\documentclass[twoside]{article} \usepackage{amssymb, amsmath} \pagestyle{myheadings} \setcounter{page}{47} \markboth{\hfil A priori estimate for multi-point boundary-value problems\hfil}% {\hfil Chaitan P. Gupta \hfil} \begin{document} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent {\sc 16th Conference on Applied Mathematics, Univ. of Central Oklahoma}, \newline Electronic Journal of Differential Equations, Conf. 07, 2001, pp. 47--59. \newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \vspace{\bigskipamount} \\ % A new a priori estimate for multi-point boundary-value problems % \thanks{ {\em Mathematics Subject Classifications:} 34B10, 34B15, 34G20. \hfil\break\indent {\em Key words:} Three-point boundary-value problem, $m$-point boundary-value problem, \hfil\break\indent a-priori estimates, Leray-Schauder Continuation theorem, Caratheodory's conditions. \hfil\break\indent \copyright 2001 Southwest Texas State University. \hfil\break\indent Published July 20, 2001.} } \date{} \author{ Chaitan P. Gupta } \maketitle \begin{abstract} Let $f:[0,1]\times \mathbb{R}^2\to \mathbb{R}$ be a function satisfying Caratheodory's conditions and $e(t)\in L^{1}[0,1]$. Let $0<\xi _1<\xi_2<\dots <\xi_{m-2}<1$ and $a_i\in \mathbb{R}$ for $i=1,2,\dots ,m-2$ be given. A priori estimates of the form $$ \|x\|_{\infty }\leq C\| x''\|_1, \quad \|x'\|_{\infty }\leq C\|x''\|_1, $$ are needed to obtain the existence of a solution for the multi-point bound\-ary-value problem \begin{gather*} x''(t)=f(t,x(t),x'(t))+e(t),\quad 00$, by replacing $x(t)$ by $-x(t)$, if necessary. Next, since $x(0)=0$, we see that $c\in (0,1]$. In case, $c\in (0,1)$ we must have $x'(c)=0$. Applying, now, the Taylor's formula with integral remainder after the second term at each $\xi_i$, $i=1,2,\dots ,m-1$, to get \begin{equation} x(\xi_i)=x(c)+r_i, \label{eq1} \end{equation} where \begin{equation} r_i=\int_{c}^{\xi_i}(\xi_i-s)x''(s)ds\leq 0, \label{eq2} \end{equation} $i=1,2,\dots ,m-1$. Multiplying the equation (\ref{eq1}) by $a_i$, $i=1,2,\dots ,m-1$, and adding the resulting equations we obtain \begin{equation} 0=\sum_{i=1}^{m-1}a_ix(\xi _i)=\sum_{i=1}^{m-1}a_ix(c)+\sum_{i=1}^{m-1}a_ir_i\text{. } \label{eq3} \end{equation} Now, equations (\ref{eq2}), (\ref{eq3}) imply that \begin{gather} 01, \\ \|x\|_{\infty }\leq \frac{\alpha -1}{\alpha \eta -1} \| x''\|_1\quad \text{if }\alpha >1 \text{ and }\alpha \eta >1, \end{gathered}$$ so that $$\begin{gathered} \tau =0\quad \text{if }\alpha \leq 1, \\ \frac{1}{1-\tau } =\frac{1-\eta }{1-\alpha \eta }\quad \text{if }\alpha >1% \text{ and }\alpha \eta <1, \\ \frac{1}{1-\tau } =\frac{\alpha -1}{\alpha \eta -1}\quad \text{if }\alpha >1 \text{ and }\alpha \eta >1\,. \end{gathered}$$ \end{remark} \begin{remark}\label{Remark2}\rm Let us note that for $x(t)\in W^{2,1}(0,1)$ with $x(0)=0$, $x(1)=\alpha x(\eta )$ the constant $C_2$ defined in (\ref{est4}) is given by \[ C_2=\max \{\eta (\frac{\alpha }{1-\alpha })_{-}+(\frac{1}{1-\alpha })_{+} ,(\frac{1}{1-\alpha })_{+}(1-\eta ),(\frac{\alpha }{1-\alpha })_{-}(1-\eta )\}. \] It follows that \[ C_2=\left\{ \begin{array}{ll} \max \{\frac{1+|\alpha |\eta }{1+|\alpha |},\frac{% |\alpha |(1-\eta )}{1+|\alpha |}\} &\text{for }\alpha \leq 0, \\ \frac{1}{1-\alpha } &\text{for }0\leq \alpha <1, \\ \max \{\frac{\alpha \eta }{\alpha -1},\frac{\alpha (1-\eta )}{\alpha -1}\} &\text{for }\alpha >1\,. \end{array} \right. \] Next, we see from the definition of $C_1$ in (\ref{est7}) and (\ref {Remark1}) that \[ C_1=\left\{ \begin{array}{ll} \max \{\frac{1+|\alpha |\eta }{1+|\alpha |},\frac{ |\alpha |(1-\eta )}{1+|\alpha |}\} &\text{for }\alpha \leq 0, \\[2pt] \frac{1}{1-\alpha } &\text{for }0\leq \alpha <1, \\[2pt] \max \{\frac{\alpha \eta }{\alpha -1},\frac{\alpha (1-\eta )^2}{ (\alpha -1)(1-\alpha \eta )}\}& \text{for }\alpha \eta <1 \text{ and }\alpha >1, \\[3pt] \max \{\frac{\alpha \eta }{\alpha -1},\frac{\alpha (1-\eta )}{ (\alpha \eta -1)}\} &\text{for }\alpha \eta >1\text{ and }\alpha >1\,. \end{array} \right. \] Finally, we see that for $x(t)\in W^{2,1}(0,1)$ with $x(0)=0$, $x(1)=\alpha x(\eta )$ we have \begin{equation} \| x\|_{\infty }\leq C\| x''\|_1, \label{est8} \end{equation} where $C=\min \{\frac{1}{1-\tau }$, $C_1\}$ is given by \[ C=\left\{ \begin{array}{ll} \max \{\frac{1+|\alpha |\eta }{1+|\alpha |},\frac{ |\alpha |(1-\eta )}{1+|\alpha |}\} &\text{for }\alpha \leq 0, \\[2pt] 1 &\text{for }0\leq \alpha <1, \\[2pt] \min \{\frac{1-\eta }{1-\alpha \eta },\max \{\frac{\alpha \eta }{ \alpha -1},\frac{\alpha (1-\eta )^2}{(\alpha -1)(1-\alpha \eta )} \}\} &\text{for }\alpha \eta <1\text{ and }\alpha >1, \\[3pt] \min \{\frac{\alpha -1}{\alpha \eta -1},\max \{\frac{\alpha \eta }{ \alpha -1},\frac{\alpha (1-\eta )}{(\alpha \eta -1)}\}\} & \text{for }\alpha \eta >1\text{ and }\alpha >1. \end{array} \right. \] The following theorem gives a better estimate than (\ref{est8}) for an $x(t)\in W^{2,1}(0,1)$ with $x(0)=0$, $x(1)=\alpha x(\eta )$. \end{remark} \begin{theorem}\label{Th2} Let $\alpha \in \mathbb{R}$ and $\eta \in (0,1)$ with $\alpha \neq 1$, $\alpha \eta \neq 1$, be given. Then for $x(t)\in W^{2,1}(0,1)$ with $x(0)=0$, $x(1)=\alpha x(\eta )$ we have \[ \| x\|_{\infty }\leq M\|x''\|_1 \] where $$M=\left\{\begin{array}{ll} \max \{\frac{1+|\alpha |\eta }{1+|\alpha |}, \frac{|\alpha |(1-\eta )}{1+|\alpha |}\} &\text{if }\alpha\leq -1. \\ \frac{1-\alpha \eta }{1-\alpha } &\text{if }-1\leq \alpha <0, \\ 1 &\text{if }0\leq \alpha <1, \\ \max \{\frac{\eta }{2},\frac{\alpha (1-\eta )}{\alpha -1}, \frac{\alpha \eta (1-\eta )}{1-\alpha \eta }\} &\text{if }\alpha>1 \text{ and }\alpha \eta <1, \\ \max \{\frac{\eta }{2},\frac{\alpha \eta -1}{\alpha -1}, \frac{\alpha \eta (1-\eta )}{\alpha \eta -1}\} &\text{if }\alpha >1 \text{ and }\alpha \eta >1\,. \end{array}\right. $$ \end{theorem} \paragraph{Proof} For $\alpha \leq 0$ we see from Theorem \ref{Th1} and remark \ref{Remark2} that \[ M=\max \{\frac{1+|\alpha |\eta }{1+|\alpha |}, \frac{|\alpha |(1-\eta )}{1+|\alpha |}\}. \] This implies, in particular, for $\alpha \leq -1$ that $M=\max \{\frac{ 1+|\alpha |\eta }{1+|\alpha |}$, $\frac{|\alpha |(1-\eta )}{1+|\alpha |}\}$. Note that for $-1\leq \alpha <0$, \[ \frac{1-\alpha \eta }{1-\alpha }=\frac{1+\eta |\alpha |}{1+|\alpha |}\geq \frac{|\alpha |(1+\eta )}{1+|\alpha |}>% \frac{|\alpha |(1-\eta )}{1+|\alpha |} \] and so we again see from Theorem \ref{Th1} and Remark \ref{Remark2} that \[ M=\left\{\begin{array}{ll} \frac{1-\alpha \eta }{1-\alpha }&\text{if }-1\leq \alpha <0\\ 1 &\text{if } 0\leq \alpha <1\,.\end{array}\right. \] Finally, we consider the case $\alpha >1$. Let $ x(\eta )=z$ so that $x(1)=\alpha z$. We may assume without loss of generality that $z\geq 0$, replacing $x(t)$ by $-x(t)$ if necessary. Suppose, now, $\| x\|_{\infty }=1$ so that there exists a $c\in \lbrack 0,1]$ such that either $x(c)=1$ or $x(c)=-1$. We consider all possible cases of the location for $c$. (i) Suppose that $c\in (0,\eta ] $ and $x(c)=1$. Then $ x'(c)=0$, $c\neq \eta $. Now, by mean value theorem there exist $\nu_1\in \lbrack c,\eta ], \nu_2\in \lbrack \eta ,1]$ such that \[ x'(\nu_1)=\frac{x(\eta )-x(c)}{\eta -c}=-\frac{1-z}{\eta -c},\quad x'(\nu_2)=\frac{x(1)-x(\eta )}{1-\eta }=\frac{\alpha z-z}{1-\eta }. \] We note that $x'(\nu_1)\leq 0$, $x'(\nu_2)\geq 0$ since $0\leq z\leq 1$ and $\alpha >1$. It follows that \begin{align*} \int_0^{1}|x''(s)|ds \geq& |\int_{c}^{\nu_1}x''(s)ds|+|\int_{\nu _1}^{\nu_2}x''(s)ds|\\ =&2|x'(\nu_1)|+x'(\nu_2) =2\frac{1-z}{\eta -c}+\frac{\alpha z-z}{1-\eta }\\ \geq& \min_{c\in\lbrack 0,\eta ),z\in \lbrack 0,\frac{1}{\alpha }]} \{2\frac{1-z}{\eta -c} +\frac{\alpha z-z}{1-\eta }\}\\ \geq& \min_{c\in \lbrack 0,\eta )}\{\frac{2}{\eta -c},\frac{2(\alpha -1)} {\alpha (\eta -c)}+\frac{\alpha -1}{\alpha (1-\eta )}\}\\ \geq& \min\{\frac{2}{\eta },\frac{\alpha -1}{\alpha (1-\eta )}\}. \end{align*} (ii) Let, now, $c\in (0,\eta ]$, $ x(c)=-1$. Then since $x'(c)=0$, $c\neq \eta $, we again see from mean value theorem that there exist $\nu_{3}\in \lbrack c,\eta ], \nu _{4}\in \lbrack \eta,1]$ such that \[ x'(\nu_{3})=\frac{x(\eta )-x(c)}{\eta -c}=\frac{z+1}{\eta -c}, \quad x'(\nu_{4})=\frac{x(1)-x(\eta )}{1-\eta }=\frac{\alpha z-z}{1-\eta }. \] Again we note that $x'(\nu_{3})>0$, $x'(\nu_{4})\geq 0$ since $0\leq z\leq 1$ and $\alpha >1$ and we have \begin{equation}\begin{aligned} \int_0^{1}|x''(s)|ds\geq& |\int_{c}^{\nu_{3}}x''(s)ds| +|\int_{\nu_{3}}^{\nu_{4}}x''(s)ds|\\ =&x'(\nu_{3})+|x'(\nu_{4})-x'(\nu_{3})| =\frac{1+z}{\eta -c}+|\frac{\alpha z-z}{1-\eta }-\frac{1+z}{\eta-c}|. \end{aligned} \label{EQ7} \end{equation} Let $F(z,c)=\frac{1+z}{\eta -c}+|\frac{\alpha z-z}{1-\eta }-\frac{1+z}{ \eta -c}|$. We need to estimate $\min_{c\in \lbrack 0,\eta ),z\in \lbrack 0, \frac{1}{\alpha }]}F(z,c)$. We note that \begin{gather*} F(0,c) =\frac{2}{\eta -c}\geq \frac{2}{\eta }\quad \text{for }c\in \lbrack 0,\eta ), \\ F(\frac{1}{\alpha },c) =\frac{\alpha +1}{\alpha (\eta -c)}+|\frac{\alpha -1}{\alpha (1-\eta )}-\frac{\alpha +1}{\alpha (\eta -c)}|\geq \frac{\alpha -1}{\alpha (1-\eta )}\quad \text{for }c\in \lbrack 0,\eta ). \end{gather*} Let $z_0$ be such that $\frac{\alpha z_0-z_0}{1-\eta } -\frac{1+z_0}{\eta -c}=0$ so that $z_0=\frac{1-\eta }{\alpha \eta -1-c(\alpha -1)}$. It is easy to see that $z_0\in \lbrack 0,\frac{1}{\alpha }]$ if $\eta >\frac{\alpha +1}{2\alpha }$ and $c\in (0,\frac{2\alpha \eta -\alpha -1}{\alpha -1})$. In this case we get $F(z_0,c)=\frac{\alpha -1}{% \alpha \eta -1-c(\alpha -1)}\geq \frac{\alpha -1}{\alpha \eta -1}$. Accordingly we see that $F(z,c)\geq \min \{\frac{2}{\eta },\frac{\alpha -1% }{\alpha (1-\eta )}\}$ if $\alpha \eta \leq 1$ and $F(z,c)\geq \min \{\frac{% 2}{\eta },\frac{\alpha -1}{\alpha (1-\eta )},\frac{\alpha -1}{\alpha \eta -1}\}$ if $\alpha \eta >1$. We thus have from (\ref{EQ7}) that \begin{align*} \int_0^{1}|x''(s)|ds\geq &|\int_{c}^{\nu _{3}}x''(s)ds|+|\int_{\nu_{3}}^{\nu_{4}}x''(s)ds|=x'(\nu_{3})+|x'(\nu_{4}) -x'(\nu_{3})| \\ =&\frac{1+z}{\eta -c}+|\frac{\alpha z-z}{1-\eta }-\frac{1+z}{\eta -c}| \\ \geq& \left\{ \begin{array}{cc} \min \{\frac{2}{\eta },\frac{\alpha -1}{\alpha (1-\eta )}\}, & \text{if }\alpha \eta \leq 1, \\ \min \{\frac{2}{\eta },\frac{\alpha -1}{\alpha (1-\eta )},\frac{\alpha -1% }{\alpha \eta -1}\}, & \text{ if }\alpha \eta >1. \end{array}\right. \end{align*} (iii) Next, suppose that $c\in (\eta ,1)$, $ x(c)=1$. Again, $x'(c)=0$ and we have from mean value theorem that there exist $\nu_{5}\in \lbrack \eta ,c], \nu_{6}\in \lbrack c,1]$ such that \[ x'(\nu_{5})=\frac{x(c)-x(\eta )}{c-\eta }=\frac{1-z}{c-\eta }, \quad x'(\nu_{6})=\frac{x(1)-x(c)}{1-c}=\frac{\alpha z-1}{1-c}. \] Note that $x'(\nu_{5})\geq 0$, $x'(\nu_{6})\leq 0$ since $x(1)=\alpha z\leq 1$. Accordingly, we obtain \begin{equation}\begin{aligned} \int_0^{1}|x''(s)|ds\geq &|\int_0^{\nu _{5}}x''(s)ds|+|\int_{\nu_{5}}^{\nu_{6}}x''(s)ds| \\ =& x'(\nu_{5})+|x'(\nu_{6})-x'(\nu _{5})|=2x'(\nu_{5})+|x'(\nu_{6})| \\ =& 2\frac{1-z}{c-\eta }+\frac{1-\alpha z}{1-c}\geq \frac{2(\alpha -1)}{\alpha (1-\eta )},\quad \text{since } 0\leq z\leq \frac{1}{\alpha}. \end{aligned}\label{eq6} \end{equation} (iv) Next, suppose that $c\in (\eta ,1)$, $ x(c)=-1$. Again, $x'(c)=0$ and we have from mean value theorem that there exist $\nu_{7}\in \lbrack \eta ,c], \nu_{8}\in \lbrack c,1]$ such that \[ x'(\nu_{7})=\frac{x(c)-x(\eta )}{c-\eta }=\frac{-1-z}{c-\eta }, \quad x'(\nu_{8})=\frac{x(1)-x(c)}{1-c}=\frac{\alpha z+1}{1-c}. \] Note that $x'(\nu_{7})\leq 0$, $x'(\nu_{8})\geq0$. Accordingly, we obtain \begin{align*} \int_0^{1}|x''(s)|ds\geq &|\int_0^{\nu_{7}}x''(s)ds| +|\int_{\nu_{7}}^{\nu_{8}}x''(s)ds| \\ =&|x'(\nu_{7})|+|x'(\nu_{8})-x'(\nu_{7})|=2|x'(\nu_{7})|+x'(\nu_{8}) \\ =&2\frac{1+z}{c-\eta }+\frac{1+\alpha z}{1-c}\geq \frac{2}{c-\eta } +\frac{1}{1-c}\\ \geq& \frac{2}{1-\eta }\geq \frac{2(\alpha -1)}{\alpha (1-\eta)}. \end{align*} (v) Finally suppose that $c=1$, so that $x(1)=1=\alpha z$. We then have that there exists a $\nu_{9}\in (\eta ,1)$ such that \[ x'(\nu_{9})=\frac{x(1)-x(\eta )}{1-\eta } =\frac{1-\frac{1}{\alpha }}{1-\eta }=\frac{\alpha -1}{\alpha (1-\eta )}. \] Also, there exists a $\nu_{10}\in (0,\eta )$ such that \[ x'(\nu_{10})=\frac{x(\eta )-x(0)}{\eta -0}=\frac{1}{\alpha \eta }. \] Thus \begin{eqnarray*} \int_0^{1}|x''(s)|ds &\geq &|\int_{\upsilon_{10}}^{\nu _{9}}x''(s)ds|=|x'(\nu_{9})-x'(\nu _{10})|\\ &=&|\frac{1-\frac{1}{\alpha }}{1-\eta }-\frac{1}{\alpha \eta }|=|\frac{\alpha \eta -1}{\alpha \eta (1-\eta )}|. \end{eqnarray*} We thus see from (i), (ii), (iii), (iv) and (v) that for $\alpha >1$, $\| x\|_{\infty }\leq M\|x''\|_1$ with $$M=\left\{ \begin{array}{ll} \max \{\frac{\eta }{2},\frac{\alpha (1-\eta )}{\alpha -1}, \frac{\alpha \eta (1-\eta )}{1-\alpha \eta }\} &\text{if }\alpha \eta \leq 1, \\[3pt] \max \{\frac{\eta }{2},\frac{\alpha \eta -1}{\alpha -1}, \frac{\alpha \eta (1-\eta )}{\alpha \eta -1}\} &\text{if }\alpha \eta >1, \end{array}\right. $$ since for $\alpha >1$, $\alpha \eta >1$, $\frac{\alpha \eta (1-\eta )}{\alpha \eta -1}>\frac{\alpha (1-\eta )}{\alpha -1}$. This completes the present proof. \quad$\Box$ \begin{remark}\rm Let $\alpha =4$ and $\eta =\frac{1}{2}$. Let us consider the estimate \begin{equation} \| x\|_{\infty }\leq C\| x''\|_1, \label{est9} \end{equation} for $x(t)\in W^{2,1}(0,1)$ with $x(0)=0$, $x(1)=4x(\frac{1}{2})$. Now, the function \begin{equation} \varphi (t)=\left\{ \begin{array}{cc} 2t^{3}, & \text{ for }t\in \lbrack 0,\frac{1}{2}], \\ \frac{3t-1}{2}, & \text{ for }t\in \lbrack \frac{1}{2},1], \end{array} \right. \label{phi} \end{equation} is such that $\varphi (t)\in W^{2,1}(0,1)$ with $\varphi (0)=0$ and $\varphi (1)=4\varphi (\frac{1}{2})$. Moreover, $\| \varphi \| _{\infty }=1$ and $\| \varphi ''\|_1=\frac{3}{2}$. It follows that $C\geq \frac{2}{3}$ in (\ref{est9}). Now, Proposition \ref {Prop1} and Remark \ref{Remark1} give $C=3$ in (\ref{est9}); while Theorem \ref{Th1} and Remark \ref{Remark2} give $C=2$ in (\ref{est9}); and Theorem \ref{Th2} gives $C=1$ in (\ref{est9}). This shows that Theorem \ref{Th2} gives the best estimate $\| x\| _{\infty }\leq \| x''\|_1$ for $x(t)\in W^{2,1}(0,1)$ with $x(0)=0$, $x(1)=4x(\frac{1}{2})$. However, the function $\varphi (t)$ defined in (\ref {phi}) indicates that it may be possible to improve $C$ in (\ref{est9}). This question remains open at this time. \end{remark} To explore this further we introduce the notion of {\it approximate best constant} in the following. \paragraph{Definition} $B\in \mathbb{R}$ is called ``approximate best constant'' if for every $\varepsilon >0$ there exists an $\alpha \in \mathbb{R}$ and an $\eta \in (0,1)$ such that (i) for every $x(t)\in W^{2,1}(0,1)$ with $x(0)=0$, $x(1)=\alpha x(\eta )$, $\| x\|_{\infty }\leq (B+\varepsilon )\| x''\|_1$; (ii) there exists a function $\phi (t)\in W^{2,1}(0,1)$ with $\phi (0)=0$, $\phi (1)=\alpha \phi (\eta )$, and $\| \phi \|_{\infty }>B\| \phi ''\|_1$. \begin{theorem} \label{Th3} For every $k>1$, $1-\frac{1}{k}$ is an approximate best constant. \end{theorem} \paragraph{Proof} For each integer $n>2$, consider the function $\phi_{kn}(t)\in W^{2,1}(0,1)$ defined by \[ \phi_{kn}(t)=\left\{ \begin{array}{cc} t^{n}, & \text{ for }t\in \lbrack 0,\frac{1}{k}], \\ \frac{nt}{k^{n-1}}-\frac{n-1}{k^{n}}, & \text{ for }t\in \lbrack \frac{1}{k},1]. \end{array} \right. \] It is easy to see that $\phi_{kn}(t)\in W^{2,1}(0,1)$, with $\phi _{kn}(0)=0 $, $\phi_{kn}(1)=\alpha_{kn}\phi_{kn}(\frac{1}{k})$, where $\alpha_{kn}=n(k-1)+1$, and \[ \| \phi_{kn}''\|_1=\frac{n}{k^{n-1}}, \quad \| \phi_{kn}\|_{\infty }=\phi_{kn}(1)=\frac{n(k-1)+1}{% k^{n}}, \] so that \begin{equation} \| \phi_{kn}\|_{\infty }=\frac{n(k-1)+1}{nk}\| \phi_{kn}''\|_1. \label{eq7} \end{equation} Now, since $\alpha_{kn}\cdot \frac{1}{k}=\frac{n(k-1)+1}{k}=n-\frac{n-1}{% k}>1$ for $n>2$, we obtain using Theorem \ref{Th2} the estimate \begin{equation}\begin{gathered} \| x\|_{\infty }\leq \frac{n(k-1)+1}{k(n-1)}\| x''\|_1\quad \text{for }x(t)\in W^{2,1}(0,1) \\ x(0)=0,\quad x(1)=\alpha_{kn}x(\frac{1}{k}). \end{gathered}\label{est10} \end{equation} Let us set $B_{kn}=\frac{n(k-1)+1}{nk}=1-\frac{1}{k}+\frac{1}{nk}$, $M_{kn}=\frac{n(k-1)+1}{k(n-1)}=1-\frac{1}{k}+\frac{1}{n-1}$. We notice that \[ M_{kn}-B_{kn}=\frac{1}{n-1}-\frac{1}{nk}=\frac{n(k-1)+1}{n(n-1)k}>0, \] so that $M_{kn}-B_{kn}>0$. Also, we note that \[ \lim_{n\to \infty }B_{kn}=\lim_{n\to \infty }M_{kn}=1-\frac{1}{k}. \] Let, now, $\varepsilon >0$ be given. Choose, $n_0$ such that $M_{kn_0}<1-\frac{1}{k}+\varepsilon $. It, now, follows from (\ref{est10}) and (\ref{eq7}) that \[\begin{gathered} \| x\|_{\infty }\leq (1-\frac{1}{k}+\varepsilon )\| x''\|_1\quad \text{for }x(t)\in W^{2,1}(0,1) \\ x(0)=0,\quad x(1)=\alpha_{kn_0}x(\frac{1}{k}), \end{gathered}\] and \[ \| \phi_{kn_0}\|_{\infty }=(1-\frac{1}{k}+\frac{1}{n_0k}) \| \phi_{kn}''\|_1>(1-\frac{1}{k})\| \phi_{kn}''\|_1. \] This completes the proof of the Theorem. \quad $\Box$ \begin{remark}\rm We note that $\lim_{k\to \infty }(1-\frac{1}{k})=1$. In view of this, it may be conjectured that $1$ may be a best constant in the sense that there exists an $\alpha \in \mathbb{R}$ and an $\eta \in (0,1)$ such that for $x(t)\in W^{2,1}(0,1)$ with $x(0)=0$, $x(1)=\alpha x(\eta )$ one has the estimate \[ \| x\|_{\infty }\leq \| x''\|_1. \] However, since $\lim_{k\to \infty }\alpha_{kn}=\infty $ and $\lim_{k\to \infty }\frac{1}{k}=0$, it is not clear if such $\alpha \in \mathbb{R}$ and an $\eta \in (0,1)$ exist. \end{remark} \section{Existence theroems} We state below the existence theorems one obtains using the a priori estimates obtained above. We omit the proof of these theorems as they are similar to the corresponding theorems in \cite{gt3}. \begin{theorem} Let $f:[0,1]\times \mathbb{R}^2\to \mathbb{R}$ be a function satisfying Caratheodory's conditions. Assume that there exist functions $p(t)$, $q(t)$, $r(t)$ in $L^{1}(0,1)$ such that \[ \left| f(t,x_1,x_2)\right| \leq p(t)\left| x_1\right| +q(t)\left| x_2\right| +r(t) \] for a.e. $t\in \lbrack 0,1]$ and all $(x_1,x_2)\in \mathbb{R}^2$. Let $a_i\in \mathbb{R}$, $\xi_i\in (0,1)$, $i=1, 2,\dots, m-2$, $0<\xi_1<\xi_2<\dots <\xi_{m-2}<1$ with $\sum_{i=1}^{m-2}a_i\xi_i\neq 1$ and $\sum_{i=1}^{m-2}a_i\neq 1$, be given. Then the multi-point boundary-value problem \[\begin{gathered} x''(t) =f(t,x(t),x'(t))+e(t),\quad 0