omega\times\mathbb{R}\times\mathbb{R}^N\to \mathbb{R}^N$ is a Carath\'eodory vector-function satisfying for a.e $x\in \Omega$, for all $s\in \mathbb{R} $ and $\xi$, $\eta $ in $\mathbb{R}^N$ with $\xi\not=\eta$. \paragraph{Assumption (H2)} \begin{gather*} |a_i(x,s,\xi)|\leq \beta w_i^{1/p}(x)[k(x)+\sigma^{1/p'}|s|^{\frac{q}{p'}} +\sum_{j=1}^Nw_j^{1/p'}(x)|\xi_j|^{p-1}],\quad i=1,\dots ,N,\tag{2.4}\\ [a(x,s, \xi)-a(x,s,\eta)](\xi-\eta)>0,\tag{2.5}\\ a(x,s, \xi).\xi\geq\alpha \sum_{i=1}^Nw_i|\xi_i|^{p},\tag{2.6} \end{gather*} where $k(x)$ is a positive function in $L^{p'}(\Omega)$ and $\alpha,\ \beta$ are strictly positive constants. \paragraph{Assumption (H3)} Let $g(x,s,\xi)$ be a Carath\'eodory function satisfying \begin{gather*} g(x,s,\xi)s\geq 0\tag{2.7}\\ |g(x,s,\xi)|\leq b(|s|)\Big(\sum_{i=1}^Nw_i|\xi_i|^{p}+c(x)\Big),\tag{2.8}\\ |g(x,s,\xi)|\geq \rho _{2}\sum_{i=1}^Nw_i|\xi_i|^{p} \quad \mbox{for }|s|>\rho _{1}\tag{2.9} \end{gather*} where $b:\mathbb{R}^+\to \mathbb{R}^+$ is a continuous increasing function and $c(x)$ is a positive function which lies in $L^1(\Omega)$, $c\geq 0$ and $\rho _{1}>0$, $\rho _{2}>0$. We consider, $$f\in L^{1}(\Omega).\eqno{(2.10)}$$ Now we recall some lemmas which will be used later. \begin{lemma}[{cf. [2]}] \label{lemcvfe} Let $g\in L^r(\Omega,\gamma)$ and let $ g_n\in L^r(\Omega,\gamma)$, with $\|g_n\|_{r,\gamma} \leq c$ ($10\\ u\in W_0^{1,p}(\Omega,w)\quad u\geq\psi\mbox{ a.e. in }\Omega\\ g(x,u,\nabla u)\in L^1(\Omega), \end{gathered} \eqno{(3.2)} $$ where $u$ is the solution of this problem. \begin{theorem}\label{thm3.1} Under the assumptions (H1)-(H3), (2.10) and (3.1), there exists at least one solution of (3.2). \end{theorem} \paragraph{Remarks} %3.2 \begin{enumerate} \item[1)] Theorem \ref{thm3.1} generalizes to weighted case the analogous in [5]. \item[2)] In the particular case when $w_0(x)\equiv 1$, we can replace (H1) by the conditions: There exists $s \in ]\frac{N}{p},\infty[\cap [\frac{1}{p-1},\infty[$ such that $w_i^{-s}\in L^1(\Omega)$ for all $i=1,\dots,N$, (which is an integrability condition, stronger than (2.1)), since $$ \||u|\|_X=\Big(\sum_{i=1}^N\int_\Omega |\frac{\partial u(x)} {\partial x_i}|^p w_i(x)\,dx\Big)^{1/p} $$ is a norm defined on $W_0^{1,p}(\Omega,w)$ and equivalent to (2.2) and also the following imbeddings hold: $$ W_0^{1,p}(\Omega,w)\hookrightarrow L^q(\Omega) $$ for $1\leq q0\\ u_n\in W_0^{1,p}(\Omega,w)\quad u_n\geq\psi\quad \mbox{a.e. in }\Omega\\ g(x,u_n,\nabla u_n)\in L^1(\Omega), \end{gathered} \eqno{(3.3)} $$ where $f_n$ is a sequence of smooth functions which converges strongly to $f$ in $L^1(\Omega)$ with $\|f_n\|_{L^1(\Omega)}\leq C$. For some constant $C$. By Theorem 6.1 and Lemma 6.2 of [1] or via Theorem 4.1 of [3] there exists at least one solution $u_n$ of (3.3). In order to pass to the limit in the approximate problem (3.3), we claim that: {\bf Assertion(1)} $$(u_n)_n \mbox { is bounded in }W_0^{1,p}(\Omega,w)\eqno{(3.4)}$$ {\bf Assertion(2)} $$ \nabla T_k(u_n) \to \nabla T_k(u)\quad \mbox {strongly in } \prod_{i=1}^{N}L^{p}(\Omega,w_i)\eqno{(3.5)} $$ which implies $ \nabla u_n \to \nabla u $ a.e in $\Omega $\\ {\bf Assertion(3)} $$g(x,u_n,\nabla u_n)\to g(x,u,\nabla u)\quad\mbox {strongly in } L^{1}(\Omega )\eqno{(3.6)} $$ We can pass to the limit in the approximate problems (3.3), indeed, \begin{multline*} \int_\Omega a(x,u_n,\nabla u_n)\nabla T_k(v-u_n)\,dx + \int_\Omega g(x,u_n,\nabla u_n)T_k(v-u_n)\,dx \\ \geq \int_\Omega f_n T_k(v-u_n)\,dx \end{multline*} For all $v\in K_{\psi }\cap L^\infty(\Omega)$ and $k>0$. From (2.5) and (3.4) we deduce that $a(x,u_n,\nabla u_n)$ is bounded in $\prod_{i=1}^{N}L^{p'}(\Omega,w^*_i)$. Using (3.5) we obtain $$ \nabla u_n \to \nabla u \quad\mbox{a.e in } \Omega. \eqno(3.7) $$ Hence, we get $$ a(x,u_n,\nabla u_n)\to a(x,u,\nabla u)\quad\mbox{a.e in } \Omega \eqno(3.8) $$ which implies with Lemma \ref{lemcvfe} that $$ a(x,u_n,\nabla u_n)\rightharpoonup a(x,u,\nabla u)\quad\mbox{weakly in } \prod_{i=1}^{N}L^{p'}(\Omega,w^*_i).\eqno(3.9) $$ On the other hand, let $ v \in L^\infty(\Omega)$ and set $h= k+||v||_\infty$, then \begin{eqnarray*} |\frac{\partial T_k(v-u_n)}{\partial x_i}|w_i^{1/p}& = & (\chi_{|v-u_n|\leq k}|\frac{\partial (v-u_n)}{\partial x_i}|)w_i^{1/p}\\ & \leq & \chi_{|u_n|\leq k+||v||_\infty}(|\frac{\partial v}{\partial x_i}|+|\frac{\partial u_n}{\partial x_i}|)w_i^{1/p}\\ & \leq & |\frac{\partial v}{\partial x_i}|w_i^{1/p}+ |\frac{\partial T_h(u_n)}{\partial x_i}|w_i^{1/p} \end{eqnarray*} for $i=1,\dots ,N$. Which implies by using the Vitali's theorem with (3.5) and (3.7) that $$ \nabla T_k(v-u_n)\to \nabla T_k(v-u)\quad\mbox{strongly in } \prod_{i=1}^{N}L^{p}(\Omega,w_i) \eqno(3.10) $$ for any $ v\in W_0^{1,p}(\Omega,w)\cap L^\infty(\Omega)$. From (3.9) and (3.10) we can pass to the limit in the first term of (3.3). Since $g(x,u_n,\nabla u_n)\to g(x,u,\nabla u)$ strongly in $L^1(\Omega)$ and $f_n\to f$ strongly in $L^1(\Omega)$, then we can pass to the limit in $$ \langle A(u_n),T_k(v-u_n)\rangle + \int_\Omega g(x,u_n,\nabla{u_n})T_k(v-u_n) \,dx \geq \int_\Omega f_n T_k(v-u_n)\,dx. $$ This allows to consider the problem $$ \begin{gathered} \langle Au,T_{k}(v-u)\rangle +\int_\Omega g(x,u,\nabla u)T_{k}(v-u)\,dx \geq \langle f,T_{k}(v-u)\rangle \\ \mbox{for all }v\in K_\psi \cap L^\infty (\Omega )\mbox{ and all } k>0\\ u\in W_0^{1,p}(\Omega,w)\quad u\geq\psi\quad \mbox{a.e. in }\Omega\\ g(x,u,\nabla u)\in L^1(\Omega), \end{gathered} \eqno{(3.11)} $$ Set $\phi = T_m(v)$ as a test function, where $m\geq \|\psi^+\|_\infty $ and $v\in K_\psi$, then $\phi \in K_\psi \cap L^\infty(\Omega)$. Multiplying (3.11) by $\phi$, we obtain $$ \begin{aligned} % \label{Pm} \langle Au,T_{k}(T_m(v_m)-u)\rangle +\int_\Omega g(x,u,\nabla u)T_{k}(T_m(v_m)-u)\,dx&\\ \geq \int_\Omega f T_{k}(T_m(v_m)-u)\,dx& \end{aligned} \eqno(3.12) $$ From Lemma \ref{lemcvfotr} and using the Vitali's theorem, we have $$ \nabla T_{k}(T_m(v)-u)\to \nabla T_k(v-u) \quad\mbox{strongly in }\prod_{i=1}^{N}L^{p}(\Omega,w_i) . $$ Finally, passing to the limit in (3.12) as $m$ tends to infinity, we obtain: $$ \langle Au,T_{k}(v-u)\rangle +\int_\Omega g(x,u,\nabla u)T_{k}(v-u)\,dx \geq \int_\Omega f T_{k}(v-u)\,dx $$ for any $ v\in W_0^{1,p}(\Omega,w)$, $v\geq\psi$ a.e. in $\Omega$. \paragraph{Proof of assertion 1:} We consider the sequence of approximate problems (3.3). By Theorem 6.1 and Lemma 6.2 of [1], there exists at least one solution $u_n$ of (3.3). Let $v=\psi^+$ as test function in (3.3), then $$ \langle Au_n,T_{k}(\psi^+-u_n)\rangle +\int_\Omega g(x,u_n,\nabla u_n)T_{k}(\psi^+-u_n)\,dx \geq \int_\Omega f_n T_{k}(\psi^+-u_n)\,dx. $$ Since $u_n-\psi^+$ and $u_n$ have the same sign, we obtain by using (2.8) and $\|f_n\|_{L^1(\Omega)}\leq C $, $$ \int_{|u_n-\psi^+|\leq k}a(x,u_n,\nabla{u_n})\nabla(u_n-\psi^+)\,dx \leq \int_\Omega f_n T_k(u_n-\psi^+)\,dx\leq kC \eqno(3.13) $$ which implies that $$ \int_{|u_n-\psi^+|\leq k}a(x,u_n,\nabla{u_n})\nabla{u_n}\,dx \leq Ck+\int_{|u_n-\psi^+|\leq k}a(x,u_n,\nabla{u_n})|\nabla{\psi^+}|\,dx $$ using Young's inequality, we obtain \begin{align*} \int&_{|u_n-\psi^+|\leq k}a(x,u_n,\nabla{u_n})\nabla{u_n}\,dx\\ \leq& Ck + \sum_{i=1}^N\int_{|u_n-\psi^+|\leq k}\frac{\eta^{p'}}{p'} |a_i(x,u_n,\nabla{u_n})|^{p'}w_i^{1-p'}\,dx\\ &+ \sum_{i=1}^N\int_{|u_n-\psi^+|\leq k}\frac{1}{p}\frac{1}{\eta^p}w_i |\frac{\partial {\psi^+}}{\partial x_i}|^p\,dx, \end{align*} where $\eta$ is a positive constant. From (2.5) we have \begin{align*} \int&_{|u_n-\psi^+|\leq k}a(x,u_n,\nabla{u_n}) \nabla{u_n}\,dx \\ \leq& C_1+\frac{\eta^{p'}}{p'}\beta^{p'}N\int_\Omega k^{p'}(x)\,dx + \frac{\eta^{p'}}{p'}\beta^{p'}N\int_{|u_n-\psi^+|\leq k}\sigma |u_n|^q\,dx\\ &+\frac{\eta^{p'}}{p'}\beta^{p'}N\int_{|u_n-\psi^+|\leq k} \sum_{i=1}^N w_i|\frac{\partial u_n}{\partial x_i}|^p\,dx\\ \leq & C_2+ \frac{\eta^{p'}}{p'}\beta^{p'}N\int_{|u_n| \leq ||\psi^+||_\infty+k}\sigma |u_n|^q\,dx+\frac{\eta^{p'}}{p'}\beta^{p'}N \int_{|u_n-\psi^+|\leq k}\sum_{i=1}^N w_i|\frac{\partial u_n}{\partial x_i}|^p \,dx\\ \leq & C_2+ \frac{\eta^{p'}}{p'}\beta^{p'}N(||\psi^+||_\infty+k)^q \int_\Omega\sigma \,dx+\frac{\eta^{p'}}{p'}\beta^{p'}N\int_{|u_n-\psi^+ |\leq k}\sum_{i=1}^N w_i|\frac{\partial u_n}{\partial x_i}|^p\,dx. \end{align*} Consequently, using (2.7) and since $\sigma \in L^1(\Omega) $, we have $$ \int_{|u_n-\psi^+|\leq k}\alpha\sum_{i=1}^N w_i| \frac{\partial u_n}{\partial x_i}|^p\,dx\leq C_3+\frac{\eta^{p'}}{p'}\beta^{p'}N\int_{|u_n-\psi^+| \leq k}\sum_{i=1}^N w_i|\frac{\partial u_n}{\partial x_i}|^p\,dx, $$ we choose $0<\eta<\frac{1}{\beta}(\frac{\alpha p'}{N})^{1/p'}$, this implies $$ \int_{|u_n-\psi^+|\leq k}\sum_{i=1}^N w_i|\frac{\partial u_n}{\partial x_i}|^p\,dx\leq C \eqno(3.14) $$ On the other hand, from (3.13) and $a(x,s,\xi)\xi\geq 0$ \begin{align*} \int_\Omega& g(x,u_n,\nabla{u_n})T_k(u_n-\psi^+)\,dx\\ \leq & k \int_\Omega |f_n|\,dx-\int_{|u_n-\psi^+|\leq k}a(x,u_n, \nabla{u_n})\nabla(u_n-\psi^+)\,dx \\ \leq & C_1 + \int_{|u_n-\psi^+|\leq k}a(x,u_n,\nabla{u_n})|\nabla \psi^+|\,dx. \end{align*} As in the proof of (3.14) we can show that \begin{multline*} \int_\Omega g(x,u_n,\nabla{u_n})T_k(u_n-\psi^+)\,dx \\ \leq C_2 + \frac{\eta^{p'}}{p'}\beta^{p'}N\int_{|u_n-\psi^+|\leq k} \sum_{i=1}^N w_i|\frac{\partial u_n}{\partial x_i}|^p\,dx \leq C_3, \end{multline*} where $C_1, C_2$ and $C_3$ are positive constants. When $|u_n-\psi^+|>k$, we have $T_k(u_n-\psi^+)=+k $(or $-k$), and since $T_k(u_n-\psi^+), u_n-\psi^+, u_n $ and $ g(x,u_n,\nabla{u_n})$ have the same sign, we obtain \begin{multline*} \int_{|u_n-\psi^+|\leq k} g(x,u_n,\nabla{u_n})T_k(u_n-\psi^+)\,dx\\ + \int_{|u_n-\psi^+|> k} g(x,u_n,\nabla{u_n})T_k(u_n-\psi^+)\,dx \leq C_3 \end{multline*} which gives $$ k \int_{|u_n-\psi^+|> k} |g(x,u_n,\nabla{u_n})|\,dx \leq C_3. $$ From (2.10), we have $$ |g(x,u_n,\nabla{u_n})|\geq \rho_2 \sum_{i=1}^N w_i|\frac{\partial u_n}{\partial x_i}|^p \;\;\;\mbox{for}\;\;\;|u_n|\geq \rho_1 $$ Choosing $k>\rho_1+||\psi^+||_\infty$, then $|u_n-\psi^+|>k$ implies $|u_n| > \rho_1$. We deduce that $$ \int_{|u_n-\psi^+| > k}\rho_2 \sum_{i=1}^N w_i|\frac{\partial u_n} {\partial x_i}|^p\,dx\leq C_4 .\eqno(3.15) $$ Finally, combining (3.14) and (3.15) we have $|||u_n|||\leq C$. \paragraph{Proof of assertion 2} Let $k\geq \|\psi^+\|$ and $ \delta =(\frac{b(k)}{2\alpha})^2$. Set $ \varphi (s)= se^{\delta s^2}$, $z_n=T_k(u_n)-T_k(u)$, $\eta=e^{-4\delta k^2}$, and $v_n=u_n-\eta \varphi (z_n)$. By the choice of $k$, the above test function is admissible for (3.3). Multiplying (3.3) by $v_n$, for $h>0$, we obtain $$ \langle A(u_n),T_h(\eta \varphi (z_n))\rangle + \int_\Omega g(x,u_n,\nabla{u_n})T_h(\eta \varphi (z_n))\,dx \leq \int_\Omega f_n T_h(\eta \varphi (z_n))\,dx. $$ Choosing $h>2k$, we have $|\eta \varphi (z_n)| \leq |z_n|\leq 2kk}$, this implies $$ \langle A(u_n), \varphi (z_n) \rangle + \int_{|u_n|\leq k} g(x,u_n, \nabla{u_n}) \varphi (z_n)\,dx\leq \varepsilon(n), \eqno(3.16) $$ where $\varepsilon(n)$ is a real number which converge to zero when $n$ tends to infinity.\\ On the other hand \begin{align*} \langle A(u_n),\varphi (z_n)\rangle =& \int_{|u_n|\leq k} a(x,u_n,\nabla{u_n})(\nabla T_k(u_n)-\nabla T_k(u))\varphi'(z_n) \,dx \\ &+ \int_{|u_n|> k} a(x,u_n,\nabla{u_n})(\nabla T_k(u_n) -\nabla T_k(u))\varphi'(z_n) \,dx\\ =& \int_\Omega a(x,u_n,\nabla{u_n})(\nabla T_k(u_n) -\nabla T_k(u))\varphi'(z_n) \,dx \\ & - \int_{|u_n|> k} a(x,u_n,\nabla{u_n})\nabla T_k(u)\varphi'(z_n) \,dx\\ =& \int_\Omega (a(x,u_n,\nabla T_k(u_n))- a(x,u_n,\nabla T_k(u))) (\nabla T_k(u_n)\\ &-\nabla T_k(u))\varphi'(z_n) \,dx\\ &+ \int_\Omega a(x,u_n,\nabla T_k(u)))(\nabla T_k(u_n) -\nabla T_k(u))\varphi'(z_n) \,dx\\ &- \int_{|u_n|> k} a(x,u_n,\nabla{u_n})\nabla T_k(u)\varphi'(z_n) \,dx. \end{align*} Since $\nabla T_{k}(u)\chi_{\{|u_n|> k\}}\to 0 $ strongly in $ \prod_{i=1}^{N}L^{p}(\Omega,w_i)$, and from (2.3), (2.5) and (3.4) we have $(a(x,u_n,\nabla{u_n})\varphi'(z_n))_n $ is bounded in $\prod_{i=1}^{N}L^{p'}(\Omega,w_i^*)$, then $$ - \int_{|u_n|> k} a(x,u_n,\nabla{u_n})\nabla T_k(u)\varphi'(z_n) \,dx =\varepsilon(n)\to 0 \quad \mbox{as } n \to \infty. $$ Moreover, since $u_n \rightharpoonup u $ weakly in $W_0^{1,p}(\Omega, w)$, by Lemma \ref{lemcvfo1} we have $$ T_k(u_n)\rightharpoonup T_k(u)\quad \mbox{weakly in } W_0^{1,p}(\Omega, w). $$ Then $$ \nabla T_k(u_n )\rightharpoonup \nabla T_k(u)\quad \mbox{weakly in } \prod_{i=1}^{N}L^{p}(\Omega,w_i). $$ Since the sequence $ (a(x,u_n,\nabla T_k(u))\varphi'(z_n))_n $ converges strongly in the space $ \prod_{i=1}^{N}L^{p'}(\Omega,w_i^*)$, $$ \int_\Omega a(x,u_n,\nabla T_k(u))(\nabla T_k(u_n) -\nabla T_k(u))\varphi'(z_n) \,dx =\varepsilon(n)\to 0 \quad \mbox{as }n\to \infty, $$ and $$ \begin{aligned} \langle A(u_n), \varphi (z_n)\rangle =&\int_\Omega (a(x,u_n,\nabla T_k(u_n)) - a(x,u_n,\nabla T_k(u)))\\ &\times (\nabla T_k(u_n)-\nabla T_k(u))\varphi'(z_n)\,dx +\varepsilon(n). \end{aligned} \eqno(3.17) $$ On the other hand \begin{align*} \big|\int&_{|u_n|\leq k} g(x,u_n,\nabla u_n) \varphi (z_n)\,dx\big|\\ \leq& \int_{|u_n|\leq k}b(k)( \sum_{i=1}^N w_i|\frac{\partial u_n} {\partial x_i}|^p+c(x)) |\varphi (z_n)|\,dx\\ \leq & \int_{|u_n|\leq k}b(k)c(x)|\varphi (z_n)|\,dx+ \int_{|u_n|\leq k} \sum_{i=1}^N w_i|\frac{\partial u_n}{\partial x_i}|^p b(k)|\varphi (z_n)|\,dx \\ \leq & \int_{|u_n|\leq k}b(k)c(x)|\varphi (z_n)|\,dx+ \int_{|u_n|\leq k} \sum_{i=1}^N a_i(x,u_n,\nabla u_n)\frac{\partial u_n}{\partial x_i} \frac{b(k)}{\alpha}|\varphi (z_n)|\,dx\\ \leq & \int_{|u_n|\leq k}b(k)c(x)|\varphi (z_n)|\,dx+ \int_{|u_n|\leq k} \sum_{i=1}^N [a_i(x,u_n,\nabla T_k(u_n)) \\ & - a_i(x,u_n,\nabla T_k(u))](\frac{\partial T_k(u_n)}{\partial x_i} -\frac{\partial T_k(u)}{\partial x_i})|\varphi (z_n)|\frac{b(k)}{\alpha}\,dx \\ & + \int_{|u_n|\leq k} \sum_{i=1}^N a_i(x,u_n,\nabla T_k(u)) (\frac{\partial T_k(u_n)}{\partial x_i}-\frac{\partial T_k(u)}{\partial x_i}) |\varphi (z_n)|\frac{b(k)}{\alpha}\,dx\\ & + \int_{|u_n|\leq k} \sum_{i=1}^N a_i(x,u_n,\nabla T_k(u_n)) \frac{\partial T_k(u)}{\partial x_i}|\varphi (z_n)|\frac{b(k)}{\alpha}\,dx. \end{align*} Since $\nabla T_k(u_n)\rightharpoonup \nabla T_k(u)$ weakly in $\prod_{i=1}^{N}L^{p}(\Omega,w_i)$ and $$ a(x,u_n,\nabla T_k(u)) |\varphi (z_n)| \to 0 \quad \mbox{ strongly in } \prod_{i=1}^{N}L^{p'}(\Omega,w_i^*), $$ it follows that $$ \int_\Omega \sum_{i=1}^N a_i(x,u_n,\nabla T_k(u))(\frac{\partial T_k(u_n)} {\partial x_i}-\frac{\partial T_k(u)}{\partial x_i})|\varphi (z_n)| \frac{b(k)}{\alpha}\,dx= \varepsilon(n). $$ From (2.5) and (3.4), $(a(x,u_n,\nabla T_k(u_n)))_n$ converges weakly in $\prod_{i=1}^{N}L^{p'}(\Omega,w_i^*)$. Since $ \nabla T_k(u)|\varphi (z_n)|\frac{b(k)}{\alpha}\to 0 $ strongly in $\prod_{i=1}^{N}L^{p}(\Omega,w_i)$, $$ \int_\Omega \sum_{i=1}^N a_i(x,u_n,\nabla T_k(u_n))\frac{\partial T_k(u)}{\partial x_i})|\varphi (z_n)|\frac{b(k)}{\alpha}\,dx= \varepsilon(n). $$ Moreover, since $\int_{|u_n|\leq k}b(k)c(x)|\varphi (z_n)|\,dx = \varepsilon(n)$, we have \begin{align*} |\int&_{|u_n|\leq k} g(x,u_n,\nabla u_n) \varphi (z_n)\,dx|\\ \leq& \int_\Omega \sum_{i=1}^N \big[a_i(x,u_n,\nabla T_k(u_n))- a_i(x,u_n,\nabla T_k(u))\big]\\ &\times (\frac{\partial T_k(u_n)}{\partial x_i} -\frac{\partial T_k(u)}{\partial x_i})|\varphi (z_n)|\frac{b(k)}{\alpha}\,dx +\varepsilon(n) \end{align*} which with (3.16) and (3.17) gives \begin{multline*} \int_\Omega \big[a(x,u_n,\nabla T_k(u_n))- a(x,u_n,\nabla T_k(u))\big]\\ \times(\nabla T_k(u_n)-\nabla T_k(u))(\varphi'(z_n) -\frac{b(k)}{\alpha}|\varphi (z_n)|)\,dx\leq \varepsilon(n). \end{multline*} Choosing, $\delta \geq (b(k)/(2\alpha))^2$, we obtain for all $s \in \mathbb{R}$ $$ \varphi'(s)-\frac{b(k)}{\alpha}|\varphi (s)|\geq \frac{1}{2}; $$ thus, $$ \frac{1}{2}\int_\Omega [a(x,u_n,\nabla T_k(u_n))- a(x,u_n,\nabla T_k(u))](\nabla T_k(u_n)-\nabla T_k(u))\,dx \leq \varepsilon(n). $$ Then $$ \int_\Omega \big[a(x,u_n,\nabla T_k(u_n))- a(x,u_n,\nabla T_k(u))\big] (\nabla T_k(u_n)-\nabla T_k(u))\,dx \to 0 $$ as $n \to \infty$. Moreover, $T_k(u_n)\rightharpoonup T_k(u)$ weakly in $ W_0^{1,p}(\Omega,w) $ and in view of Lemma \ref{lemcvfo1}, we have $T_k(u_n)\to T_k(u)$ as $n \to \infty$ strongly in $W_0^{1,p}(\Omega,w)$; hence, $$ \nabla T_k(u_n) \to \nabla T_k(u) \;\;\mbox{strongly in}\;\; \prod_{i=1}^{N}L^{p}(\Omega,w_i). $$ Consequently, there exists a subsequence still denoted by $(u_n)_n$ such that, $\nabla u_n \to \nabla u \quad \mbox{a.e in } \Omega$. \paragraph{Proof of assertion 3} From (3.5) we deduce that $$ g(x,u_n,\nabla u_n) \to g(x,u,\nabla u) \;\;\; \mbox{a.e in } \Omega. \eqno(3.18) $$ For any measurable subset $E$ of $\Omega$ and any $m>0$ we have $$ \begin{aligned} &\int_E |g(x,u_n,\nabla u_n)|\,dx \\ &\leq \int_{E\cap \{|u_n|\leq m\}} |g(x,u_n,\nabla u_n)|\,dx +\int_{E\cap \{|u_n|> m\}} |g(x,u_n,\nabla u_n)|\,dx. \end{aligned} \eqno(3.19) $$ By (2.9), (3.5) and by using Vitali's theorem, we have for $\varepsilon > 0$ there exists $\rho(\varepsilon,m)>0$ such that for $\rho(\varepsilon,m)>|E|$ we have $$ \int_{E\cap \{|u_n|\leq m\}} |g(x,u_n,\nabla u_n)|\,dx \leq \frac{\varepsilon}{2}\;\;\;\forall n. \eqno(3.20) $$ Now let $v_n=u_n-S_m(u_n)$ where for $m>1$, $$ S_m(s)=\begin{cases} 0 & |s|\leq m-1 \\ \frac{s}{|s|} & |s|\geq m \\ S'_m(s)=1 & m-1\leq |s| \leq m. \end{cases} $$ Note that: If $u_n \leq m-1$, we have $S_m(u_n)\leq 0 $ and $ v_n \geq u_n \geq \psi$; if $u_n \geq m-1 $, we have $ 0\leq S_m(u_n)\leq 1$ and $$ u_n-S_m(u_n)\geq u_n-1\geq m-2\geq \psi \quad \mbox{for } m\geq 2+||\psi^+||_\infty. $$ Then, $v_n$ is admissible for (3.3). So, multiplying (3.3) by $v_n$ we obtain $$ \langle A(u_n), T_k(S_m(u_n))\rangle + \int_\Omega g(x,u_n,\nabla u_n) T_k(S_m(u_n))\,dx \leq \int_\Omega f_n T_k(S_m(u_n))\,dx. $$ Which by choosing $k\geq 1$ implies \begin{multline*} \int_\Omega a(x,u_n,\nabla u_n)\nabla u_n s'_m(u_n)\,dx+\int_\Omega g(x,u_n, \nabla u_n)S_m(u_n)\,dx \\ \leq \int_\Omega f_n S_m(u_n)\,dx, \end{multline*} i.e, \begin{multline*} \int_{m-1\leq |u_n|\leq m} a(x,u_n,\nabla u_n)\nabla u_n \,dx +\int_{|u_n|>m-1} g(x,u_n,\nabla u_n)S_m(u_n)\,dx \\ \leq \int_{|u_n|>m-1} |f_n|\,dx. \end{multline*} Since $a(x,u_n,\nabla u_n)\nabla u_n \geq 0$, $$ \int_{|u_n|>m-1} g(x,u_n,\nabla u_n)S_m(u_n)\,dx \leq \int_{|u_n|>m-1} |f_n|\,dx. $$ Since $S_m(u_n)$ and $u_n$ have the same sign, $$ \int_{|u_n|>m-1} |g(x,u_n,\nabla u_n)| |S_m(u_n)|\,dx \leq \int_{|u_n|>m-1} |f_n|\,dx $$ and $$ \int_{|u_n|> m} |g(x,u_n,\nabla u_n)| \,dx \leq \int_{|u_n|>m-1} |f_n|\,dx. $$ Since $f_n \to f $ strongly in $L^1(\Omega)$ and since $ |\{|u_n|>m-1\}|\to 0 $ uniformly in $n$ when $m \to \infty$ (due to the fact that $\sigma^{1-q'}\in L^1(\Omega)$), there exists $m(\varepsilon)>1$ such that $$ \int_{|u_n|>m-1} |f_n|\,dx \leq \frac{\varepsilon}{2}\quad \forall n. $$ Then $$ \int_{|u_n|> m} |g(x,u_n,\nabla u_n)| \,dx\leq \frac{\varepsilon}{2}\quad \forall n. \eqno(3.21) $$ From (3.19), (3.20) and (3.21), we have $$ \int_E |g(x,u_n,\nabla u_n)| \,dx\leq \varepsilon \quad \forall n. \eqno(3.22) $$ Then $(g(x,u_n,\nabla u_n))_n $ is equi-integrable. Thanks to (3.18), (3.22) and Vitali's theorem yields, $$ g(x,u_n,\nabla u_n)\to g(x,u,\nabla u) \quad\mbox{strongly in } L^1(\Omega). $$ \section{Example} The following example is closely inspired from the one used in [1,2]. Let $\Omega$ be a bounded domain of $\mathbb{R}^N (N \geq 1)$ satisfying the cone condition and let $\psi$ be a real valued measurable function such that $\psi^+ \in W_0^{1,p}(\Omega,w)\cap L^\infty(\Omega)$. Let us consider the Carath\'eodory functions $$ a_i(x,s,\xi)=w_i|\xi_i|^{p-1}{\rm sgn}(\xi) \quad\mbox{for }i=0,\dots,N $$ and $$ g(x,s,\xi)=\rho s |s|^r\sum_{i=1}^Nw_i|\xi_i|^p\quad \mbox{with} \quad \rho >0, $$ where $w_i(x$) are a given weight functions on $\Omega$ satisfying: $$ w_i(x)\equiv \mbox{some weight function $w(x)$ in $\Omega$ for all $i=0,\dots,N$.} $$ Then, we consider the Hardy inequality (2.3) in the form, $$\Big(\int_\Omega|u(x)|^q\sigma(x)\,dx\Big)^{1/q} \leq c\Big(\int_\Omega |\nabla u(x)|^pw\Big)^{1/p}.%\eqno{(5.4)} $$ It is easy to show that the functions $a_i(x,s,\xi)$ satisfy the growth condition (2.5) and the coercivity (2.7). Also the Carath\'eodory function $g(x,s,\xi)$ satisfies the conditions (2.8), (2.9) and (2.10), in fact, concerning (2.10) we have, $$ |g(x,s,\xi)|=\rho |s|^{r+1} \sum_{i=1}^Nw_i|\xi_i|^p. $$ Then $$ |g(x,s,\xi)|\geq\rho |\rho|^{r+1}\sum_{i=1}^Nw_i|\xi_i|^p \quad \mbox{for } |s|>\rho_1\geq 1. $$ Choosing for example $\rho_1=1 $ and $ \rho_2=\rho>0$. On the other hand, the monotonicity condition is satisfied. In fact, \begin{multline*} \sum_{i=1}^N(a_i(x,s,\xi)-a_i(x,s,\hat\xi))(\xi_i-\hat\xi_i) \\ = w(x)\sum_{i=1}^N(|\xi_i|^{p-1}\mathop{\rm sgn}\xi_i-|\hat\xi_i|^{p-1} \mathop{\rm sgn}\hat \xi_i)(\xi_i-\hat\xi_i)>0 \end{multline*} for almost all $x\in \Omega$ and for all $\xi,\hat\xi\in \mathbb{R}^N$ with $\xi\neq \hat\xi$, since $w>0$ a.e. in $\Omega$. In particular, let us use the special weight functions $w$ and $\sigma$ expressed in terms of the distance to the boundary $\partial \Omega$. Denote $d(x)=\mathop{\rm dist}(x,\partial\Omega)$ and set $$ w(x)=d^\lambda(x),\quad \sigma(x)=d^\mu(x). $$ In this case, the Hardy inequality reads $$ \Big(\int_\Omega |u(x)|^q\,d^\mu(x)\,dx\Big)^{1/q} \leq c\Big(\int_\Omega |\nabla u(x)|^p\,d^\lambda(x)\,dx \Big)^{1/p}\,.% $$ The corresponding imbedding is compact if:\\ (i) For, $1< p\leq q<\infty$, $$ \lambda< p-1,\quad \frac{N}{q}-\frac{N}{p}+1\geq 0,\quad \frac{\mu}{q}-\frac{\lambda}{p}+\frac{N}{q}-\frac{N}{p}+1>0,\eqno(4.1) $$ (ii) For $1\leq q0,\eqno(4.2) $$ (iii) For $q>1$, $$ \frac{1}{q'-1}>\mu >-1.\eqno(4.3) $$ \begin{coro} \label{coro4.1} If $f\in L^1(\Omega)$, the following problem: \begin{gather*} \int _{|v-u|\leq k}\sum_{i=1}^N d^\lambda(x)| \frac{\partial u}{\partial x_i}|^{p-1}\mathop{\rm sgn} (\frac{\partial u}{\partial x_i})\frac{\partial (v-u)}{\partial x_i}\,dx\\ +\int_{\Omega}\rho u|u|^r \sum_{i=1}^N d^\lambda(x)|\frac{\partial u}{\partial x_i}|^p T_k(v-u)\, dx \geq \int_{\Omega}fT_k(v-u)\,dx.\\ u\in W_0^{1,p}(\Omega,d^\lambda), u\geq \psi,\quad \rho u |u|^r \sum_{i=1}^N d^\lambda(x)|\frac{\partial u}{\partial x_i}|^p\in L^1(\Omega) \\ v \in W_0^{1,p}(\Omega,d^\lambda),\quad \mbox{for all $v\geq \psi$ and all $k>0,$} \end{gather*} has at least one solution. \end{coro} \paragraph{Remarks} \begin{enumerate} \item[1)] Note that conditions (4.1) and (4.2) are sufficient to show the compact imbedding (2.4) (cf. [6, example 1], [8, example 1.5] and [10, theorem 19.17, 19.22]). \item[2)] Condition (4.3) is sufficient for (2.3) to hold (cf. [9 p.p 40-41]). \end{enumerate} \begin{thebibliography}{00} \frenchspacing \bibitem{[1]} Y. A{\sc kdim}, {\em Sur certains probl\`emes quasi-lin\'eaires et unilat\'eraux d\'eg\'en\'er\'es ou singuliers, } {Th\`ese de Doctorat, Universit\'e de F\`es, (2002).} \bibitem{[2]} Y. A{\sc kdim}, E. A{\sc zroul} and A. B{\sc enkirane}, {\em Existence of solutions for quasilinear degenerated elliptic equations, } {Electronic J. Diff. Eqns., vol. {\bf 2001} N 71 (2001) 1-19.} \bibitem{[3]} Y. A{\sc kdim}, E. A{\sc zroul} and A. B{\sc enkirane}, {\em Existence of solutions for quasilinear degenerated elliptic unilateral problem, }{to appear in J. Math. Blaise-Pascal}. \bibitem{[4]} A. B{\sc ensoussan}, L. B{\sc occardo} and F. M{\sc urat}, {\em On a non linear partial differential equation having natural growth terms and unbounded solution,}{ Ann. Inst. Henri Poincar\'e {\bf 5} $N^°4$ (1988), 347-364.} \bibitem{[5]} A. B{\sc enkirane} and A. E{\sc lmahi}, {\em Strongly nonlinear elliptic unilateral problems having natural growth terms and $L^1$ data,}{ Rendiconti di Matematica, Serie VII vol. {\bf 18}, (1998), 289-303.} \bibitem{[6]} P. D{\sc rabek}, A. K{\sc ufner} and V. M{\sc ustonen}, {\em Pseudo-monotonicity and degenerated or singular elliptic operators,} { Bull. Austral. Math. Soc. Vol. {\bf 58} (1998), 213-221.} \bibitem{[7]} P. D{\sc rabek}, A. K{\sc ufner} and F. N{\sc icolosi}, {\em Quasilinear elliptic equations with degenerations and singularities,} { De Gruyter Series in Nonlinear Analysis and Applications, Berlin New York, (1997).} \bibitem{[8]} P. D{\sc rabek}, A. K{\sc ufner} and F. N{\sc icolosi}, {\em Nonlinear elliptic equations, singular and degenerate cases,} {University of West Bohemia, (1996).} \bibitem{[9]} A. Kufner, {\em Weighted Sobolev Spaces,} John Wiley and Sons, (1985). \bibitem{[10]} B. Opic and A. Kufner, {\em Hardy-type inequalities}, Pitman Research Notes in Mathematics Series {\bf 219} (Longman Scientific and Technical, Harlow, 1990). \end{thebibliography} \noindent \textsc{Elhoussine Azroul} (e-mail: elazroul@caramail.com)\\ \textsc{Abdelmoujib Benkirane} (e-mail: abdelmoujib@iam.net.ma )\\ \textsc{Ouidad Filali} (e-mail: ouidadf@hotmail.com)\\[2pt] D\'epartement de Math\'ematiques et Informatique, \\ Facult\'e des Sciences Dhar-Mahraz, B.P. 1796 Atlas, F\`es, Maroc. \end{document}