\documentclass[twoside]{article}
\usepackage{amsfonts, amsmath} % used for R in Real numbers
\pagestyle{myheadings}
\markboth{Singularities and quasilinear equations on manifolds}
{Laurent V\'eron}
\begin{document}
\setcounter{page}{133}
\title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent
2001-Luminy conference on Quasilinear Elliptic and Parabolic Equations
and Systems,\newline
Electronic Journal of Differential Equations,
Conference 08, 2002, pp 133--154. \newline
http://ejde.math.swt.edu or http://ejde.math.unt.edu
\newline ftp ejde.math.swt.edu (login: ftp)}
\vspace{\bigskipamount} \\
%
Singular $p$-harmonic functions and related quasilinear
equations on manifolds
%
\thanks{ {\em Mathematics Subject Classifications:} 35J50, 35J60.
\hfil\break\indent
{\em Key words:} $p$-harmonic, singularity, degenerate equations.
\hfil\break\indent
\copyright 2002 Southwest Texas State University. \hfil\break\indent
Published October 21, 2002.} }
\date{}
\author{Laurent V\'eron}
\maketitle
\begin{abstract}
We give here an overview of some recent developments in the study
of the description of singular solutions of
$$
-\nabla.(|\nabla u|^{p-2}\nabla u) +\varepsilon |u|^{q-1}u=0 %\label{NLE}
$$
in $\mathbb{R}^N\setminus \{0\}$, where $p>1$, $\varepsilon \in \{0,1,-1\}$
and $q\geq p-1$.
\end{abstract}
\numberwithin{equation}{section}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{corollary}[theorem]{Corollary}
\newcommand{\abs}[1]{|#1|}
\newcommand{\norm}[1]{\|#1\|}
\section {Introduction}
Let $\Omega$ be a domain in $\mathbb{R}^N$ containing $0$, $N\geq 2$, and let
$$
A: \Omega\times \mathbb{R}\times \mathbb{R}^N\mapsto\mathbb{R}^N,
\quad \mbox{and}\quad
B:\Omega\times \mathbb{R}\times \mathbb{R}^N\mapsto\mathbb{R},
$$
be two Caratheodory functions. Then a classical problem is the study of
the behaviour near $0$ of a solution $u$ of
\begin{equation}\label{main equ}
-\nabla.A(x,u,\nabla u)+B(x,u,\nabla u)=0
\end{equation}
in $\Omega^*=\Omega\setminus\{0\}$.
Besides the well known linear case, the first striking results in the
nonlinear case were obtained by Serrin in 1964 in a series of
celebrated articles \cite {Se1,Se2}. Under the assumptions
\begin{eqnarray}\label{p-growth}
&(i)& A(x,r,Q).Q \geq c_{1}{\abs Q}^{p}\nonumber\\
&(ii)& |A(x,r,Q)| \leq c_{2}{\abs Q}^{p-1}+c_{3}\\
&(iii)& \abs {B(x,r,Q)}\leq c_{4}{\abs Q}^{p-1}+c_{5}{\abs r}^{p-1}+c_{6}
\nonumber
\end{eqnarray}
for any $(x,r,Q)\in \Omega\times \mathbb{R}\times \mathbb{R}^N\mapsto\mathbb{R}^N$, where
the $c_{i}$ are positive constants and $N\geq p>1$. Serrin's results assert
that any nonnegative weak solution $u$ of (\ref{main equ}) in
$\Omega^*$ belonging to $W^{1,p}_{\rm loc}(\Omega^*)$ is either extendable
by continuity as a $C(\Omega)\cap W^{1,p}_{\rm loc}(\Omega)$-solution of the same
equation in whole $\Omega$, or satisfies
\begin{equation}\label{singular}
\theta \leq \frac {u(x)}{\mu_{p}(x)}\leq \theta^{-1},
\end{equation}
near $0$, for some positive $\theta$, in which formula the functions $\mu_{p}$
are defined in $\mathbb{R}^N\setminus\{0\}$ by
\begin{equation}\label{p-growth 2}
\mu_{p}(x)=\begin{cases}
{\abs x}^{(p-N)/(p-1)} &\mbox{if }1
p-1$; Guedda and V\'eron \cite{GV}, Bidaut-V\'eron
\cite{BV}, Serrin and Zou \cite{SZ} in the case $B(x,r,Q)=-{\abs
r}^{q-1}r$, always in assuming $q>p-1$. We shall present below an overview or
the results of these different authors, writing the equation (\ref{main equ})
in the form
\begin{equation}\label{main equ epsilon}
-\nabla. ({\abs{\nabla u}^{p-2}}\nabla u)+\varepsilon{\abs u}^{q-1}u=0,
\end{equation}
with $\varepsilon=1,-1$ or $0$. We put emphasis on separable
solutions that are solutions of the form
$$u(r,\sigma)=r^{-\beta}\omega (\sigma),\quad (r,\sigma)\in
(0,\infty)\times S^{N-1}.
$$
Thus $\beta=\beta_{q}=p/(q+1-p)$ and the relation
\begin{eqnarray*}
\lefteqn{-\nabla_{\sigma}.\left((\omega^{2}+\abs{\nabla_{\sigma}
\omega}^{2})^{p/2-1}\nabla_{\sigma}\omega\right)+
\varepsilon {\abs \omega}^{q-1}\omega }\\
&=&\beta_{q}((\beta_{q}+1)(p-1)+1-N)
(\omega^{2}+\abs{\nabla_{\sigma}
\omega}^{2})^{p/2-1}\omega,
\end{eqnarray*}
holds on $S^{N-1}$. This equation is not the usual Euler equation of a
functional, which makes it more difficult study. However, we give a few
results of existence and uniqueness of solutions.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section {Singular $p$-harmonic functions}
By looking for radial solutions of the $p$-Laplace equation
\begin{equation}\label{singular $p$-Laplace}
-\nabla. ({\abs{\nabla u}^{p-2}}\nabla u)=0,
\end{equation}
in $\mathbb{R}^N\setminus\{(0)\}$, we find that the only solutions are the
functions
$$u=C_{1}\mu_{p}+C_{2}
$$
where the $C_{i}$ are arbitrary constants.The first result obtained by Kichenassamy and V\'eron
in \cite{KV} pointed out that
any nonnegative singular p-hamonic functions is asymptotically radial
near its singularities. They proved the following result.
\begin{theorem}\label{singular p-hamonic}
Assume $1
0$ and $R>0$ (this follows
from Serrin's result), the scaling transformation
$$T_{r}(u)(\xi)=u(r\xi)/\mu (r)
$$
and a version of the strong maximum principle which was first noticed by
Tolksdorff \cite {To}. Actually, the positivity assumption can be
relaxed and replaced by
\begin{equation}\label{u/mu}u/\mu_{p}\in L^{\infty}(B_{R}),
\end{equation}
since Serrin's result asserts that any nonnegative singular
$p$-harmonic function does satisfy this estimate. As a consequence, existence and
uniqueness of a solution to the singular Dirichlet
problem
\begin{equation}\label{singular Dirichlet}
\begin{gathered}
-\nabla. ({\abs{\nabla u}^{p-2}}\nabla u)
=c_{N,p}{\abs\gamma^{p-2}}\gamma\delta_{0},\quad\mbox{ in }{\cal
D}'(\Omega),\\
u=g,\quad\mbox{ on }\partial\Omega,\end{gathered}
\end{equation}
can be proved.
\begin{corollary} \label{cor1}
Assume $1
1$, then for each positive
integer $k$ there exist a $\beta_{k}$
and $\omega_{k}:\mathbb{R}\mapsto\mathbb{R}$ with least period $2\pi/k$, of class
$C^\infty$ such that
\begin{equation}\label{anisotropic singular 2}
u(x)={\abs x}^{-\beta_{k}}\omega_{k} (x/{\abs x}),
\end{equation}
is $p$-harmonic in $\mathbb{R}^2\setminus\{0\}$; $\beta_{k}$ is the positive
root of
\begin{equation}\label{algebraic 2}
(\beta+1)^2=(1+1/k)^2\left(\beta^2+\beta(p-2)/(p-1)\right).
\end{equation}
The couple $(\beta_{k},\omega_{k})$ is unique, up to translation and
homothety over $\omega_{k}$.
\end{theorem}
In the case of regular $p$-harmonic functions in the plane, which means that the
exponent $\beta=-\tilde\beta$ in (\ref{anisotropic singular}) is negative,
the stationary equation becomes
\begin{equation}\label{anisotropic equation 3}
\big((\tilde\beta^2\tilde\omega^2+\tilde\omega_{\varphi}^2)^{(p-2)/2}
\tilde\omega_{\varphi}\big)_{\varphi}
+((\tilde\beta-1)(p-1)-1)
\tilde\beta(\tilde\beta^2\tilde\omega^2+\tilde\omega_{\varphi}^2)^{(p-2)/2}
\tilde\omega=0.
\end{equation}
Kroll and Mazja \cite {KM} obtained the complete set of solutions of
(\ref{anisotropic equation 3}):
\begin{theorem}\label{splitted 2}
For each positive integer $k$
there exists a couple $(\tilde\beta_{k},\tilde\omega_{k})$, unique up to
translation and homothety over $\tilde\omega_{k}$ such that
\begin{equation}\label{anisotropic singular 3}
x\mapsto u(x)={\abs x}^{\tilde\beta_{k}}\tilde\omega_{k} (x/{\abs x}),
\end{equation}
is $p$-harmonic in $\mathbb{R}^2$. The exponent $\tilde\beta_{k}$ is the root
larger than $1$ of the algebraic equation
\begin{equation}\label{algebraic 3}
(\tilde\beta-1)^2=(1-1/k)^2\left(\tilde\beta^2-\tilde\beta(p-2)/(p-1)\right).
\end{equation}
\end{theorem}
The derivation of regular or singular $p$-harmonic functions follows
in higher dimension under a splitted form. For example, if
$N=3$ with $(x_{1},x_{2},x_{3})$ the canonical coordinates in $\mathbb{R}^3$,
we put
$$ x_{1}=r\cos\varphi\sin\theta,\quad x_{2}=r\sin\varphi\sin\theta,\quad
x_{3}=r\cos\theta,
$$
where $r>0$, $\varphi\in [0,2\pi]$, $\theta\in [0,\pi]$.
Equation (\ref{anisotropic equation}) takes the form
\begin{equation}\label{anisotropic equation N=3}\begin{aligned}
-\frac{\partial}{\partial\theta}
&\left(\sin\theta\left(\beta^2\omega^2+\omega^2_{\theta}+
\sin^{-2}\theta\,\omega^2_{\varphi}\right)^{(p-2)/2}\omega_{\theta}\right)\\
-\frac{\partial}{\partial\varphi}
&\left(\sin^{-1}\theta\left(\beta^2\omega^2+\omega^2_{\theta}+
\sin^{-2}\theta\,\omega^2_{\varphi}\right)^{(p-2)/2}\omega_{\varphi}\right)\\
=&\beta(\beta(p-1)+p-3)\sin\theta\left(\beta^2\omega^2+\omega^2_{\theta}+
\sin^{-2}\theta\,\omega^2_{\varphi}\right)^{(p-2)/2}\omega.
\end{aligned}\end{equation}
We set
$$\omega (\varphi,\theta)=\sin^{-\beta}\theta \;v(\varphi)=\sin^{\tilde\beta}\theta \;v(\varphi),
$$
then $v$ satisfies (\ref{anisotropic equation 3}). Thanks to
Theorem \ref{splitted 2} the set of singular (resp. regular) $p$-harmonic
functions under the form
$$u(r,\varphi,\theta)=r^{-\beta}\sin^{-\beta}\theta \;v(\varphi),
$$
resp.
$$u(r,\varphi,\theta)=r^{\tilde\beta}\sin^{\tilde\beta}\theta \;v(\varphi),
$$
is explicitly known. Another way for constructing non-isotropic singular $p$-harmonic
functions is to use Tolksdorf's shooting method \cite {To}.
\begin{theorem} \label{N=3}Let $S\subset S^{N-1}$ be a connected and open, with a
$C^2$ relative boundary $\partial S$. Then there exist a unique
couple $(\beta,\omega)$, with $\beta>0$, $\omega\in C^1(S)$, $\omega>0$
in $S$, vanishing on $\partial S$, with maximal value $1$ such that
the function $u$ defined by (\ref{anisotropic singular}) is $p$-harmonic in $\mathbb{R}^N\setminus \{0\}$.
\end{theorem}
\paragraph{Proof} Put $K_{S}(R,R')=\{(r,\sigma):\;\sigma\in S,\;R0$ and any $R\in (1,2)$. Thus there exists $k>0$
such that
$C(R)\leq kC(2R)$
for any $R\geq 3$. Then
$$\abs{\nabla u(x)}\leq C(\abs x){\abs x}^{-1},\quad\mbox{and}\quad
\abs{\nabla u(x)-\nabla u(x') }\leq
C(\abs x){\abs x}^{-1-\alpha}{\abs {x-x'}}^{\alpha},
$$
for some $C>0$ and $1\leq \abs x\leq \abs {x'}$.
Putting
$$u_{R}(x)=u(Rx)/C(R),
$$
it follows that for any compact subset $K$ of
$\overline{K_{S}(0,\infty)}\setminus\{0\}$ there exists
$C(K)>0$ such that
$$\norm {u_{R}}_{C^{1,\alpha}(K)}\leq C(K).
$$
Thus there exist a sequence $R_{n}\to\infty$ and a $p$-harmonic function
$u^*$ in $K_{S}(0,\infty)$ such that $u_{R_{n}}\to u^*$ in the
$C^1_{\rm loc}$ topology of $\overline {K_{S}(0,\infty)}\setminus \{0\}$.
Moreover $u^*>0$, and $\nabla {u^*}\neq 0$ because of (\ref{equiv 1}).
In order to prove that there exists $\beta>0$ such that
\begin{equation}\label{equiv 2}
u^*(r,\sigma)={r}^{-\beta}u^*(1,\sigma),
\end{equation}
we define
$$\Sigma_{R}=\sup\left\{C>0: Cu^*(x)\leq u^*(Rx),\;\forall x\in\overline
{K_{S}(0,\infty)}\setminus \{0\}\right\}.
$$
Note that $\Sigma_{R}$ exists because of (\ref{equiv 1}). If we
assume now that the equality
\begin{equation}\label{equiv 3}
\Sigma_{R}u^*(x)=u^*(Rx),
\end{equation}
does not hold in $\overline {K_{S}(0,\infty)}$, then
\begin{equation}\label{equiv 4}
\Sigma_{R}u^*(x)0$. Clearly $R\mapsto \Sigma_{R}$ is $C^1$ (as $u ^*$)
and decreases. For $k\in \mathbb{N}_{*}$ there holds
$$\Sigma_{R^k}u^*(x)=u^*(R^k x)=(\Sigma_{R})^ku^*(x).
$$
Then $\Sigma_{R^k}=(\Sigma_{R})^k$. Consequently, for any
$m\in\mathbb{N}_{*}$, $\Sigma_{R^{k/m}}=(\Sigma_{R})^{k/m}$, and finally
$$\Sigma_{R^\alpha}=(\Sigma_{R})^\alpha,
$$
for any positive $\alpha$. A straightforward consequence is that
(\ref{equiv 6}) holds for some $\beta>0$. If we set
\begin{equation}\label{equiv 7}\omega (\sigma)=u^*(1,\sigma),
\end{equation}
then $\omega$ satisfies (\ref{anisotropic equation}) in $S$, where it is positive,
and vanishes on $\partial S$.
Uniqueness of the couple $(\beta,\omega)$ with $\sup_{S} \omega=1$
follows from the equivalence principle.
\paragraph{Remark} %\rem {\bf 1 }
Although the extension is far from being obvious, the regularity
requirement
on the domain $S$ can be relaxed. It is possible to replace it by the
assumption that $\partial S$ is
piecewise smooth. In dimension 3, Hopf lemma at a corner is replaced by an
expansion in terms of conical functions as in Theorem \ref{N=3}. In
higher dimension the proof goes by induction. However, uniqueness of
the couple $(\beta,\omega)$ is
not clear. From this observation,
we can construct $p$-harmonic functions in $\mathbb{R}^N\setminus \{0\}$ under
the form (\ref{anisotropic singular}) with a finite symmetry group $G$
generated by reflections through hyperplanes. Taking $S$ to be a
fundamental simplicial domain of $G$, we construct $(\beta,\omega)$
in $S$ and then extend $\omega$ to the whole sphere by reflections
through the edges.\smallskip
It is natural to imbed this
problem in a more general setting, by replacing $(S^{N-1},g_{0})$
by a compact and complete $d$-dimensional Riemannian manifold $(M,g)$. Let $\nabla_{g}.$ and
$\nabla_{g}$ be respectively the divergence operator acting on vector
fields on $M$ and the gradient operator. For $\beta\in \mathbb{R}$ consider
the equation
\begin{multline} \label{quasi spectrum}
-\nabla_{g}.\left((\beta^{2}\psi^{2}
+\abs{\nabla_{g}{ \psi}}^{2})^{(p-2)/2}\nabla_{g}{ \psi}\right)\\
=\beta((\beta+1)(p-1)-d) (\beta^{2}\psi^{2}+\abs{\nabla_{g}{\psi}}^{2})
^{(p-2)/2}\psi.
\end{multline}
\paragraph{Definition}
We denote by $\mathfrak S_{p}(M)$ the set of couples $(\beta,\psi)\in \mathbb{R}\times C^{1}(M)$
satisfying (\ref{quasi spectrum}) and call it the {\it p-quasi-spectrum} of $M$.
\begin{theorem} \label{structure}
If $(\beta,\psi)\in \mathfrak S_{p}(M)$, then either
$\beta((\beta+1)(p-1)-d)=0$ and $\psi$ is any constant, or
$\beta((\beta+1)(p-1)-d)>0$ and
\begin{equation}\label{mean=0}
\int_{M}
(\beta^{2}\psi^{2}+\abs{\nabla_{g}{\psi}}^{2})^{(p-2)/2}\psi dv_{g}=0.
\end{equation}
\end{theorem}
\paragraph{Proof} From (\ref{quasi spectrum}),
\begin{equation}\label{mean =1}
\beta((\beta+1)(p-1)-d) \int_{M}
(\beta^{2}\psi^{2}+\abs{\nabla_{g}{\psi}}^{2})^{(p-2)/2}\psi dv_{g}=0.
\end{equation}
Thus if the integral term is not zero $\beta((\beta+1)(p-1)-d)=0$.
Clearly if $\beta=0$, $\psi$ is a constant. If $\beta\neq 0$,
$(\beta+1)(p-1)=d$ and from (\ref{quasi spectrum}) there holds
$$
-\nabla_{g}.\left((\beta^{2}\psi^{2}
+\abs{\nabla_{g}{ \psi}}^{2})^{(p-2)/2}\nabla_{g}{ \psi}\right)=0,
$$
which implies
$$\int_{M}\left(\beta^{2}\psi^{2}+\abs{\nabla_{g}{\psi}}^{2}\right)^{(p-2)/2}
\abs{\nabla_{g}{\psi}}^{2}dv_{g}=0.
$$
Thus $\psi$ is constant. Moreover if $\beta((\beta+1)(p-1)-d)=0$ any constant
satisfies (\ref{quasi spectrum}). Assume now that
$\beta((\beta+1)(p-1)-d)\neq 0$. Then (\ref{mean=0}) holds. Moreover
\begin{multline}\label{consistant}
\int_{M}\left(\beta^{2}\psi^{2}+\abs{\nabla_{g}{\psi}}^{2}\right)^{(p-2)/2}
\abs{\nabla_{g}{\psi}}^{2}dv_{g}\\
=\beta((\beta+1)(p-1)-d)\int_{M}(\beta^{2}\psi^{2}
+\abs{\nabla_{g}{\psi}}^{2})^{(p-2)/2}\psi^{2}dv_{g},
\end{multline}
and the inequality $\beta((\beta+1)(p-1)-d)>0$ follows.
\paragraph{Remark} %2
It should be interesting to study the links between $\mathfrak
S_{p}(M)$ and the
geometry of $M$, in particular the infimum of the $\beta((\beta
+1)(p-1-d)$. Since we conjectured that the set of such $\beta$ is
unbounded, as on the sphere, their asymptotic distribution could be of
interest.
In the particular case where $p=d+1$, the $(d+1)$-quasi-spectrum
of $M$ is the set of couples $(\beta,\psi)$ such that $\psi$ is a solution of
\begin{equation}\label{(d+1)-quasi spectrum}
-\nabla_{g}.\left((\beta^{2}\psi^{2}
+\abs{\nabla_{g}{ \psi}}^{2})^{(d-1)/2}\nabla_{g}{ \psi}\right)
=d\beta^{2}(\beta^{2}\psi^{2}+\abs{\nabla_{g}{\psi}}^{2})^{(d-1)/2}\psi.
\end{equation}
As in the case $p=2$, it should be interesting to study the invariance
properties of $\mathfrak S_{d+1}(M)$ with respect to the conformal
transformations of $M$.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section {Equations with strong absorption}
In this section we assume $N\geq p>1$ and $q>p-1$.
If we look for solutions $u$ of (\ref{main equ epsilon}) with
$\varepsilon=1$ under the form (\ref{anisotropic singular}) then
$\beta=p/(q+1-p)=\beta_{q}$ and $\omega$ solves
\begin{equation}\label{anisotropic equation q}
-\nabla_{\sigma}.\left( (\beta_{q}^2\omega^2+{\abs
{\nabla_{\sigma}\omega}}^2)^{(p-2)/2}\nabla_{\sigma}\omega\right)
+{\abs \omega}^{q-1}\omega=\lambda_{q}(\beta_{q}^2\omega^2
+{\abs {\nabla_{\sigma}\omega}}^2)^{(p-2)/2}\omega,
\end{equation}
in $S^{N-1}$, where
\begin{equation}\label{constant q}
\lambda_{q}=\beta_{q}((\beta_{q}+1)(p-1)+1-N)=
\Big(\frac{p}{q+1-p}\Big)\Big(\frac{pq}{q+1-p}-N\Big).
\end{equation}
Since
$$\int_{S^{N-1}}\left((\beta_{q}^2\omega^2+{\abs {\nabla_{\sigma}\omega}}^2)^{(p-2)/2}
\left({\abs {\nabla_{\sigma}\omega}}^2-\lambda_{q}\omega^2\right)+
{\abs\omega}^{q+1}\right)d\sigma=0,
$$
there is no solution if $\lambda_{q}\leq 0$ or equivalently if $q\geq
N(p-1)/(N-p)$. This fact corresponds to a removability result which was
proved by Vazquez and V\'eron \cite {VV}.
\begin{theorem} \label{remov th}
Let $\Omega$ be an open subset of $\mathbb{R}^N$containing
$0$, $\Omega^*=\Omega\setminus\{0\}$, $N> p>1$,
$q\geq N(p-1)/(N-p)=p^\#$ and $g$ a
continuous real valued function satisfying
\begin{equation}\label{removability}
\liminf_{r\to\infty}r^{-p^\#}g(r)>0, \quad \mbox{and}\quad
\limsup_{r\to-\infty}{\abs r}^{-p^\#}g(r)<0.
\end{equation}
If $u\in C(\Omega^*)\cap W_{\rm loc}^{1,p}(\Omega^*)$ is a weak solution of
\begin{equation}
-\nabla.\left({\abs {\nabla u}}^{p-2}\nabla u\right)+g(u)=0, \quad
\mbox{in }\Omega^*,
\end{equation}
it can be extended to $\Omega$ as a continuous solution of the same equation in
whole $\Omega$.
\end{theorem}
On the contrary, if $p-11$,
and $p-10$ such that $
\displaystyle {\lim_{x\to 0}}u(x)/\mu_{p}(x)=\gamma$, and $u$
satisfies
\begin{equation}\label{main equ dirac}
-\nabla. ({\abs{\nabla u}^{p-2}}\nabla u)+{\abs u}^{q-1}u=
c_{N,p}{\abs\gamma^{p-2}}\gamma\delta_{0},\quad\mbox{ in }{\cal
D}'(\Omega).
\end{equation}
(iii) Or $u$ can be extended to whole $\Omega $ as a $C^1$ solution
of (\ref{main equ epsilon=1}) in $\Omega$.
\end{theorem}
\paragraph{Proof} By scaling we can always assume that $B_{1}\subset \Omega$.
The starting point is an a priori estimate of Keller-Osserman
type due to Vazquez \cite {Va}: if $u$ is any solution of (\ref{main equ
epsilon=1}) in $B_{1}^*=\{x\in\mathbb{R}^N:\,0<\abs x<1\}$, there exists a
positive constant $K=K_{N,p,q}$ such that
\begin{equation}\label{KO}
{\abs {u(x)}}\leq K{\abs x}^{-\beta_{q}},
\end{equation}
for any $0<\abs x \leq 1/2$. By writting (\ref{main equ epsilon=1})
under the form
$$-\nabla. ({\abs{\nabla u}^{p-2}}\nabla u)+d(x) u^{p-1}=0,
$$
with $d(x)= u^{q+1-p}$,
and using the Trudinger's estimate \cite {Tr} in Harnack inequality,
it follows that there exists some $A=A(N,p,q)>0$ such that
$$\max_{\abs x=r}u(x)\leq A\min_{\abs x=r}u(x),
$$
for any $00$ there exists some $n_{k}$ such that for
$n\geq n_{k}$ the function $u$ is bounded from below in
$\bar B_{1}\setminus B_{r_{n}}$ by the solution $v_{n}$ of the Dirichlet
problem
\begin{equation}\label{two points equ}
\begin{gathered}
-\nabla. ({\abs{\nabla v_{n}}^{p-2}}\nabla v_{n})+{\abs
v_{n}}^{q-1}v_{n}=0,\quad \mbox{in } B_{1}\setminus \bar B_{r_{n}},\\
v_{n}(x)=0\quad \mbox{if }\abs x=1,\\
v_{n}(x)=k\mu_{p}(r_{n})\quad \mbox{if }\abs x=r_{n}.
\end{gathered}\end{equation}
Note that $v_{n}$ is positive, radial and bounded from above by $k\mu_{p}(x)$.
Since $q0$. By using the same scaling methods,
estimates on $\nabla u$, and the strict comparison principle as in the
proof of Theorem \ref{singular p-hamonic}, it can be proved that there
exists a real number $\gamma$ such that
\begin{equation}\label{weak estimate for u}
\lim_{x\to 0}u(x)/\mu_{p}(x)=\gamma,
\end{equation}
and
\begin{equation}\label{weak estimate for Du}
\lim_{x\to 0}(\abs x)^{(N-1)/(p-1)}\nabla \left(u(x)-\gamma\mu_{p}(x)\right)
=0.
\end{equation}
Thus $u$ satisfies (\ref{main equ dirac}). If $\gamma=0$, then
$$\abs{u(x)}\leq \max_{\abs y=1}\abs {u(y)},\quad\forall x\in B_{1},
$$
by the maximum principle. Thus $u$ is $C^{1,\alpha}$ by the regularity theory of
quasilinear equations. \hfill$\square$ \smallskip
The construction of nodal singular solutions of (\ref{main equ
epsilon=1}) under the form (\ref{anisotropic singular}) is done by a shooting
technique, as for the
$p$-Laplace equation.
\begin{theorem} \label{nodal}
Let $00$ be
the exponent defined in Theorem \ref{N=3}. If
$\beta_{q}>\beta_{S}$ there exists a positive solution $\omega$ of
(\ref{anisotropic equation q}) in $S$ which vanishes on $\partial S$.
\end{theorem}
\paragraph{Proof:} {\bf Step 1} Construction of an approximate
solution. For $\varepsilon >0$ small enough denote by
$u=u_{\varepsilon}$ the unique solution of
\begin{equation}\label{approx epsilon}
\begin{gathered}
-\nabla.\left({\abs{\nabla u}}^{p-2}\nabla u\right)+
{\abs{u}}^{q-1}u=0,\quad\mbox{in }K_{S}(1,\infty),\\
u=\varepsilon g^{\beta_{q}},\quad\mbox{on }\partial K_{S}(1,\infty),\\
\limsup_{\abs x\to\infty}{\abs x}^{\beta_{q}}u(x)<\infty.
\end{gathered}
\end{equation}
By the monotone operator theory, $u$ is unique and
satisfies $0\leq u0$ small enough, the function
\begin{equation}\label{subsol}
(r,\sigma)\mapsto w_{\delta}(x)=w_{\delta}(r,\sigma) =r^{-\beta_{q}}\delta \omega^\theta_{S}(\sigma)
\end{equation}
satisfies
\begin{equation}\label{approx delta}
\begin{gathered}
-\nabla.\left({\abs{\nabla w_{\delta}}}^{p-2}\nabla w_{\delta}\right)+
{\abs{w_{\delta}}}^{q-1}w_{\delta}\leq 0,\quad\mbox{in }K_{S}(1,\infty),\\
w_{\delta}=0,\quad\mbox{on }B_{S}(1,\infty).
\end{gathered}
\end{equation}
Set
$$\mathcal L w_{\delta}=-\nabla.\left({\abs{\nabla w_{\delta}}}^{p-2}\nabla w_{\delta}\right)+
{\abs{w_{\delta}}}^{q-1}w_{\delta}.
$$
Then $\mathcal L (w_{\delta})=r^{-q\beta_{q}}\mathcal T(\delta
\omega^\theta_{S})$,
where
\[ \mathcal T(\eta)=-\nabla_{\sigma}.\left( (\beta_{q}^2\eta^2+{\abs
{\nabla_{\sigma}\eta}}^2)^{(p-2)/2}\nabla_{\sigma}\eta\right)
-\lambda_{q}(\beta_{q}^2\eta^2+{\abs {\nabla_{\sigma}\eta}}^2)^{(p-2)/2}
\eta+{\abs \eta}^{q-1}\eta.
\]
Putting $\eta=\delta \omega^\theta_{S}$,
\[
(\beta_{q}^2\eta^2+{\abs {\nabla_{\sigma}\eta}}^2)^{(p-2)/2}
=\delta^{p-2}\theta^{p-2}\omega_{S}^{(\theta-1)(p-2)}
(\beta_{S}^2\omega^2+{\abs {\nabla_{\sigma}\omega}}^2)^{(p-2)/2},
\]
and
\begin{align*}
\nabla_{\sigma}.&\big( (\beta_{q}^2\eta^2+{\abs
{\nabla_{\sigma}\eta}}^2)^{(p-2)/2}\nabla_{\sigma}\eta\big)\\
=&\delta^{p-1}\theta^{p-1}
\nabla_{\sigma}.\Big( \omega_{S}^{(\theta-1)(p-1)}
(\beta_{S}^2\omega_{S}^2+{\abs
{\nabla_{\sigma}\omega_{S}}}^2)^{(p-2)/2}\nabla_{\sigma}\omega_{S}\Big)\\
=&\delta^{p-1}\theta^{p-1}\omega_{S}^{(\theta-1)(p-1)}
\nabla_{\sigma}.\big((\beta_{S}^2\omega_{S}^2+{\abs
{\nabla_{\sigma}\omega_{S}}}^2)^{(p-2)/2}\nabla_{\sigma}\omega_{S}\big)\\
&+(\theta-1)(p-1)\delta^{p-1}\theta^{p-1}\omega_{S}^{(\theta-1)(p-1)-1}
(\beta_{S}^2\omega_{S}^2+{\abs
{\nabla_{\sigma}\omega_{S}}}^2)^{(p-2)/2}{\abs
{\nabla_{\sigma}\omega_{S}}}^2
\end{align*}
But
\[
-\nabla_{\sigma}.\left((\beta_{S}^2\omega_{S}^2+{\abs
{\nabla_{\sigma}\omega_{S}}}^2)^{(p-2)/2}\nabla_{\sigma}\omega_{S}\right)
=\lambda_{S}(\beta_{S}^2\omega_{S}^2+{\abs
{\nabla_{\sigma}\omega_{S}}}^2)^{(p-2)/2}\omega_{S},
\]
with $\lambda_{S}=(\beta_{S}+1)(p-1)+1-N)$. Thus,
\begin{eqnarray*}\delta^{1-p}\mathcal
T(\eta)&=&\delta^{q+1-p}\omega_{S}^{\theta q}+\omega_{S}^{(\theta-1)(p-1)-1}
\theta^{p-2}(\beta_{S}^2\omega_{S}^2+{\abs
{\nabla_{\sigma}\omega_{S}}}^2)^{(p-2)/2}\\
&&\times \left((\theta\lambda_{S}-\lambda_{q})\omega_{S}^{2}
-\theta(\theta-1)(p-1){\abs {\nabla_{\sigma}\omega_{S}}}^2\right).
\end{eqnarray*}
Since
$\theta\lambda_{S}-\lambda_{q}=\beta_{q}(\beta_{S}-\beta_{q})(p-1)
=-\beta^{2}_{S}\theta(\theta-1)(p-1)$,
\begin{eqnarray*}
\lefteqn{\delta^{1-p}\mathcal T(\eta)}\\
&=&\delta^{q+1-p}\omega_{S}^{\theta q}-(p-1)(\theta-1)\theta^{p-1}\omega_{S}^{(\theta-1)(p-1)-1}(\beta_{S}^2\omega_{S}^2+{\abs
{\nabla_{\sigma}\omega_{S}}}^2)^{p/2}\\
&\leq&\delta^{q+1-p}\omega_{S}^{\theta
q}-(p-1)(\theta-1)\theta^{p-1}\omega_{S}^{\theta(p-1)}.
\end{eqnarray*}
by assumption $\theta>1$, therefore there exists $\delta>0$ such
that $\mathcal T(\eta)\leq 0$. Moreover it can also be assumed that
$\delta\omega_{S}^\theta\leq \varepsilon$. Then $w_{\delta}(x)\leq
u(x)$ if $\abs x =1$ and
$ w_{\delta}\leq u$ in $K_{S}(1,\infty)$ by the maximum principle. Henceforth
\begin{equation}\label{two side estim}
\delta\omega_{S}^{\theta}(x/\abs x)\leq {\abs
x}^{\beta_{q}}u(x)\leq \gamma_{N,p,q}\quad \mbox{in }\;K_{S}(1,\infty).
\end{equation}
\noindent {\bf Step 3}
For $R>0$, define the function $u_{R}$ by
$u_{R}=R^{\beta_{q}}u(Rx)$. The function $u_{R}$ satisfies (\ref{main equ epsilon=1}) in $K_{S}(1/R,\infty)$. By the degenerate
elliptic equation regularity theory, the set of functions
$\{u_{R}\}$ remains bounded in the $C_{\rm loc}^{1,\alpha}$-topology of
$\overline{K_{S}(0,\infty)}\setminus \{0\}$.
Let $0\beta_{S}$
is sharp.
\begin{theorem} \label{no nodal}
Let $00$, it follows
from the proof of Theorem \ref{nodal}-Step 2 that, for any $\delta>0$,
\begin{eqnarray*}
\delta^{1-p}\mathcal T(\eta)&=&\delta^{q+1-p}\omega_{S}^{\theta q}\\
&&+(p-1)(1-\theta)\theta^{p-1}\omega_{S}^{(\theta-1)(p-1)-1}(\beta_{S}^2\omega_{S}^2+{\abs
{\nabla_{\sigma}\omega_{S}}}^2)^{p/2}>0.
\end{eqnarray*}
We take $\delta=\delta_{0}$ as the smallest parameter such that
$\eta=\eta_{\delta}\geq \omega$. Notice that such a choice is always possible
since $\omega\in C^{1}(\bar S)$, the normal derivative of $\omega_{S}$ on the relative boundary
$\partial S$ is negative from the Hopf boundary lemma and therefore
$\omega_{S}^\theta(\sigma)\geq c (dist(\sigma,\partial S)^\theta$ for
some $c>0$. We shall distinguish according there exists
$\sigma_{0}\in S$ such that
\begin{equation}\label{tangential}
\eta(\sigma)\geq \omega (\sigma),\;\forall \sigma\in \bar S,\quad\mbox{and}\quad
\eta(\sigma_{0})= \omega (\sigma_{0}),
\end{equation}
or not. If (\ref{tangential}) holds true, which is always the case
if $\beta_{S}>\beta_{q}$, the function $\psi=\eta-\omega$ is
nonnegative in $\bar S$, not identically $0$ and achieves its minimal
value $0$ in an interior point $\sigma_{0}$. Let $g=(g_{ij})$ be the
metric tensor on $S^{N-1}$. We write in local
coordinates $\sigma_{j}$ around $\sigma_{0}$,
\begin{gather*}
{\abs {\nabla\varphi }^{2}}=
\sum_{j,k}g^{jk}\frac {\partial \varphi}{\partial \sigma_{j}}\frac {\partial
\varphi}{\partial \sigma_{k}},
\\
\nabla.X=\frac {1}{\sqrt {\abs g}} \sum_{\ell}
\frac {\partial}{\partial \sigma_{\ell}}\left(\sqrt {\abs g}X^\ell\right)
=\frac {1}{\sqrt {\abs g}} \sum_{\ell,i}\frac {\partial}{\partial
\sigma_{\ell}}\left(\sqrt {\abs g}g^{\ell i}X_{i}\right),
\end{gather*}
if we lower the indices by setting
$\displaystyle {X^\ell=\sum_{i}g^{\ell i}X_{i}}$. From the Mean Value Theorem,
we obtain
\begin{multline*}
(\beta^{2}_{q}\eta^2+\abs
{\nabla_{\sigma}\eta}^2)^{(p-2)/2}\frac {\partial \eta}{\partial
\sigma_{i}}-
(\beta^{2}_{q}\omega^2+\abs
{\nabla_{\sigma}\omega}^2)^{(p-2)/2}\frac {\partial \omega}{\partial
\sigma_{i}}\\
=\sum_{j}\alpha^i_{j}\frac {\partial (\eta-\omega)}{\partial
\sigma_{j}}+b^i(\eta-\omega),
\end{multline*}
where
\begin{eqnarray*}b^i&=&(p-2)\left(\beta_{q}^2(\omega+t(\eta-\omega))^2+{\abs
{\nabla_{\sigma}(\omega+t(\eta-\omega))}}^2\right)^{(p-4)/2}\\
&&\times (\omega+t(\eta-\omega))\frac {\partial
(\omega+t(\eta-\omega))}{\partial\sigma_{i}},
\end{eqnarray*}
and
\begin{eqnarray*}
\alpha^i_{j}&=&(p-2)\left(\beta_{q}^2(\omega+t(\eta-\omega))^2+{\abs
{\nabla_{\sigma}(\omega+t(\eta-\omega))}}^2\right)^{(p-4)/2}\\
&&\times\frac {\partial
(\omega+t(\eta-\omega))}{\partial\sigma_{i}}\sum_{k}g^{jk}\frac {\partial
(\omega+t(\eta-\omega))}{\partial\sigma_{k}}\\
&&+\delta_{i}^j\left(\beta_{q}^2(\omega+t(\eta-\omega))^2+{\abs
{\nabla_{\sigma}(\omega+t(\eta-\omega))}}^2\right)^{(p-2)/2}.
\end{eqnarray*}
Since the graph of $\eta$ and $\omega $ are tangent at
$\sigma_{0}$,
$$\eta(\sigma_{0})=\omega(\sigma_{0})=P_{0}>0\quad \mbox{and }
\nabla{\eta(\sigma_{0})}=\nabla{\omega(\sigma_{0})=Q}.$$
Thus
$$b^i(\sigma_{0})=
(p-2)\left(\beta_{q}^2P_{0}^2+{\abs
{Q}}^2\right)^{(p-4)/2}P_{0}Q_{i},
$$
and
\begin{eqnarray*}
\alpha^i_{j}(\sigma_{0})=\big(\beta_{q}^2P_{0}^2+{\abs Q}^2\big)^{(p-4)/2}
\Big(\delta_{i}^j(\beta_{q}^2P_{0}^2+{\abs Q}^2)+(p-2) Q_{i}
\sum_{k}g^{jk}Q_{k}\Big).
\end{eqnarray*}
Now
\begin{align*}
\mathcal T&(\eta)-\mathcal T(\omega)\\
=&
\frac {-1}{\sqrt {\abs g}}\sum_{\ell,i}\frac {\partial}{\partial \sigma_{\ell}}
\Big[\sqrt {\abs g}g^{\ell i} \Big((\beta^{2}_{q}\eta^2+\abs
{\nabla_{\sigma}\eta}^2)^{\frac {p}{2}-1}\frac {\partial \eta}{\partial
\sigma_{i}}-(\beta^{2}_{q}\omega^2+\abs
{\nabla_{\sigma}\omega}^2)^{\frac {p}{2}-1}\frac {\partial \omega}{\partial
\sigma_{i}}\Big)\Big]\\
&-\lambda_{q}\left((\beta^{2}_{q}\eta^2+\abs
{\nabla_{\sigma}\eta}^2)^{\frac {p}{2}-1}\eta-(\beta^{2}_{q}\omega^2+\abs
{\nabla_{\sigma}\omega}^2)^{\frac
{p}{2}-1}\omega\right)+\eta^q-{\abs\omega}^{q-1}\omega),\\
=&-\frac {1}{\sqrt {\abs g}}\sum_{\ell,i}\frac {\partial}{\partial
\sigma_{\ell}}\Big[\sqrt {\abs g}g^{\ell i}
\Big(\sum_{j}\alpha^i_{j}\frac {\partial (\eta-\omega)}{\partial \sigma_{j}}
+b^i(\eta-\omega)\Big)\Big] \\
&+\sum_{i}C_{i}\frac {\partial (\eta-\omega)}{\partial
\sigma_{i}}+C(\eta-\omega)\\
=&-\frac {1}{\sqrt {\abs g}}\sum_{\ell,j}\frac {\partial}{\partial
\sigma_{\ell}}\left[a^\ell_{j}\frac {\partial (\eta-\omega)}{\partial \sigma_{j}}\right]
+\sum_{i}C_{i}\frac {\partial (\eta-\omega)}{\partial
\sigma_{i}}+C(\eta-\omega),
\end{align*}
where the $C_{i}$ and $C$ are continuous functions and
$$a^\ell_{j}=\sqrt{\abs g}\sum_{i}g^{\ell i}\alpha^i_{j}.
$$
The matrix $\left(\alpha^i_{j}(\sigma_{0})\right)$ is symmetric,
definite and positive since it is the Hessian of the strictly convex function
$$
X=(X_{1},\ldots,X_{n-1})\mapsto
\frac {1}{p}\left(P_{0}^{2}+{\abs X}^2\right)^{p/2}
=\frac {1}{p}\Big(P_{0}^{2}+\sum_{j,k}g^{jk}X_{j}X_{k}\Big)^{p/2}.
$$
Therefore, $\left(\alpha^i_{j}\right)$ has the same property in
some neighborhood of $\sigma_{0}$, and
the same holds true with $\left(a^\ell_{j}\right)$. Finally the
function $\psi=\eta-\omega$ is nonnegative, vanishes at $\sigma_{0}$
and satisfies
\begin{equation}\label{max princ}
-\frac {1}{\sqrt {\abs g}}\sum_{\ell,j}\frac {\partial}{\partial
\sigma_{\ell}}\big[a^\ell_{j}\frac {\partial \psi}{\partial \sigma_{j}}\big]
+\sum_{i}C_{i}\frac {\partial \psi}{\partial
\sigma_{i}}+C_{+}\psi\geq 0.
\end{equation}
Then $\psi=0$ in a neighborhood of $S$. Since $S$ is connected, $\psi$
is identically $0$, which a contradiction.
If (\ref{tangential}) does not hold, then $\theta=1$ and that the graphs of
$\eta$ and $\omega$ are tangent at some point $\sigma_{0}$ of the
relative boundary $\partial S$. Proceeding as above and using the fact
that $\partial \eta/\partial\nu$ exists and never vanishes on the
boundary, we see that $\psi=\eta-\omega$ satisfies (\ref{max
princ}) with a strongly elliptic operator in a neighborhood $\mathcal
N$ of $\sigma_{0}$. Moreover $\psi >0$ in $\mathcal N$, $\psi
(\sigma_{0})=0$ and $\partial \psi/\partial\nu(\sigma_{0})=0$. This
is a contradiction, which ends the proof.\medskip
\paragraph{Remark} %rem {\bf 3}
The existence result of Theorem \ref{nodal} is valid
if $S$ is no longer a $C^{2}$ domain but a domain with a piecewise
regular boundary since only the existence of $(\beta_{S},\omega_{S})$
is needed. We conjecture that the condition $\beta_{q}>\beta_{S}$ is
still necessary. As is section
2, we can construct nodal solutions of (\ref{anisotropic equation q}) with a finite symmetry group $G$
generated by reflections through hyperplanes. Taking $S$ to be a
fundamental simplicial domain of $G$, we construct $(\beta,\omega)$
in $S$ and then extend $\omega$ to the whole sphere by reflections
through the edges. It follows that there exists nodal singular solutions of
(\ref{main equ epsilon=1}) in $\mathbb{R}^N\setminus \{0\}$.
\smallskip
\paragraph{Remark} %\rem {\bf 4}
Under the assumptions of Theorem \ref{nodal}, we conjecture
that uniqueness of the positive solution $\omega$ of (\ref{anisotropic equation q})
which vanishes on $\partial S$ holds. If $S=S^{N-1}$ and $p-1p-1$).
In the range $1N(p-1)/(N-p)$ the constant function
$$\omega_{0}=(\beta^{p-1}_{q}(N-q\beta_{q})^{1/(q+1-p)}
$$
is a solution of (\ref{anisotropic equation q-2}), and a natural
question is to look for nonconstant solutions. As in Section 2, we imbed this
problem in the more general setting of a compact $d$-dimensional Riemannian
manifold $(M,g)$ without boundary. For $\beta$ and $\lambda \in \mathbb{R}$ consider
the equation
\begin{equation} \label {mainM}
-\nabla_{g}.\left((\beta^{2}\omega^{2}
+\abs{\nabla_{g}{ \omega}}^{2})^{(p-2)/2}\nabla_{g}{ \omega}\right)
+\lambda (\beta^{2}\omega^{2}+\abs{\nabla_{g}{ \omega}}^{2})^{(p-2)/2}
\omega=\abs \omega^{q-1}\omega .
\end{equation}
We shall assume $\lambda >0$ in order for the constant solution
$$\omega_{\ast}=(\beta^{p-2}\lambda)^{1/(q+1-p)}
$$
to exist. We assume also that the starting equation is super-quasilinear in the
sense that
$\beta>0$ and $q>q+1-p$.
We can linearize (\ref{mainM}) in a neighborhood of $\omega_{*}$,
and we obtain
\begin{gather*}
\begin{split}
\frac {d}{dt}
\nabla_{g}.\left((\beta^{2}(\omega_{*}+t\varphi)^{2}
+\abs{\nabla_{g}{ (\omega_{*}+t\varphi)}}^{2})^{(p-2)/2}
\nabla_{g}{ (\omega_{*}+t\varphi)}\right)&\Big|_{t=0}\\
&=\beta^{p-2}\omega_{*}^{p-2}\Delta_{g}\varphi.
\end{split}
\\
\frac {d}{dt}\left((\beta^{2}(\omega_{*}+t\varphi)^{2}
+\abs{\nabla_{g}{ (\omega_{*}+t\varphi)}}^{2})^{(p-2)/2} (\omega_{*}+t\varphi)
\right)\Big|_{t=0}
=(p-1)\beta^{p-2}\omega_{*}^{p-2}\varphi.
\\
\frac {d}{dt}\left(\omega_{*}+t\varphi\right)^{q}
\Big|_{t=0}=q\omega_{*}^{q-1}\varphi.
\end{gather*}
Since $\omega_{*}=(\beta^{p-2}\lambda)^{1/(q+1-p)}$, the linearized equation is
\begin{equation}-\Delta_{g}\varphi=(q+1-p)\lambda\varphi.
\end{equation}
where $\Delta_{g}=\nabla_{i}\nabla^i$ is the laplacian on $M$.
\begin{theorem} \label{bifur}
Let $\mu_{1}$ be the first nonzero eigenvalue of
$\Delta_{g}$, and assume it is simple. Then for any $\lambda>\mu_{1}/(q+1-p)$
equation (\ref{mainM}) admits a nonconstant positive solution
$\omega_{\lambda}$.
\end{theorem}
\paragraph{Proof}
The existence of a global and unbounded branch of bifurcation
$\mathcal B=\{(\lambda,\omega_{\lambda})\}\subset \mathbb R\times C^{1}(M)$
issued from
$(\mu_{1}/(q+1-p),\omega_{\ast})$
follows from the application in the space $C^{1}(M)$ of the classical bifurcation theorem
from a simple eigenvalue. \hfill$\square$
\paragraph{Remark} %rem {\bf 5 }
The condition on the simplicity of $\mu_{1}$ can be avoided in many
cases where symmetries occur. When $(M,g)=(S^{N-1},g_{0})$, we have
the parametric representation
$$S^{N-1}=\{\sigma=(\cos\varphi,\sin\varphi \sigma')\;:\;\varphi\in
[0,\pi],\,\sigma'\in S^{N-2}\},
$$
and
$$\Delta_{S^{N-1}}\omega=\sin^{2-N}\varphi \frac {\partial}{\partial \varphi}
\big(\sin^{N-2}\varphi\frac {\partial \omega}{\partial
\varphi}\big)+\sin^{-2}\varphi\Delta_{S^{N-2}}\omega.
$$
If we only consider function depending on $\varphi$ (they are called
zonal functions), $\mu_{1}=N-1$ is a simple eigenvalue. Moreover any
eigenspace of $S^{N-1}$ contains a 1-dimensional sub-eigenspace of
functions depending only on $\varphi$. Therefore all the corresponding eigenvalues
are simple. Thus from each of the couples $(\mu_{k}/(q+1-p),\omega_{*})$
is issued a $C^{1}$ curve of positive solutions
$(\lambda,\omega_{\lambda})$ with $\lambda>\mu_{k}/(q+1-p)$.
\paragraph{Open question} An interesting problem is to find sufficient
conditions besides $\lambda\leq \mu_{1}/(q+1-p)$ and probably $q\leq dp/(d-p)-1$, in
order the constant $\omega_{*}$ be the only positive solution of (\ref{mainM}).
We believe additional conditions linked to the curvature should be
found (see \cite {GS}, \cite {BVV}, \cite {LV} in the case
$p=2$).\smallskip
We define the critical Sobolev exponent $q_{c}$ by
\begin{equation}\label{crit exp}q_{c}=\frac {Np}{N-p}-1=\frac {N(p-1)+p}{N-p}.
\end{equation}
A particular case of equation (\ref{epsilon=-1}) is when $q=q_{c}$. Then
$$q_{c}+1-p=\frac {p^{2}}{N-p},\quad \beta_{q_{c}}=\frac{N-p}{p}\quad
{\rm and }
\quad \lambda_{q_{c}}=-\beta^{2}_{q_{c}}.
$$
The critical equation is therefore
\begin{equation}\label{maincrit}
\nabla_{\sigma}.\Big((\beta_{q_{c}}^{2}\omega^{2}
+\abs{\nabla_{\sigma}{ \omega}}^{2})^{p/2-1}\nabla_{\sigma}\omega\Big)+\abs
\omega^{q_{c}-1}\omega
-\beta^{2}_{q_{c}}(\beta_{q_{c}}^{2}\omega^{2}
+\abs{\nabla_{\sigma}{ \omega}}^{2})^{p/2-1}\omega= 0,
\end{equation}
on $S^{N-1}$. A natural question is to explore the connection between
the positive solutions of (\ref{maincrit}) and the positive solutions of
\begin{equation}
-\nabla.\Big({\abs{\nabla u}}^{p-2}\nabla u\Big)
v=v^{q_{c}}\quad \mbox{ in }\;\mathbb{R}^{N}\label{sobolev}.
\end{equation}
Notice that the radial solutions of this equation, depending of a parameter
$a>0$, are known:
\begin{equation}
v_{a}(x)=\Big(Na\big(\frac{N-p}{p-1}\big)^{p-1}\Big)^{(N-p)/{p^{2}}}
\left(a+{\abs x}^{p/(p-1)}\right)^{(p-N)/p}.
\label{hill}
\end{equation}
The solutions of (\ref{maincrit}) are the critical points of the
functional
\begin{equation}\label{Euler}
J_{q_{c}}(\psi)=\int_{S^{N-1}}\Big(\frac {1}{p}(\beta_{q_{c}}^{2}\psi^{2}
+\abs{\nabla_{\sigma}{ \psi}}^{2})^{p/2}-\frac {1}{q_{c}+1}{\abs
\psi}^{q_{c}+1}\Big)\,d\sigma,
\end{equation}
where $\psi\in W^{1,p}(S^{N-1})$.
\paragraph{Remark} % rem {\bf 6 }
Let $00$. If we look for particular solutions of (\ref{plaplacexp}) under the
form
$$ u(r,\sigma)=\alpha\ln r+ bw(\sigma)+k,
$$
where $\alpha$, $b$ and $k$ are constants, one finds $\alpha=-p$ and
\[
b\nabla_{\sigma}.\Big(\big[p^{2}+b^{2}
\abs{{\nabla_{\sigma}w}}^{2}\big]^{p/2-1}
\nabla_{\sigma}w\Big)+\lambda e^ke^{bw}
-p(N-p)\big[p^{2}+b^{2}\abs{{\nabla_{\sigma}w}}^{2}\big]^{p/2-1}=0
\]
on $S^{N-1}$.
A necessary condition for the existence of a solution is
\begin{equation}
p-N<0.
\label{cond}\end{equation}
Assuming this condition, we take
$b=p$ and get
$$\nabla_{\sigma}.\Big(\big[1+\abs{{\nabla_{\sigma}w}}^{2}\big]^{p/2-1}
\nabla_{\sigma}w\Big)
-(N-p)\big[1+\abs{{\nabla_{\sigma}w}}^{2}\big]^{p/2-1}
+\lambda p^{1-p}e^{k}e^{pw}=0.
$$
Now choose $k=\ln (p^{p-1} \lambda^{-1})$.
Assuming $10$ such that
$\displaystyle {\lim_{x\to 0}}u(x)/\mu_{p}(x)=\alpha$, and $u$
satisfies
\begin{equation}\label{main equ dirac 2}
-\nabla. ({\abs{\nabla u}^{p-2}}\nabla u)- u^q=
c_{N,p}\alpha^{p-1}\delta_{0},\quad\mbox{ in }{\cal D}'(\Omega).
\end{equation}
(ii) Or $u$ can be extended as a $C^{1}$ solution of (\ref{epsilon=-1}) in $\Omega$.
\end{theorem}
The general proof of this result is based upon the extension obtained in
\cite {BV} of the Brezis-Lions
lemma \cite {BL} dealing with singular super-harmonic functions.
\begin{lemma} Let $1
0$ such
that
\begin{equation}\label{inequality with delta p-3}
u(x)\leq C\mu_{p}(x),
\end{equation}
holds in a neighborhood of $0$. With this estimate, a scaling methods
similar to the one used in \cite {FV} ends the proof. Actually, in \cite
{GV}, a more general convergence result is proved: if $1
Np/(N-p)-1$ can be found in \cite {BV}. For a long time, the
non-radial case appeared out of reach up to the recent work of
Serrin and Zou \cite {SZ}. In this striking paper they proved, among other
results, that Gidas and Spruck classical a priori estimate in the
case $p=2$, $N/(N-2)\leq q1$ and $p^{\#}\leq p