\documentclass[twoside]{article} \usepackage{amsfonts, amsmath} % used for R in Real numbers \pagestyle{myheadings} \markboth{ $W^{1,p}$ estimates for quasilinear parabolic equations } {Ireneo Peral \& Fernando Soria} \begin{document} \setcounter{page}{121} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent 2001-Luminy conference on Quasilinear Elliptic and Parabolic Equations and Systems,\newline Electronic Journal of Differential Equations, Conference 08, 2002, pp 121--131. \newline http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \vspace{\bigskipamount} \\ % A note on $W^{1,p}$ estimates for quasilinear parabolic equations % \thanks{ {\em Mathematics Subject Classifications:} 35K10, 35K55, 42B25. \hfil\break\indent {\em Key words:} semilinear parabolic equations, gradient estimates, Calderon-Zygmund theory. \hfil\break\indent \copyright 2002 Southwest Texas State University. \hfil\break\indent Published October 22, 2002. \hfil\break\indent I. Peral was supported by grant BFM2001-0183 from M.C.Y.T. Spain. \hfil\break\indent F. Soria was supported by grant BFM2001-0189 from M.C.Y.T. } } \date{} \author{Ireneo Peral \& Fernando Soria} \maketitle \begin{abstract} This work deals with the study of the $W^{1,p}$ regularity for the solutions to parabolic equations in divergence form. An argument by perturbation based in real analysis is used. \end{abstract} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}{Lemma} \numberwithin{equation}{section} \newtheorem{Theorem}{Theorem}[section] \newtheorem{Definition}[Theorem]{Definition} \newtheorem{Lemma}[Theorem]{Lemma} \newtheorem{Corollary}[Theorem]{Corollary} \newtheorem{Example}[Theorem]{Example} \section{Introduction}\label{sec:s1} In this paper we study interior $W^{1,p}$ estimates for solutions to quasilinear parabolic equations in divergence form, namely, solutions to the equation \begin{equation}\label{eq:madre} u_t-\mathop{\rm div} a(x,t,\nabla u)=0,\quad x\in\Omega,\quad t>0, \end{equation} where $a:\Omega\times(0,\infty) \times {\mathbb R}^N \rightarrow \mathbb R^N$. We assume that $a(x,t,\xi)$ is a Caratheodory function (in the sense that it is measurable in $(x,t)$ and continuous with respect to $\xi$ for each $x$) and that satisfies the following conditions: \begin{description} \item{(a1)} $a(x,t, 0)=0$ \item{(a2)} $\langle a(x,t,\xi)-a(x,t,\eta),(\xi-\eta)\rangle\geq \gamma|\xi|^2$. \item{(a3)} $|a(x,t,\eta)|\leq \Gamma|\eta| $, \end{description} where $\gamma$ and $\Gamma$ are positive constants. We will work under the following hypotheses. \noindent\textbf{(H1)} (\textit{Reference operator.}) For fixed $a_0$ satisfying (a1)--(a3), we consider the corresponding parabolic equation \begin{equation}\label{eq:ref} w_t-\mathop{\rm div}(a_0(\nabla w))=0 \end{equation} If $u$ is a weak solution to \eqref{eq:ref} (see Definition 3.2 below) then there exists $\gamma>0$ such that \begin{equation}\label{eq:regref} \sup_{R'}|\nabla_x u(x,t)|^2\leq \gamma \frac 1{|R|}\int_R |\nabla_x u(x,t)|^2dx\,dt, \end{equation} for all {\it parabolic rectangles} $$ R=\big \{(x,t):|x_i-x_i^0|<\rho,\;i=1,\dots N,\;t_0-\rho^22$ there exists $\epsilon_0>0$ such that if for some $0<\epsilon <\epsilon_0$ (H2) holds, then any weak solution to $$ u_t-\mathop{\rm div} (a(x,t,\nabla_x u))=0, $$ satisfies that $|\nabla_xu|\in L^q_{\rm loc}$, $20\,\}$ and $Q_0^-=Q_0\cap \{\,t<0\,\}$. A parabolic rectangle $R$ is then the image of $Q_0$ through any transformation in $\mathbb R^{N+1}$ of the form $$ \phi_\alpha (x,t)=(x_0+\alpha x,t_0+\alpha^2t),\quad \alpha>0,\quad (x_0,t_0)\in\mathbb R^{N+1}. $$ Let us consider the following dyadic subdivision: Given a parabolic rectangle $R$ \begin{description} \item{$i)$} Divide into $2$ equal parts each spatial side. \item{$ii)$} Divide into $2^2$ equal parts the temporal side. \end{description} \noindent We call this procedure a {\it parabolic subdivision}. It is obvious that with this procedure we obtain $2^{N+2}$ new parabolic subrectangles. Associated to this subdivision we have the corresponding Calder\'on-Zygmund decomposition as in the previous section. Before we continue, some notation is in order. Given a parabolic rectangle $$ R=\{(x,t): |x_i-x_i^0|<\rho,\,i=1,\dots N,\, t_0-\rho^21$ so that for $0<\delta<1$ fixed, one can find $\epsilon_0=\epsilon_0(\delta) >0$ such that if $(H2)$ holds with $\epsilon<\epsilon_0$, for all parabolic rectangle $R_k$ in the Calder\'on-Zygmund $\delta$-covering of $$\{ (x,t) \in \mathbb R^{N+1}: M(|\nabla_x u|^2)(x,t)> C\mu\}, $$ then its predecessor satisfies $$ {\bar R_k}\subset\{ (x,t): M(|\nabla_x u|^2)(x,t)> \mu\}. $$ In particular, we have $$ |\{ (x,t) \in \mathbb R^{N+1}: M(|\nabla_x u|^2)(x,t)> C\mu\}| \le |\{ (x,t): M(|\nabla_x u|^2)(x,t)> \mu\}|. $$ \end{Lemma} \paragraph{Proof.} The proof is similar to Lemma 3 in \cite{CP} and we sketch it here for the sake of completeness. Since we look for a local result, we can assume that a parabolic dilation of $R_k$ is contained in $Q_0$, to be more precise, let us assume, say, that $Q=\phi_4(R_k)\subset Q_0$. We argue by contradiction. If $R_k$ satisfies the hypothesis, namely, $$|R_k\cap\{ x: M(|\nabla_x u|^2)> C\mu\}|> \delta|R_k| $$ and ${\bar R_k}$ does not satisfy the conclusion, there exists $(x_0,t_0)\in {\bar R_k}$ for which, $$ \frac{1}{|R|}\int_R |\nabla_x u|^2dx\,dt\le \mu,\hbox{ for all parabolic rectangles }\, R \, \text{with} \, (x_0,t_0)\in R. $$ We solve the problem \begin{gather*} v_t-\mathop{\rm div}{}_x(a_0(\nabla v))=0, \quad (x,t)\in Q_0\\ v\big|_{\partial_p Q_0}=u. \end{gather*} Then, according to Lemma \ref{lema35} we get: \begin{enumerate} \item $\frac{1}{|Q|}\int_Q |\nabla_x v|^2dx\,dt\le (1+\epsilon)^2\mu$ \item $\frac{1}{|Q|}\int_Q |\nabla_x (u-v)|^2dx\,dt\le \epsilon^2\mu$ \end{enumerate} Then the restricted maximal operator, $$M^*(|\nabla_x u|^2)(x,t)=\sup\limits_{x\in R,\,R\subset \phi_2(R_k)} \frac{1}{|R|}\int_R |\nabla_x u|^2dyds, $$ satisfies $$ M(|\nabla_x u|^2)(x,t)\le \max\{ M^*(|\nabla_x u|^2)(x,t), 4^{N+2}\mu\}. $$ Consider $C=\max\{4^{N+2}, 4(1+\epsilon)^2\}$. Then \begin{eqnarray*} \lefteqn{|\{(x,t)\in R_k : M(|\nabla_x u|^2)> C\mu\}|}\\ &\le& |\{(x,t)\in R_k : M^*(|\nabla_x u|^2)> C\frac{\mu}{2}\}|\\ &&+|\{(x,t)\in R_k : M^*(|\nabla_x (u-v)|^2)> C\frac{\mu}{2}\}|\\ &\le&|\{(x,t)\in R_k : M^*(|\nabla_x (u-v)|^2)> C\frac{\mu}{2}\}|. \end{eqnarray*} By the (1,1) weak type estimate for the maximal operator we conclude \begin{eqnarray*} |\{x\in R_k : M(|\nabla_x u|^2)> C\mu\}| &\le& |\{x\in R_k : M^*(|\nabla_x (u-v)|^2)> C\frac{\mu}{2}\}|\\ &\le& A\frac{2}{C\mu}\int_{R_k}|\nabla_x (u-v)|^2dx\,dt\\ &\le& A\frac{2}{C\mu}\epsilon^2|R_k|. \end{eqnarray*} Taking $\epsilon>0$ so that $A\frac{2}{C\mu}\epsilon^2< \delta$ we reach a contradiction. \hfill$\square$ \section{Proof of the main result}\label{s5} As a consequence of the approximation Lemma \ref{lema35} and the behavior of the level sets of the maximal operator described in Lemma \ref{lema36} we can formulate the following regularity result. \begin{Theorem}\label{th37} Assume that (H1) holds. Given $p>2$ there exists $\epsilon_0>0$ such that if for some $0<\epsilon <\epsilon_0$, (H2) holds, then any weak solution to $$u_t-\mathop{\rm div} (A(x,t)\nabla_x u)=0, $$ satisfies that $|\nabla_x u|\in L^q_{\rm loc}$, $20$, call $\omega(s)=|\{ (x,t): M(|\nabla_x u|^2(x,t)>s\}|$, the distribution function of the maximal operator. Take $\delta\in(0,1)$ in such a way that $C^{q/2}\delta<1$, where $C$ is as in Lemma 3.4. Now, there exists $\epsilon_0$, such that if $0<\epsilon<\epsilon_0$ and (H2) holds, then Lemmas 3.4 and 2.3 imply $$ \omega (C\mu_0)\le \delta \omega(\mu_0). $$ Hence by recurrence \begin{equation} \omega (C^k\mu_0)\le \delta^k \omega(\mu_0). \end{equation} Now $|\nabla_x u|^q\in L^1$ if, in particular, $ M(|\nabla_x u|^2)\in L^{q/2}$, and this is equivalent to the convergence of the series $$ \sum_{k=1}^\infty C^{k(q/2)}\omega(C^k\mu_0). $$ But, $C^{q/2}\delta<1$ and from estimate (7) we obtain $$ \sum_{k=1}^\infty C^{k(q/2)}\omega(C^k\mu_0)\le \sum_{k=1}^\infty (C^{q/2}\delta)^k\omega(\mu_0) <\infty $$ \;\hfill$\square$ \begin{Corollary} Assume $A(x,t)$ a $N\times N$ matrix which is continuous in $\Omega$ and such that $$ \langle A(x,t)\xi,\xi\rangle\ge \gamma |\xi|^2. $$ Then if $u$ is a weak solution to $$ u_t-\mathop{\rm div}{}_x(A(x,t)\nabla_x u)=0, $$ we have $u\in W^{1,p}_{\rm loc}$ for all $1