\documentclass[twoside]{article} \usepackage{amsfonts, amsmath} % used for R in Real numbers \pagestyle{myheadings} \markboth{Pseudo-monotonicity and degenerate elliptic operators} { Youssef Akdim \& Elhoussine Azroul } \begin{document} \setcounter{page}{9} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent 2002-Fez conference on Partial Differential Equations,\newline Electronic Journal of Differential Equations, Conference 09, 2002, pp 9--24. \newline http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \vspace{\bigskipamount} \\ % Pseudo-monotonicity and degenerate elliptic operators of second order % \thanks{ {\em Mathematics Subject Classifications:} 35J25, 35J70. \hfil\break\indent {\em Key words:} Weighted Sobolev spaces, pseudo-monotonicity, \hfil\break\indent nonlinear degenerate elliptic operators. \hfil\break\indent \copyright 2002 Southwest Texas State University. \hfil\break\indent Published December 28, 2002.} } \date{} \author{Youssef Akdim \& Elhoussine Azroul} \maketitle \begin{abstract} Extending the theory of pseudo-monotone mappings in weighted Sobolev spaces, we prove some existence results for degenerate or singular elliptic equations generated by the second-order differential operator $$ Au(x)=-\mathop{\rm div}a(x,u,\nabla u))+a_0(x,u,\nabla u), $$ (in particular, when only large monotonicity is satisfied) \end{abstract} \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{coro}[theorem]{Corollary} \newtheorem{remark}[theorem]{Remark} \section{Introduction} Let $\Omega$ be a open subset of $\mathbb{R}^N$ ($N\geq 1$) and $p>1$ be a real number and $\omega=\{\omega_0, \omega_1,\dots,\omega_N\}$ be a collection of weight functions on $\Omega$, i.e, each $\omega_i$ is a measurable and positive almost everywhere in $\Omega$, and satisfying some integrability condition (see section 2 below). Let us consider the second-order differential operator $$ Au(x)=A_1u(x)+A_0u(x) \eqno{(1.1)} $$ where $$ A_1u(x)=-\sum_{i=1}^N\frac{\partial}{\partial x_i}a_i(x,u,\nabla u)\eqno{(1.2)} $$ is the top order part of $A$ and where $$ A_0 u(x)=a_0(x,u,\nabla u)\eqno{(1.3)} $$ is the lower order part of $A$ and where $\{ a_i(x,\eta,\zeta)$, $0\leq i\leq N\}$ are functions defined on $\Omega\times\mathbb{R}\times\mathbb{R}^N$ and satisfy a suitable regularity and growth assumptions. Our objective in this paper, is to extend the theory of pseudo-monotone mappings in weighted Sobolev spaces. It's well known that, the essential condition which allows to do this, is the so-called Leray-Lions condition, $$ \sum_{i=1}^N(a_i(x,\eta, \zeta)-a_i(x,\eta, \bar\zeta))(\zeta_i-\bar\zeta_i)>0, \eqno{(1.4)} $$ for a.e.\ $x\in \Omega$, all $\eta\in \mathbb{R} $ and all $\zeta\neq\bar\zeta \in \mathbb{R}^N$ (resp. the so-called weak Leray-Lions condition, $$ \sum_{i=1}^N(a_i(x,\eta,\zeta)-a_i(x,\eta, \bar\zeta))(\zeta_i-\bar\zeta_i)\geq 0, \eqno{(1.5)} $$ for a.e.\ $x\in \Omega$, all $(\eta,\zeta, \bar\zeta)\in \mathbb{R}\times\mathbb{R}^N\times\mathbb{R}^N)$. Let us state the following assumptions: \begin{enumerate} \item [(H1)] The expression $$ \||u|\|_X=\Big(\sum_{i=1}^N\int_\Omega |\frac{\partial u(x)}{\partial x_i}|^p\omega_i(x)\,dx\Big)^{1/p} $$ is a norm on $X=W_0^{1,p}(\Omega,\omega)$ equivalent to the usual norm (2.3)(see section 2). There exist a weight function $\bar\omega$ on $\Omega$ and a parameter $q$, $10$ independent of $u$, and moreover, the imbedding expressed by (1.6) is compact, i.e. $$ W_0^{1,p}(\Omega,\omega)\hookrightarrow\hookrightarrow L^q(\Omega, \bar\omega). \eqno{(1.7)} $$ \item [(H2)] Each $a_i(x,\eta,\zeta)$ $(1\leq i\leq N)$ is a Carath\'eodory function and $$ |a_i(x,\eta,\zeta)|\leq C_i\omega_i^{1/p}(x)[g_i(x) +\bar\omega^{\frac{1}{p'}}|\eta|^{q/p'} +\sum_{j=1}^N\omega_j^{1/p'}(x)|\zeta_j|^{p-1}],\eqno{(1.8)} $$ for a.e. $x\in \Omega$, some constants $C_i>0$, some functions $g_i(x)\in L^{p'}(\Omega)$, all $(\eta,\zeta)\in \mathbb{R}^{N+1}$ and all $i=1,\dots,N$. \end{enumerate} Recently, Drabek, Kufner and Mustonen \cite{dr-ku-mu} proved that the mapping $T_1$ defined from $X$ to its dual $X^*$ associated to the top order part $A_1$ is pseudo-monotone in $X$, under the weak conditions (1.5), (H1), (H2). Hence, the authors obtained the existence result for the Dirichlet problem associated to the $A_1u=f\in X^*$ by assuming some degeneracy. Our first purpose in this paper, is to extend the previous result $\cite{dr-ku-mu}$ in the operator $A$ from (1.1) where the lower order part $A_0$ is affine with respect to the gradient, i.e., $A_0$ is of the form $$ A_0u(x)=c_0(x,u(x))+\sum_{i=1}^Nc_i(x,u(x))\frac{\partial u(x)}{\partial x_i},\eqno{(1.9)} $$ where $c_i(x,\eta)$, $0\leq i\leq N$ are some Carath\'eodory functions defined on $\Omega\times\mathbb{R}$ and satisfy $$ \begin{gathered} |c_0(x,\eta)|\leq C_0\bar\omega^{1/q}(x)[g_0(x)+\bar\omega^{\frac{1}{q'}}(x) |\eta|^{\frac{q}{q'}}]\\ |c_i(x,\eta)|\leq C_i\omega_i^{1/p}(x)\bar\omega^{1/q}(x)[\gamma_i(x)+ \bar\omega^{\frac{1}{r}}(x)|\eta|^{\frac{q}{r}}]\quad \mbox{for all }i=1,\dots,N, \end{gathered} \eqno{(1.10)} $$ for a.e.\ $x\in \Omega $, some constants $C_0>0,\ C_i>0,$ some functions $g_0\in L^{q'}(\Omega)$ and $ \gamma_i(x)\in L^r(\Omega)$ with $$\frac{1}{r}+\frac{1}{p}+\frac{1}{q}<1\eqno{(1.11)}$$ and where $\bar\omega(x)$ and $q$ are from (1.6). More precisely, we prove the following theorem, \begin{theorem} \label{thm1.1} Assume that (H1), (H2), (1.10), (1.5) hold. Then the mapping $T$ associated to the operator $A$ from (1.1) and (1.9) is pseudo-monotone in $X$. \end{theorem} \begin{remark} \label{rm1.1} Theorem \ref{thm1.1} is obviously a consequence of the more general result (Theorem \ref{thm3.1}, it suffices to take $I=\emptyset$). \end{remark} \begin{remark} \label{rm1.2} About the existence of such $r$ satisfying (1.11) see Remarks \ref{rm2.1} and \ref{rm4.2} below. \end{remark} The second aim of this paper, is to prove the same result of the preceding without restriction on $A_0$ and where (1.4) is applied. This is done in Theorem \ref{thm3.1}, if we take $I^c=\emptyset$. This paper is divided into four sections. In section 2, we start our basic assumptions and we prove some preliminaries lemmas concerning some convergence and generalized H\"older's inequality in weighted Sobolev space. In section 3, we give our general main result and its proof and we study an example which illustrate our abstract hypotheses. The section 4, is devoted to the study of some particular case where $\omega_0\equiv 1$ on $\Omega$ and where some of our hypotheses (imbedding) are satisfied. In our work, we shall adopt many ideas from $\cite{go-mu}$ (where the authors have studied the non-degenerated elliptic case). But the results are generalized and improved. concerning the existence results for higher order nonlinear degenerated (or singular) elliptic equations, we refer the reader to \cite{dr-ku-ni1,dr-ku-ni 2,az} (where the degree theory is used in the two first papers and where the pseudo-monotonicity is used in the last but under some restrictions on the weighted). Finally, not that our approach based on the theory of pseudo-monotone mappings can be applied in the case of non reflexive Banach space, for example in weighted Orlicz-Sobolev spaces (see \cite{az} for related topics). \section{Preliminaries and basic assumptions} \paragraph{1) Weighted Sobolev spaces.} Let $\Omega$ be a open subset of $\mathbb{R}^N\ (N\geq 1)$, with finite measure, let $10, \eqno{(2.4)} $$ for a.e. $\ x\in\Omega$, all $\eta \in \mathbb{R}$ and all $\zeta\neq\bar\zeta\in\mathbb{R}^N$ and $$ \sum_{i\in I^c}(b_i(x,\eta,\zeta_{I^c})-b_i(x,\eta,\bar\zeta_{I^c})) (\zeta_i-\bar\zeta_i)\geq 0, \eqno{(2.5)} $$ for a.e. $\ x\in\Omega$, all $\eta \in \mathbb{R}$ and all $\zeta,\bar\zeta\in\mathbb{R}^N$ where $\zeta_J$ denoted $\zeta_J=\{\zeta_i,\ \ i \in J\}$ and where $a_i(x,\eta,\zeta)$ are Carath\'eodory functions such that, $$ \begin{gathered} a_i(x,\eta,\zeta)=b_i(x,\eta,\zeta_I)\quad\mbox{for all } i\in I,\\ a_i(x,\eta,\zeta)=b_i(x,\eta,\zeta_{I^c})\quad\mbox{for all } i\in I^c,\\ a_0(x,\eta,\zeta)=c_0(x,\eta,\zeta_I)+{\sum_{i\in I^c}}c_i(x,\eta,\zeta_I)\zeta_i, \end{gathered} \eqno{(2.6)} $$ for a.e.\ $x\in \Omega$, all $(\eta,\zeta)\in \mathbb{R}^{N+1}$ and where $b_i$ $(i=1,\dots,N)$, $c_0$ and $c_i$ $(i\in I^c)$ are functions satisfying the Carath\'eodory conditions (i.e. measurable in $x$ for any fixed $\xi=(\eta,\zeta)\in \mathbb{R}^{N+1}$ and continuous in $\xi$ for almost all fixed $x\in \Omega)$. We assume the following growth conditions: \begin{enumerate} \item[(H2')] Each $a_i(x,\eta ,\zeta)$ is a Carath\'eodory function and, that there exists some positives constants $C_i$, and some functions $g_i(x)\in L^{p'}(\Omega)$ $i=1,\dots,N,$ and $g_0\in L^{q'}(\Omega)$ and some $\gamma_i(x)\in L^r(\Omega)$ for all $i\in I^c)$ such that \begin{gather*} |b_i(x,\eta,\zeta_I)|\leq C_i\omega_i^{1/p}(x)[g_i(x)+\bar\omega^{\frac{1}{p'}}|\eta|^{\frac{q}{p'}}+\sum_{j\in I}\omega_j^{\frac{1}{p'}}(x)|\zeta_j|^{p-1}]\quad\mbox{for } i\in I \\ |b_i(x,\eta,\zeta_{I^c})|\leq C_i\omega_i^{1/p}(x)[g_i(x)+\bar\omega^{\frac{1}{p'}}(x)|\eta| ^{\frac{q}{p'}}+\sum_{j\in I^c}\omega_j^{\frac{1}{p'}}(x)|\zeta_j|^{p-1}],\\ \mbox{for } i\in I^c\\ |c_0(x,\eta,\zeta_I)|\leq C_0\bar\omega^{1/q}[g_0(x)+\bar\omega^{\frac{1}{q'}}(x)|\eta|^{\frac{q}{q'}}+\sum_{j\in I}\omega_j^{\frac{1}{q'}}(x)|\zeta_j|^{\frac{p}{q'}}]\\ |c_i(x,\eta,\zeta_I)|\leq C_i\omega_i^{1/p}(x)\bar\omega^{1/q}(x)[\gamma_i(x)+ \bar\omega^{\frac{1}{r}}(x)|\eta|^{\frac{q}{r}}+\sum_{j\in I}\omega_j^{\frac{1}{r}}(x)|\zeta_j|^{\frac{p}{r}}],\\ \mbox{for } i\in I^c, \end{gather*} for a.e.\ $x\in \Omega $, all $\eta\in \mathbb{R},\ \ \zeta\in \mathbb{R}^N,$ with $$ \frac{1}{r}+\frac{1}{p}+\frac{1}{q}<1.\eqno{(2.7)} $$ \end{enumerate} \begin{remark} \label{rm2.1} \begin{enumerate} \item[1)] The such $r$ satisfying (2.7), exists when $q>p'$ (it suffices to choose $r>\frac{pq}{pq-p-q}>1$). \item[2)] If $q\leq p'$, we can not found any $r$ satisfying (2.7) (since $\frac{1}{p}+\frac{1}{p'}=1\leq \frac{1}{p}+\frac{1}{q}$). \end{enumerate} \end{remark} Before to give main general result, let us give and prove the following lemmas which are needed below. \begin{lemma} \label{lm2.1} Let $\Omega$ be a subset of $\mathbb{R}^N$ with finite measure and let $f\in L^p(\Omega,\sigma_1)$ $(10$ and set $A_n=\{x\in \Omega : |g_n(x)-g(x)|\sigma^{1/p}(x)\leq (\frac{\varepsilon}{2\mathop{\rm meas}(\Omega)})^{1/q}\}$, we have \begin{eqnarray*} \int_\Omega|g_n-g|^q\sigma^{q/p}\,dx &=&\int_{A_n}|g_n-g|^q\sigma^{q/p}\,dx+\int_{A_n^c}|g_n-g|^q\sigma^{q/p}\,dx \\ &\leq& \frac{\varepsilon}{2}+\int_{A_n^c}|g_n-g|^q\sigma^{q/p}\,dx. \end{eqnarray*} By H\"older inequality, \begin{eqnarray*} \int_{A_n^c}|g_n-g|^q\sigma^{q/p}\,dx&\leq& \Big(\int_\Omega|g_n-g|^p\sigma\,dx\Big)^{q/p} \Big(\mathop{\rm meas}(A_n^c)\Big)^{1-\frac{q}{p}} \\ &\leq& M \left(\mathop{\rm meas}(A_n^c)\right)^{1-\frac{q}{p}}, \end{eqnarray*} where $M$ is a constant does not depend on $n$. On the other hand since $g_n \to g$ in measure we have $$\mathop{\rm meas}(A_n^c)\to 0 \quad\mbox{as }n\to \infty, $$ then there exists some $n_0\in \mathbb{N}$ such that for all $n\geq n_0,$ $$\int_{A_n^c}|g_n-g|^q\sigma^{q/p}\,dx\leq \frac{\varepsilon}{2}. $$ \begin{remark} \label{rm2.4} We can also give an other proof of the last lemma, by using the non-weighted case, i.e., $g_n\sigma^{1/p}$ is bounded in $L^p(\Omega)$ and $g_n(x)\sigma^{1/p}(x) \to g(x)\sigma^{1/p}(x)$, in measure, hence $g_n\sigma^{1/p} \to g\sigma^{1/p}$ in $L^q(\Omega)$ for all $q1$ and $\frac{1}{s}=\frac{1}{p}+\frac{1}{q}$. \end{lemma} \paragraph{Proof.} Let$\varphi \in L^{s'}(\Omega, \sigma_1^{\frac{s}{p}(1-s')}\sigma_2^{\frac{s}{q}(1-s')})$. For any $v\in L^{q}(\Omega,\sigma_2)$ we have, $v\varphi\in L^{p'}(\Omega,\sigma_1^{1-p'})$. Indeed, since $\frac{1}{p'}=\frac{1}{s'}+\frac{1}{q},$ we have by H\"older's inequality, \begin{eqnarray*} \lefteqn{\int_\Omega |v\varphi|^{p'}\sigma_1^{1-p'}(x)\,dx}\\ &=&\int_\Omega |v\sigma_2^{1/q}(x)|^{p'}|\varphi|^{p'}\sigma_1^{1-p'}(x) \sigma_2^{-p'/q}(x)\,dx\\ &\leq &\Big(\int_\Omega|v|^{q}\sigma_2(x)\,dx\Big)^{p'/q} \Big(\int_\Omega|\varphi|^{s'}\sigma_1^{\frac{s'}{p'}(1-p')}(x) \sigma_2^{-s'/q}(x)\,dx\Big)^{p'/s'}\\ &= &\Big(\int_\Omega|v|^{q}\sigma_2\,dx\Big)^{p'/q} \Big(\int_\Omega|\varphi|^{s'}\sigma_1^{\frac{s}{p}(1-s')}(x) \sigma_2^{\frac{s}{q}(1-s')}(x)\,dx\Big)^{p'/s'}<\infty. \end{eqnarray*} Finally, since $g_n\rightharpoonup g$ in $ L^p(\Omega,\sigma_1)$, then $$\int_\Omega g_nv\varphi\,dx\to \int_\Omega gv\varphi\,dx \mbox{ i.e. }g_nv\rightharpoonup gv \mbox{ in } L^s(\Omega,\sigma_1^{s/p}\sigma_2^{s/q})\;\forall v\in L^{q}(\Omega,\sigma_2).$$ \begin{lemma} \label{lm2.5} Let $\Omega$ be a subset of $\mathbb{R}^N$ with finite measure and let $1\leq p\leq q$ then, we have the continuous imbedding $L^q(\Omega,\sigma) \hookrightarrow L^p(\Omega,\sigma^{p/q})$ where $\sigma$ is a weight function in $\Omega$. \end{lemma} The proof of this lemma can be deduced easily from H\"older's inequality. \section{Main general result} Under the previous assumptions, the differential operator (1.1) (with coefficients satisfying (2.6), generates a mapping $T$ from $X=W_0^{1,p}(\Omega,\omega)$ to its dual $X^*$ through the formula, $$ \begin{aligned} \langle Tu,v\rangle =&\int_\Omega \sum_{i\in I}b_i(x,u,\zeta_I(\nabla u))\frac{\partial v}{\partial x_i}\,dx+\int_\Omega \sum_{i\in I^c}b_i(x,u,\zeta_{I^c}(\nabla u))\frac{\partial v}{\partial x_i}\,dx \\ &+\int_\Omega c_0(x,u,\zeta_I(\nabla u))v\,dx+\int_\Omega \sum_{i\in I^c}c_i(x,u,\zeta_I(\nabla u))\frac{\partial u}{\partial x_i}v\,dx, \end{aligned} \eqno{(3.1)} $$ for all $u,v\in X$ and where $\langle,\rangle$ denotes the duality pairing between $X^*$ and $X$. When we have adopted the notation $\zeta_J(\nabla u)=\{\frac{\partial u}{\partial x_i},\; i\in J\}$. We recall that the mapping $T$ is well defined and bounded, this can be easily seen by Lemma \ref{lm2.1} and H\"older's inequality. \paragraph{Definition} %3.1 A bounded mapping $T$ from $X$ to $X^*$ is called pseudo-monotone if for any sequence $u_n \in X$ with $u_n \rightharpoonup u$ in $X$ and ${\limsup_{n\to\infty}} \langle T\,u_n,u_n-u\rangle \leq 0$, one has $$\liminf_{n\to\infty}\langle Tu_n,u_n-v\rangle \geq \langle Tu,u-v\rangle \quad \mbox{for all } v\in X. $$ \begin{theorem} \label{thm3.1} Assume that (H1), (H2'), (2.4) and (2.5) hold. Then the corresponding mapping $T$ defined by (3.1) is pseudo-monotone in $X=W_0^{1,p}(\Omega,\omega)$. \end{theorem} \begin{remark} \label{rm3.1} \rm 1) When $I=\emptyset$, the previous theorem applies in particular to operators like $(1.1)$ with $A_0$ affine with respect to the gradient variable, this gives from (1.5) a sufficient condition (theorem 1.1 in the introduction).\\ 2) When $I=\emptyset$ and $A_0\equiv 0$, we immediately obtain \cite[Proposition 1]{dr-ku-mu}.\\ 3) When $I^c=\emptyset$, we obtain \cite[Theorem 7.4]{az} and when $A_0\equiv 0$, $I=\emptyset$, we give in \cite[Theorem 7.2]{az}.\\ 4) Theorem \ref{thm3.1} generalizes \cite[Theorem 3.1]{go-mu} in the weighted case. \end{remark} Applying the previous theorem, we obtain the following existence results, which generalizes the corresponding (cf. \cite{az,dr-ku-mu}). \begin{coro} \label{coro3.1} Let $\Omega$ be a bounded open subset of $\mathbb{R}^N$ and assume the hypotheses in Theorem \ref{thm3.1}. Also assume the degenerate ellipticity condition $$ \sum_{i=0}^N a_i(x,\xi)\xi_i\geq C_0\sum_{i=1}^N\omega_i(x)|\xi_i|^p $$ for a.e.\ $x\in \Omega$, some $C_0>0$ and all $\xi\in \mathbb{R}^{N+1}$. Then for any $f\in X^*$ the Dirichlet associated problem \begin{align*} \int_\Omega \sum_{i\in I} b_i(x,u,\zeta_I(\nabla u))\frac{\partial v}{\partial x_i}\,dx+\int_\Omega \sum_{i\in I^c}b_i(x,u,\zeta_{I^c}(\nabla u))\frac{\partial v}{\partial x_i}\,dx&\\ +\int_\Omega c_0(x,u,\zeta_I(\nabla u))v\,dx+\int_\Omega \sum_{i\in I^c}c_i(x,u,\zeta_I(\nabla u))\frac{\partial u}{\partial x_i}v\,dx&=\int_\Omega fv\,dx \end{align*} for all $v\in X$ has at least one solution $u\in X$. \end{coro} \paragraph{Proof of Theorem \ref{thm3.1}.} Let $(u_n)_n$ be a sequence in $X$ such that: $$u_n\rightharpoonup u \mbox{ in }X\eqno{(3.2)}$$ and $$\limsup_{n\to\infty}\langle Tu_n,u_n-u\rangle \leq 0,\eqno{(3.3)} $$ i.e. \begin{eqnarray*} \limsup_{n\to\infty}&\{&\int_\Omega \sum_{i\in I}b_i(x,u_n,\zeta_I(\nabla u_n))(\frac{\partial u_n}{\partial x_i}-\frac{\partial u}{\partial x_i})\,dx\\ & &+\int_\Omega \sum_{i\in I^c}b_i(x,u_n,\zeta_{I^c}(\nabla u_n))(\frac{\partial u_n}{\partial x_i}-\frac{\partial u}{\partial x_i})\,dx\\ & &+\int_\Omega c_0(x,u_n,\zeta_I(\nabla u_n))(u_n-u)\,dx\\ & &+\int_\Omega \sum_{i\in I^c}c_i(x,u_n,\zeta_I(\nabla u_n))\frac{\partial u_n}{\partial x_i}(u_n-u)\,dx\}\leq 0. \\ \end{eqnarray*} {\bf a)} We shall prove that $$\langle Tu_n,v\rangle \to \langle Tu,v\rangle \quad \mbox{as }n\to \infty \mbox{ for all } v\in X.\eqno{(3.4)} $$ \textbf{First step.} We show that $$\lim_{n\to \infty}\int_\Omega \sum_{i\in I}(b_i(x,u_n,\zeta_I(\nabla u_n))-b_i(x,u_n,\zeta_I(\nabla u)))(\frac{\partial u_n}{\partial x_i}-\frac{\partial u}{\partial x_i})\,dx=0\eqno{(3.5)}$$ and $$\lim_{n\to \infty}\int_\Omega \sum_{i\in I^c}(b_i(x,u_n,\zeta_{I^c}(\nabla u_n))-b_i(x,u_n,\zeta_{I^c}(\nabla u)))(\frac{\partial u_n}{\partial x_i}-\frac{\partial u}{\partial x_i})\,dx=0.\eqno{(3.6)}$$ Indeed: First, we can choose $q_1$ such that $11$ such that $\frac{1}{s}=\frac{1}{p}+\frac{1}{q}$. Since $\frac{1}{s'}+\frac{1}{s}=1>\frac{1}{s}+\frac{1}{q_1}$ i.e.\ $s'0, \tilde w=(\tilde w_i) \in {\prod_{i=1}^NL^p(\Omega, \omega_i)}$ and letting $t\to 0$ we obtain, $$h_i=b_i(x,u,\zeta_{I^c}(\nabla u))\quad\mbox{a.e. in }\Omega, $$ which gives, $$\lim_{n\to \infty}\int_\Omega \sum_{i\in I^c}b_i(x,u_n,\zeta_{I^c}(\nabla u_n))\frac{\partial v}{\partial x_i}\,dx=\int_\Omega \sum_{i\in I^c}b_i(x,u,\zeta_{I^c}(\nabla u))\frac{\partial v}{\partial x_i}\,dx $$ for all $v\in X$. \hfil$\square$ \paragraph{b)} We shall prove that $$ \liminf_{n\to \infty}\langle Tu_n,u_n\rangle \geq \langle Tu,u \rangle \eqno{(3.19)} $$ by (2.4) and (2.5) we have \begin{align*} &\int_\Omega {\sum_{i\in I}} b_i(x,u_n,\zeta_I(\nabla u_n))\frac{\partial u_n}{\partial x_i}\,dx+\int_\Omega \sum_{i\in I^c}b_i(x,u_n,\zeta_{I^c}(\nabla u_n))\frac{\partial u_n}{\partial x_i}\,dx\\ & \geq \int_\Omega \sum_{i\in I}b_i(x,u_n,\zeta_I(\nabla u_n))\frac{\partial u}{\partial x_i}\,dx+\int_\Omega \sum_{i\in I}b_i(x,u_n,\zeta_I(\nabla u))(\frac{\partial u_n}{\partial x_i}-\frac{\partial u}{\partial x_i})\,dx\\ & + \int_\Omega \sum_{i\in I^c}b_i(x,u_n,\zeta_{I^c}(\nabla u_n))\frac{\partial u}{\partial x_i}\,dx+\int_\Omega \sum_{i\in I^c}b_i(x,u_n,\zeta_{I^c}(\nabla u))(\frac{\partial u_n}{\partial x_i}-\frac{\partial u}{\partial x_i})\,dx, \end{align*} then letting $n\to\infty$, and using (3.8) and (3.9), we conclude (3.19). \paragraph{Example} % 3.1. } Many ideas in this example have adapted from the corresponding examples 1-2 in \cite{dr-ku-mu}. We shall suppose that the weight functions satisfy: $\omega_{i_0}(x)\equiv 0$ for some $i_0\in I^c$, and $\omega_i(x)=\omega(x)$, $x\in \Omega$, for all $i\in I\cup I^c$ and $i\neq i_0$ with $\omega(x)>0$ a.e. in $\Omega$. Then, we can consider the Hardy inequality in the form $$ \Big(\int_\Omega |u(x)|^q\bar\omega(x)\,dx\Big)^{1/q}\leq c\Big(\sum_{i\neq i_0}\int_\Omega |\frac{\partial u}{\partial x_i}|^p\omega \Big)^{1/p}\eqno{(3.20)} $$ for every $u\in X$ with a constant $c>0$ independent of $u$ and for some $q\geq p'$. Let us consider the Carath\'eodory functions: $$ \begin{gathered} b_i(x,\eta,\zeta_I)=\omega|\zeta_i|^{p-1}\mathop{\rm sgn}\zeta_i+\omega_0 A_0(\eta)\quad\mbox{for } i\in I\\ b_i(x,\eta,\zeta_{I^c})=\omega|\zeta_i|^{p-1}\mathop{\rm sgn}\zeta_i+\omega_0 A_0(\eta)\quad \mbox{for }i\in I^c\mbox{ and }i\neq i_0\\ b_{i_0}(x,\eta,\zeta_{I^c})=\omega_0 A_0(\eta)\\ c_0(x,\eta,\zeta_I)=\sum_{j\in I}\omega^{1/q'}\bar \omega^{1/q}|\zeta_j|^{\frac{p}{q'}}+\omega_0 B_0(\eta)\\ c_i(x,\eta,\zeta_I)=\sum_{j\in I}\omega^{1/p+1/r}\bar\omega^{1/q}|\zeta_j|^{p/r}+\omega_0 B_1(\eta)\quad \mbox{for } i\in I^c, \end{gathered} \eqno{(3.21)} $$ with $1/p+1/r+1/q <1$. The above functions define by $(3.21)$ satisfies the growth conditions (H2') if we suppose that $$ \begin{gathered} |\omega_0 A_0(\eta)|\leq \beta_1\omega^{1/p} \bar\omega^{1/p'}|\eta|^{q/p'}\\ |\omega_0 B_0(\eta)|\leq \beta_2\bar\omega |\eta|^{q/q'}\\ |\omega_0 B_1(\eta)|\leq \beta_3\omega^{1/p} \bar\omega^{1/q+1/r}|\eta|^{q/r}, \end{gathered} \eqno{(3.22)} $$ with $\beta_j \ j=1,2,3$ are some positive constants. In particular, let us use the special weight functions $\omega_0, \omega, \bar\omega$ expressed in terms of the distance to the boundary $\partial \Omega$: denote $d(x)=\mathop{\rm dist}(x,\partial\Omega)$ and set $$ \omega(x)=d^\lambda(x),\quad \omega_0(x)=d^{\lambda_0}(x),\quad \bar\omega(x)=d^\mu(x). $$ In this case the condition $(3.22)$ writes as $$ \begin{gathered} |A_0(\eta)|\leq \beta_1 d^{\lambda/p+\mu/p'-\lambda_0}|\eta|^{q/p}\\ |B_0(\eta)|\leq \beta_2 d^{\mu-\lambda_0}|\eta|^{q/q'}\\ |B_1(\eta)|\leq \beta_3 d^{\lambda/p+\mu/q+\mu/r-\lambda_0}|\eta|^{q/r}, \end{gathered} \eqno{(3.23)} $$ and the Hardy inequality reads $$ \Big(\int_\Omega |u(x)|^q\;d^\mu(x)\,dx\Big)^{1/q}\leq c\Big(\sum_{i\neq i_0}\int_\Omega |\frac{\partial u}{\partial x_i}|^p\;d^\lambda(x)\,dx \Big)^{1/p},\eqno{(3.24)} $$ and the corresponding imbedding (1.7) is compact for $1\leq p\leq q<\infty$ (resp. $1\leq q0$, (resp. $\lambda\in \mathbb{R}$, $\frac{\mu}{q}-\frac{\lambda}{p}+\frac{1}{q}-\frac{1}{p}>0$) (see \cite{op-ku}). Moreover, the two monotonicity conditions (2.4) and (2.5) are satisfied: \begin{multline*} \sum_{i\in I}\left(b_i(x,\eta,\zeta_I)-b_i(x,\eta,\bar\zeta_I)\right) \left(\zeta_i-\bar\zeta_i\right)\\ =\omega(x)\sum_{i\in I}\left(|\zeta_i|^{p-1}\mathop{\rm sgn}\zeta_i-|\bar \zeta_i|^{p-1}\mathop{\rm sgn}\bar\zeta_i\right) \left(\zeta_i-\bar\zeta_i\right)>0 \end{multline*} for almost all $x\in \Omega$ and for all $\zeta,\bar\zeta\in \mathbb{R}^N$ with $\zeta_I\neq \bar\zeta_I$, since $\omega>0\ a.e.$ in $\Omega$; and \begin{multline*} \sum_{i\in I^c}\left(b_i(x,\eta,\zeta_{I^c})-b_i(x,\eta,\bar\zeta_{I^c})\right) \left(\zeta_i-\bar\zeta_i\right)\\ =\omega(x)\sum_{\stackrel{i\in I^c}{i\neq i_0}} \left(|\zeta_i|^{p-1}sgn\zeta_i-|\bar\zeta_i|^{p-1}sgn\bar\zeta_i\right) \left(\zeta_i-\bar\zeta_i\right)\geq 0 \end{multline*} for almost all $x\in \Omega$ and for all $\zeta,\bar\zeta\in \mathbb{R}^N$. This last inequality can not be strict, since for $\zeta_{I^c}\neq \bar\zeta_{I^c}$ with $\zeta_{i_0}\neq \bar\zeta_{i_0}$ but $ \zeta_i=\bar\zeta_i$ for all $i\in I^c$ and $i\neq i_0$, the corresponding expression is zero. Finally, the hypotheses of theorem 3.1 are verify, then the mapping $T$ defined as $(3.1)$ corresponding to $(3.21)$ is pseudo-monotone. \section{Specific case} Let $\Omega$ be a bounded open subset of $\mathbb{R}^N$ satisfying the cone condition. In this section we assume in addition that the collection of weight functions $\omega=\{\omega_i(x) \; i=0,\dots,N\}$ satisfy $\omega_0(x)=1$ and the integrability condition: There exists $\nu\in ]\frac{N}{p},\infty[\cap [\frac{1}{p-1},\infty[$ such that $$ \omega_i^{-\nu}\in L^1(\Omega) \quad \forall i=1,\dots,N.\eqno{(4.1)} $$ Note that $(4.1)$ is stronger than $(2.2)$. \begin{remark}[\cite{dr-ku-ni1}] \label{rm4.1} \rm \begin{enumerate} \item Assumptions (2.1) and (4.1) imply that, $$ \||u|\|_X=\Big(\sum_{i=1}^N\int_\Omega |\frac{\partial u(x)}{\partial x_i}|^p\omega_i(x)\,dx\Big)^{1/p} $$ is a norm defined on $W_0^{1,p}(\Omega,\omega)$ and it's equivalent to (2.3), and that $$ W_0^{1,p}(\Omega,\omega)\hookrightarrow\hookrightarrow L^q(\Omega) \eqno{(4.2)} $$ for all $1\leq qN$ there exist $\nu \in ]\frac{N}{p-N},\infty[\cap[\frac{1}{(p-1)},\infty[$ such that $\omega_i^{-\nu}\in L^1(\Omega)$ for all $i=1,\dots,N$. \end{enumerate} \begin{remark} \label{rm4.2}\rm \begin{enumerate} \item Hypothesis (\~H1) guarantees the existence of $r$ satisfying $\frac{1}{r}+\frac{1}{p}+\frac{1}{p_1^*}<1$, where $p_1^*$ is the Sobolev conjugate of $p_1$ in the case $\frac{2N}{N+1}N$ (since $p_1>N$ due to $\nu>\frac{N}{p-N}$). \item If $11$ such that $\frac{1}{r}+\frac{1}{p}+\frac{1}{p_1^*}<1$, since $\frac{1}{p}+\frac{1}{p_1^*}>\frac{1}{p}+\frac{1}{p^*}\geq 1$. \item Note that (\~H1) is stronger than (4.1), then the compact imbedding (4.2) is satisfied whenever (\~H1) is assumed. \end{enumerate} \end{remark} \begin{theorem} \label{thm4.1} Let $\Omega$ be a bounded open subset of $\mathbb{R}^N$. And assume that (2.1), (\~H1), (H2'), (2.4) and (2.5) are satisfied. Then the operator $T$ defined in $(3.1)$ is pseudo-monotone in $X=W_0^{1,p}(\Omega,\omega)$. Moreover, assume the degenerate ellipticity condition $$ \sum_{i=0}^N a_i(x,\xi)\xi_i\geq c_0\sum_{i=1}^N\omega_i(x)|\xi_i|^p $$ for a.e.\ $x\in \Omega$, some $c_0>0$ and all $\xi\in \mathbb{R}^{N+1}$. Then for any $f\in X^*$ the Dirichlet associated problem $$ \langle Tu,v\rangle =\langle f,v \rangle \quad \mbox{for all } v\in X, $$ has at least one solution $u\in X$. \end{theorem} \begin{thebibliography}{00} \frenchspacing \bibitem{az} E. A{\sc zroul}, {\em Sur certains probl\`emes elliptiques (non lin\'eaires d\'eg\'en\'er\'es ou singuliers) et calcul des variations,} {Th\`ese de Doctorat d'Etat, Facult\'e des Sciences Dhar-Mahraz, F\`es, Maroc, janvier 2000.} \bibitem{dr-ku-mu} P. D{\sc rabek}, A. K{\sc ufner} and V. M{\sc ustonen}, {\em Pseudo-monotonicity and degenerated or singular elliptic operators,}{ Bull. Austral. Math. Soc. Vol. {\bf 58} (1998), 213-221.} \bibitem{dr-ku-ni1} P. D{\sc rabek}, A. K{\sc ufner} and F. N{\sc icolosi}, {\em Non linear elliptic equations, singular and degenerate cases,}{ University of West Bohemia, (1996).} \bibitem{dr-ku-ni 2} P. D{\sc rabek}, A. K{\sc ufner} and F. N{\sc icolosi}, {\em On the solvability of degenerated quasilinear elliptic equations of higher order,}{ Journal of differential equations, {\bf 109} (1994), 325-347.} \bibitem{go-mu} J.P. G{\sc ossez} and V. M{\sc ustonen}, {\em Pseudo-monotoncity and the Leray-Lions condition, Differential Integral Equations}{ {\bf 6} (1993), 37-45.} \bibitem{la} R. L{\sc andes}, {\em On Galerkin's method in the existence theory of quasilinear elliptic equations,}{ J. Functional Analysis {\bf 39} (1980), 123-148.} \bibitem{le-li} J. L{\sc eray} and J.L. L{\sc ions}, {\em Quelques r\'esultats de Vi$\tilde s$ik sur des probl\`emes elliptiques non lin\'eaires par les m\'ethodes de Minty-Browder,}{ Bul. Soc. Math. France {\bf 93} (1965), 97-107.} \bibitem{op-ku} B. O{\sc pic} and A. K{\sc ufner}, {\em Hardy-type inequalities, Pitman Research Notes in Mathematics Series {\bf 219}(Longman Scientific and Technical, Harlow, 1990).} \end{thebibliography} \noindent\textsc{Youssef Akdim} (e-mail y.akdim1@caramail.com)\\ \textsc{Elhoussine Azroul} (e-mail elazroul@caramail.com)\\ D\'epartement de Math\'ematiques et Informatique\\ Facult\'e des Sciences Dhar-Mahraz\\ B.P 1796 Atlas F\`es, Maroc \end{document}