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Some Liouville theorems for the p-Laplacian ∗

Isabeau Birindelli & Françoise Demengel

Abstract

In this paper we propose a new proof for non-linear Liouville type
results concerning the p-Laplacian. Our method differs from the one used
by Mitidieri and Pohozaev because it uses a comparison principle that can
be applied to nondivergence form operators.

1 Introduction

In 1981 Gidas and Spruck proved in their famous work [14] that for 1 < p < N+2
N−2

there are no solutions to

∆u+ up = 0, u > 0 in RN .

The proof is very difficult but a simpler proof was given by Chen and Li using
the moving plane method [7].

Similarly, non-existence results hold for the inequality

∆u+ up ≤ 0, u > 0 in Σ

where Σ is a cone in RN (see Berestycki, Capuzzo Dolcetta, Nirenberg [3]). The
values of p for which there is no positive solution depend on the cone Σ. For
example for Σ = RN , p ∈ (0, N

N−2 ).
The generalization of this result to the p-Laplacian (∆p = div(|∇.|p−2∇)) is

very recent. Mitidieri and Pohozaev proved among other things the following
result.

Theorem 1.1 1) Suppose that N > p > 1, and u ∈ W 1,p
loc (RN ) ∩ C(RN ) is a

nonnegative weak solution of

−div(|∇u|p−2∇u) ≥ h(x)uq in RN (1.1)

with h satisfying

h(x) = a|x|γ for |x| large, a > 0 and γ > −p. (1.2)
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Suppose that

p− 1 < q ≤ (N + γ)(p− 1)
N − p

.

Then u ≡ 0.
2) Let N ≤ p. If u ∈W 1,p

loc (RN ) ∩ C(RN ) is a weak solution of

−div(|∇u|p−2∇u) ≥ 0 in RN

and u is bounded below then u is constant.

In this paper we present a new simple proof of Theorem 1.1. The proof of
Mitidieri and Pohozaev relies on variational methods and the use of global test
function. On the other hand here we use the notion of viscosity solutions and
therefore use local test functions.

This kind of technique should allow us to extend Theorem 1.1 to a large
class of non divergence operators. An example of such operators is given by:

Lu = |∇u|α
(
Tr(A(x)D2u) + kD2u :

∇u
|∇u|

⊗ ∇u
|∇u|

)
where α ∈ R, and A(x) is a symmetric matrix with

λ|ξ|2 ≤ Aξ · ξ ≤ Λ|ξ|2

and k ∈ R satisfies λ+ k > 0.
More generally this kind of proof can be used for fully nonlinear equations:

Suppose that we consider F (x,∇u,D2u) where for example F (x, ξ,M) satisfies
for some λ > 0

|ξ|αλTrN ≤ F (x, ξ,M +N)− F (x, ξ,M) ≤ |ξ|αΛTrN,
F (x, ξ, 0) = 0

for any symmetric and positive matrix N .
Cutr̀i and Leoni [8] have used similar arguments to study Liouville theorems

for fully non-linear operators F (x,D2u) which satisfy the above inequality for
α = 0.

We would like to remark that the first result of Theorem 1.1 is optimal in
the sense that for any q > (N + γ)(p− 1)/(N − p) we construct a nonnegative
solution of (1.1). A similar example was given in [5] when p = 2.

Let us also remark that the condition on γ in (1.2) is optimal. Indeed, for
γ < −p, Drábek in [10] has proved the existence of non trivial weak solutions
in RN (see e.g. Theorem 4.1 of [11]).

When treating the equation instead of the inequality, the values of q for which
non existence results hold true are not the same. Precisely for the following
equation

−∆pu = rγuq, u ≥ 0 in RN , (1.3)
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Serrin and Zou have proved in [20] that for p − 1 < q < (N+γ)(p−1)+p+γ
N−p and

γ ≥ 0 any non negative solution of (1.3) is identically zero.
Let us recall that Gidas and Spruck have used Liouville theorem (for p = 2)

to obtain a priori estimates for solutions of the following problem:

Lu+ f(x, u) = 0 in Ω
u = φ on ∂Ω

(1.4)

where L is a second order uniformly elliptic operator and f satisfies some growth
conditions. This is done through a blow up argument (see also [3]).

Analogously, Theorem 1.1 constitutes the first step to obtain a priori esti-
mates for reaction diffusion equations involving p-Laplacian type operators in
bounded domains. In the case of systems this was done by C. Azizieh and Ph.
Clement in [1], it would be interesting to do it for general non divergence form
operators.

2 The inequation

When N > p our main non-existence result in this section is the following

Theorem 2.1 Suppose that N > p > 1. Let u ∈ W 1,p
loc (RN ) ∩ C(RN ) be a

nonnegative weak solution of

−∆pu ≥ h(x)uq in RN , (2.1)

with h satisfying (1.2). If 0 < q ≤ (N+γ)(p−1)
N−p , then u ≡ 0.

The proof is inspired by the one given in [8], where the authors treat fully
nonlinear strictly elliptic equations. Let us start by one remark and two propo-
sitions.

Remark 2.2 The following comparison result holds true: Let u and φ satisfy
u, φ ∈W 1,p(Ω)

−∆pu ≥ −∆pφ in Ω
u ≥ φ on ∂Ω .

Then u ≥ φ in Ω. This is a standard result and it is easy to see for example by
multiplying −∆pu+ ∆pφ by (φ− u)+.

Proposition 2.3 Let Ω be an open set in RN , and let f ∈ C(Ω). Suppose that
u ∈ W 1,p

loc (Ω) ∩ C(Ω) is a weak solution of −∆pu ≥ f in Ω. If x0 ∈ Ω and
ϕ ∈ C2(Ω) ∩ C(Ω) are such that

∇ϕ(x0) 6= 0, u(x0)− ϕ(x0) = inf
y∈Ω

u(y)− ϕ(y) ,

then −∆pϕ(x0) ≥ f(x0).

This proof is inspired by Juutinen [18].
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Proof. Without loss of generality we can suppose that u(x0) = ϕ(x0). Let
us note first that it is sufficient to prove that the property holds for every ϕ
such that ϕ(y) < u(y) for all y 6= x0 in a sufficiently small neighborhood of
x0. Indeed, suppose that the property holds for such functions then taking
ϕε(y) = ϕ(y) − ε|y − x0|4 and letting ε go to zero, one obtains the result for
every ϕ.

Suppose by contradiction that there exists some x0 ∈ Ω and some C2 function
ϕ such that ∇ϕ(x0) 6= 0, ϕ(x0) = u(x0) and ϕ(y) < u(y) on some ball B(x0, r)\
{x0} and −∆pϕ(x0) < f(x0). By continuity, one can choose r sufficiently small
such that ∇ϕ(y) 6= 0 , as well as

−∆pϕ(y) < f(y),

for all y ∈ B(x0, r). Let m = inf |x−x0|=r{(u(x)− ϕ(x)) > 0}, and define

ϕ̄ = ϕ+
m

2
.

One has −∆pϕ̄ < f in B(x0, r) and ϕ̄ ≤ u on ∂B(x0, r). Using the comparison
principle one gets that ϕ̄ ≤ u in the ball which contradicts ϕ̄(x0) = ϕ(x0)+ m

2 >
u(x0). This ends the proof of Proposition 2.3. �

Finally let us recall that if v is radial i.e. v(x) = V (|x|) ≡ V (r) for some
function V in C2, then if x is such that V ′(|x|) 6= 0,

∆pv(x) = |V ′(r)|p−2
(
(p− 1)V ′′(r) +

N − 1
r

V ′(r)
)
.

Hence for any constants C1 and C2 if N 6= p and for λ = p−N
p−1 the function

φ(x) = C2|x|λ + C1 satisfies ∆pφ = 0 for x 6= 0.
Before giving the proof of Theorem 2.1 let us define m(r) = infx∈Br u(x)

and prove the following Hadamard type inequality

Proposition 2.4 Let N 6= p. Suppose that −∆pu ≥ 0 and u ≥ 0. Let λ = p−N
p−1 .

For any 0 < r1 < r < r2:

m(r) ≥ m(r1)(rλ − rλ
2 ) +m(r2)(rλ

1 − rλ)
rλ
1 − rλ

2

. (2.2)

Let N = p. Then

m(r) ≥
m(r1) log( r

r2
) +m(r2) log( r1

r )
log( r1

r2
)

. (2.3)

Proof: Let N 6= p. Let 0 < r1 < r2. Let us consider φ(r) = C2r
λ + C1 with

C2 and C1 such that φ(r1) = m(r1) and φ(r2) = m(r2). It is easy to see that

φ(r) =
m(r2)(rλ − rλ

1 ) +m(r1)(rλ
2 − rλ)

rλ
2 − rλ

1

.
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Obviously φ > 0 and for i = 1 and i = 2, u(x) ≥ m(ri) = φ(ri) for x ∈ ∂Bri
,

hence u and φ satisfy the conditions of Remark 2.2. and u(x) ≥ φ(|x|) in
Br2\Br1 . Taking the infimum we obtain that inf |x|=r u(x) ≥ φ(r) for r ∈ [r1, r2].
By the minimum principle m(r) = inf |x|=r u(x). This completes the proof of
the first part of proposition 2.4.

For N = p consider

ψ(r) =
m(r1) log( r

r2
) +m(r2) log( r1

r )
log( r1

r2
)

.

Remark that ∆Nψ = 0 and ψ(r1) = m(r1) and ψ(r2) = m(r2). Now proceed as
above.

Remark 2.5 Clearly if λ < 0 i.e. p < N , then g(r) := m(r)r−λ is an increasing
function. Just observe that rλ

1 − rλ ≥ 0 and let r2 tend to +∞ in (2.2) and one
obtains for r ≥ r1:

m(r) ≥ m(r1)rλ

rλ
1

.

Proof of Theorem 2.1. We suppose by contradiction that u 6≡ 0 in Rn, but
since u ≥ 0 by the strict maximum principle of Vasquez [22] we get that u > 0.

Let 0 < r1 < R, define g(r) = m(r1)
{

1− [(r−r1)
+]k+1

(R−r1)k+1

}
with k such that

k ≥ 3 and
1
k
< p− 1.

Let ζ(x) = g(|x|). Clearly for |x| < r1, u(x) > m(r1) = ζ(x) while for |x| ≥ R,
ζ(x) ≤ 0 < u(x). On the other hand there exists x̃ such that |x̃| = r1 and
u(x̃) = ζ(x̃). Hence the minimum of u(x) − ζ(x) occurs for some x̄ such that
|x̄| = r̄ with r1 ≤ r̄ < R.

Let |x| = r, it is an easy computation to see that for r ≥ r1

−∆pζ(x) (2.4)

=
( (k + 1)m(r1)

(R− r1)k+1

)(p−1)[
2(p− 1) + (N − 1)

(r − r1)+

r

]
((r − r1)+)kp−(k+1).

Clearly with our choice of k, kp−(k+1) > 0 and hence, for |x| = r1, −∆pζ(x) =
0 while, of course, ∇ζ(x) = 0.

Now we have two cases: First case r̄ = r1. This implies

u(x̄)−m(r1) = u(x̄)− ζ(x̄) ≤ u(x)− ζ(x)

for all x. In particular choosing x = x̃, one gets

u(x̄)−m(r1) ≤ u(x̃)− ζ(x̃) = 0.

Finally u(x̄) = m(r1) and x̄ is a minimum for u on B(0, r1). Since −∆pu ≥ 0,
Hopf’s principle as stated in Vasquez [22] implies that ∇u(x̄) 6= 0. On the other
hand ∇u(x̄) = ∇ζ(x̄) = 0, a contradiction.
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Second case: r1 < r̄ < R. Now ∇ζ(x̄) 6= 0, and using Proposition 2.3 one has

h(x̄)uq(x̄) ≤ −∆pζ(x̄).

We choose r1 and R sufficiently large in order that h(x) = a|x|γ for |x| ≥
min(r1, R/2). Combining this with (2.4), we obtain

ar̄γm(r̄)q ≤ ar̄γuq(x̄) ≤ (k + 1)(p−1)(N + 2p− 3)m(r1)(p−1)(R− r1)−p.

Since m is decreasing we have obtained for some constant C > 0

m(R) ≤ Cm(r1)
(p−1)

q r̄
−γ
q (R− r1)

−p
q .

Now we choose r1 = R
2 , we use Remark 2.5 and the previous inequality becomes

m(R) ≤ Cm(R)
(p−1)

q R
−p−γ

q . (2.5)

First we will suppose that q ≤ p − 1; hence, using the monotonicity of m(R),
the above inequality becomes

R
p+γ

q ≤ Cm(R)
(p−1)

q −1 ≤ Cu(0)
(p−1)

q −1.

But this is absurd since the left hand side tends to infinity when R does. This
conclude the proof of this case.

Now suppose that q > p− 1, then (2.5) becomes

m(R)R−λ ≤ CR−λ− p+γ
q−p+1 . (2.6)

Clearly −λ− p+γ
q−p+1 = N−p

p−1 − p+γ
q−p+1 ≤ 0 when q ≤ (N+γ)(p−1)

N−p .
If q < (N + γ)(p − 1)/(N − p) we have reached a contradiction since the

right hand side of (2.6) tends to zero for R → +∞ while the left hand side is
an increasing positive function as seen in Remark 2.5.

We now treat the case q = (N + γ)(p− 1)/(N − p). Let us remark that for
this choice of q we have that for some C1 > 0, c > 0 and r > r1 > 0, with r1
large enough:

−∆pu ≥ arγuq ≥ C1r
−N since m(r) ≥ cr

p−N
p−1 . (2.7)

We choose ψ(x) = g(|x|) with

g(r) = γ1r
p−N
p−1 logβ r + γ2

where γ1 and γ2 are two positive constants such that for some r1 > 1 and some
r2 > r1:

m(r2) = g(r2), m(r1) ≥ g(r1),

while β is a positive constant to be chosen later. It is easy to see that

∆pψ = |γ1|p−1r−N
∣∣p−N

p− 1
logβ r + β logβ−1 r

∣∣p−2

×
[
(p− 1)β(β − 1) logβ−2 r − β(3N − 2p− 2) logβ−1 r

]
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Suppose now that p > 2, and choose 0 < β < 1
p−1 < 1, then there exists C > 0

such that

∆pψ ≥ −|γ1|p−1Cr−N (log r)β(p−1)−1 ≥ −|γ1|p−1Cr−N (log r1)β(p−1)−1.

On the other hand for p ≤ 2 we can choose β = 1 and a calculation similar to
the one above implies that

∆pψ ≥ −c|γ1|p−1r−N (log r1)
p−2

.

In both cases we can choose γ1 small enough to get

∆pψ ≥ −C1r
−N ≥ ∆pu.

Since u ≥ ψ on the boundary of Br2 \ Br1 , one obtains by the comparison
principle (Remark 2.2) that u ≥ ψ everywhere in Br2 \ Br1 . When r2 goes to
infinity it is easy to see that γ2 → 0, and we obtain

u(x) ≥ c|x|
p−N
p−1 logβ |x|,

for |x| ≥ r1. This implies that

m(r) ≥ cr
p−N
p−1 log r

for r > r1. We have reached a contradiction since

m(r) ≤ Cr
p−N
p−1 .

Hence u ≡ 0. This concludes the proof of Theorem 2.1. �
We treat now the case N ≤ p where the result is much stronger.

Theorem 2.6 Let N ≤ p. If u ∈W 1,p
loc (RN )∩C(RN ) is bounded below and is a

weak solution of
−∆pu ≥ 0 in RN ,

then u is constant.

Remark 2.7 For N ≤ p, for any q > 0 and for any nonnegative h, if u ∈
W 1,p

loc (RN ) ∩ C(RN ) is a weak solution of

−∆pu ≥ h(x)uq in RN

then u ≡ 0.

Proof of Theorem 2.6. Without loss of generality we can suppose that u ≥ 0.
First we will consider N < p. Let m(r) = infx∈Br(0) u(x). From Proposition 2.4
we know that for 0 < r1 < r < r2

m(r) ≥ m(r1)(rλ
2 − rλ) +m(r2)(rλ − rλ

1 )
rλ
2 − rλ

1 ,
(2.8)
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where λ = p−N
p−1 > 0. When we let r2 → +∞ inequality (2.8) becomes

m(r) ≥ m(r1). (2.9)

But of course m(r) is decreasing hence (2.9) implies that m(r) is constant i.e.
m(r) = m(0) = u(0) for any r > 0. Clearly this can be repeated with balls
centered in any point of RN . Hence u is constant.

For the case N = p just use inequality (2.3) in Proposition 2.4 and proceed
as above. This concludes the proof of Theorem 2.6.

Counterexample

We are going to show that for N > p, γ ≥ 0 and q > (N + γ)(p − 1)/(N − p)
there exists a non-negative function u such that

−∆pu ≥ rγuq in RN

hence proving that (N + γ)(p− 1)/(N − p) is an optimal upper bound for q in
Theorem 2.1.

Indeed consider g(r) = C(1 + r)−α with α and C two positive constants to
be determined. Clearly Γ(x) = g(|x|) satisfies

−∆pΓ = Cp−1αp−1(1 + r)−(α+1)(p−2)[−(α+ 1)(p− 1)(1 + r)−(α+2) +

+
(N − 1)

r
(1 + r)−(α+1)]

≥ Cp−1αp−1(1 + r)−α(p−1)−p[N − 1− (α+ 1)(p− 1)]

with r = |x|.
Now let ε > 0 such that q = (N + γ − ε)(p − 1)/(N − p − ε) and let α =

(N − p − ε)/(p − 1). Clearly we have α(p − 1) + p + γ = N + γ − ε = αq.
Furthermore N −1− (α+1)(p−1) = N −p−α(p−1) = ε > 0. Hence choosing
C such that Cp−1αp−1(ε) = Cq we obtain that Γ(x) satisfies

−∆pΓ ≥ Cq(1 + r)γ(1 + r)−α(p−1)−p−γ ≥ rγΓq in RN .

3 The equation

In this section we are interested in studying non-existence results concerning
the equation. Clearly in view of Theorem 2.6, we are only interested in the case
N > p.

Theorem 3.1 Suppose that u ∈W 1,p
loc (RN ) is nonnegative and satisfies

−∆pu = rγuq, (3.1)

for some γ ≥ 0. If

p− 1 < q <
(N + γ)(p− 1) + p+ γ

N − p

and u is radial then u ≡ 0.
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Remark 3.2 One can get the same result for −∆pu = Crγuq by considering u
multiplied by some convenient constant.

The proof given here is similar to the one given by Caffarelli, Gidas and
Spruck in [6].

Proof. It is sufficient to consider the case q ≥ (N + γ)(p− 1)/(N − p), since
the other cases are proved in Theorem 2.1.

If u is a radial solution and satisfies (3.1) in a weak sense, then it is not
difficult to see that it satisfies in the weak sense

−(rN−1|u′|p−2u′)′ = rN−1+γuq

Integrating between 0 and r, one has

rN−1|u′|p−2u′ = −
∫ r

0

sN−1+γuq(s)ds.

Since u′ < 0, u is decreasing and then,

rN−1|u′|p−2u′ ≤ −u(r)q r
N+γ

N + γ
.

Hence
u′u

−q
p−1 ≤ −cr

1+γ
p−1

and integrating one gets
u(r) ≤ Cr

γ+p
p−1−q .

Coming back to the equation one obtains

rN−1|u′|p−1 =
∫ r

0

sN−1+γuq(s)ds ≤ C

∫ r

0

sN−1+γs
(γ+p)q

(p−1−q) ds.

Clearly N + γ + (γ+p)q
p−1−q ≥ 0 when q ≥ (N+γ)(p−1)

N−p and therefore

|u′(r)|p−1 ≤ Crγ+
(γ+p)q
p−1−q +1

and then
|u′| ≤ Cr

(γ+q+1)
p−1−q .

In order to conclude, we need to use Pohozaiev identity:

(N − p)
∫

B

|∇u|p + p

∫
∂B

σ.n(∇u.x) = p

∫
B

∆pu(∇u.x) +
∫

∂B

|∇u|p(x.~n)

here σ = |∇u|p−2∇u and B = B(0, R). From the equation we know that∫
B

|∇u|p −
∫

∂B

(σ.~n)u =
∫

B

rγuq+1
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and then

(N − p)
( ∫

B

rγuq+1 +
∫

∂B

σ.~nu
)

+ p

∫
∂B

(σ.~n)(∇u.x)

= −p
∫

B

rγuq(∇u.x) +
∫

∂B

|∇u|px.~n. (3.2)

Using the fact that u is radial, for ωn = |B1| one gets

1
ωn

∫
BR

rγuq∇u.xdx =
∫ R

0

rγ+Nuq(r)u′(r)dr

=
∫ R

0

rγ+N (
uq+1(r)
q + 1

)′dr

= −γ +N

q + 1

∫ R

0

rγ+N−1uq+1 +
1

q + 1
Rγ+Nuq+1(R).

We have finally obtained

(
N − p− (γ +N)p

q + 1
) ∫ R

0

rγ+N−1uq+1dr

= (N − p)|u′|(R)p−1u(R)RN−1 + (1− p)|u′(R)|pRN − p

q + 1
Rγ+Nu(R)q+1.

Let us note that since q < (N+γ)(p)+p−N
N−p , one has

(γ +N)p
q + 1

+ p−N > 0.

Moreover the estimates on u and u′ imply that the terms |u′|p−1u(R)RN−1,
|u′|p(R)RN and Rγ+Nuq+1(R) behave respectively as RN−1+ γ+p

p−1−q +
(γ+q+1)(p−1)

p−1−q ,
Rγ+N+ γ+p

p−1−q (q+1) and RN−p( γ+q+1
q−p+1 ). All the exponents are negative, and then∫ R

0
rγ+N−1uq+1dr → 0 when R→ +∞, hence u ≡ 0. This concludes the proof.

�
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