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Nontrivial solutions for noncooperative elliptic

systems at resonance ∗

Elves A. B. Silva

Abstract

In this article we establish the existence of a nonzero solution for vari-
ational noncooperative elliptic systems under Dirichlet boundary condi-
tions and a resonant condition at infinity. Situations where the problem
is nonresonant and resonant at the origin are considered. The results are
based on a version of a critical point theorem for strongly indefinite func-
tionals which are asymptotically quadratic at infinity and do not satisfy
any Palais-Smale type condition.

1 Introduction

In this article we consider the existence of a nonzero solution for the variational
noncooperative elliptic system

−∆u = au− bv + f(x, u, v) =: Fu(x, u, v), in Ω,

−∆v = bu+ cv − g(x, u, v) =: −Fv(x, u, v), in Ω, (1.1)

u = v = 0, on ∂Ω ,

where Ω is a bounded domain in RN with smooth boundary ∂Ω, the numbers
a, b, c are real parameters and the nonlinearities f, g : Ω̄ × R2 → R satisfy
f(x, 0) ≡ 0, g(x, 0) ≡ 0. To apply the infinite dimensional Morse theory to the
functional associated with (1.1), we assume that F : Ω̄×R2 → R is of class C2

and satisfies the growth condition

|D2F (x, z)| ≤ c1|z|
σ−2 + c2, ∀ z ∈ R

2, x ∈ Ω,

for constants c1, c2 > 0 and σ > 2 (σ < 2N
N−2 , if N ≥ 3). In this paper we

represent by ∇F (x, z) and D2F (x, z), respectively, the gradient of F and the
second derivative of F with respect to the variable z ∈ R2.
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268 Nontrivial solutions for noncooperative elliptic systems

We observe that there exists a vast literature on the use of nonlinear methods
to the study of elliptic systems. We refer the readers to the works by Figueiredo-
Mitidieri [13], Lazer-Mckenna [20], Silva [30], Costa-Magalhães [10, 11], Felmer-
Figueiredo [12], Hulshof-van der Vorst [16], Kryszewski-Szulkin [18] and refer-
ences therein.
One of our main goals in this article is to illustrate how the ideas introduced

in [31] can be applied to handle the problem of existence of a nonzero solution
for the system (1.1) under a resonant condition at infinity [19, 26, 11]. More
specifically, here we assume

(F1) lim|z|→∞
|(f,g)(x,z)|

|z| = 0, for a. e. x ∈ Ω, |(f, g)(x, z)| ≤ A(x)|z| + B(x),

for all z ∈ R2, for a. e. x in Ω, where B ∈ L1(Ω) and A ∈ Lp1(Ω),
1 < p1 <∞ (p1 = N/2, if N ≥ 3)),

We also assume that the associated linear system

−∆u = au− bv, in Ω,

−∆v = bu+ cv, in Ω, (1.2)

u = v = 0, on ∂Ω ,

possesses a nontrivial solution.
In this work the existence of a nonzero solution for (1.1) is based on the

relation between the index of the second derivative of the associated functional
at zero and at points away from zero and on an appropriate region containing
the space of solutions of (1.2). In order to obtain such estimates, we impose
conditions on the behavior of the nonlinearity at the origin and at infinity:

(F2) F (x, 0) ≡ 0, ∇F (x, 0) ≡ 0, and D2F (x, 0) = RA0,

(F3) lim inf |z|→∞D2F (x, z) > RA1, for a.e. x ∈ Ω, D2F (x, z) ≥ −C(x)I2, for
all z in R2, for a.e. x in Ω, where C ∈ Lp2(Ω), 1 < p2 <∞ (p2 = N/2, if
N ≥ 3), I2 is the identity 2× 2 matrix, and

R =

(
1 0
0 −1

)
, Ai =

(
ai −bi
bi ci

)
, i = 0, 1.

Before stating our basic theorems, we recall some facts about the spectrum of
the linear system (1.2) and introduce some notation.
Let 0 < λ1 < . . . ≤ λj ≤ . . . be the sequence of eigenvalues of the operator

−∆ on H10 (Ω). Denoting by A the anti-symmetric 2 × 2 matrix associated to
(1.2), it can be proved (see [10]) that µ is an eigenvalue of the corresponding
linear operator on H10 (Ω) × H1(Ω) if, and only if, det(A + µR − λjI2) = 0.
Therefore, the corresponding sequence of eigenvalues of (1.2), {µ±j }, is given by

µ±j =
c− a

2
±

√(
c− a

2

)2
+ det(λjI2 −A).
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For a given k ∈ N, we denote by ik(A) the number of negative eigenvalues

of the set {µ−k, . . . , µk} minus k. Observing that µ
(±)
j → (±)∞, as j →∞, we

conclude that ik(A) is constant for k sufficiently large. That allows us to define
the relative index of A, denoted i(A), by

i(A) = lim
k→∞

ik(A).

By the same reasoning, we may define the nullity of A, represented by n(A), as
the number of eigenvalues of (1.2) which are zero. Note that i(A) is the relative
Morse index of the quadratic form associated to (1.2) on H10 (Ω) ×H

1
0 (Ω) [18].

Furthermore, the linear system (1.2) has a nontrivial solution if, and only if,
n(A) 6= 0. We now state our first result:

Theorem 1.1 Suppose F ∈ C2(Ω̄×R2,R) satisfies (F1)− (F3), with n(A) 6= 0
and n(A0) = 0. Then the system (1.1) possesses a nonzero solution provided
i(A1) > i(A0) + 1.

We remark that n(A0) 6= 0 if, and only if, the origin is a nondegenerate
critical point of the associated functional. On that case the problem (1.1) is
said to be resonant at the origin. To deal with such possibility we suppose the
local condition:

(F4) there exists r > 0 such that F (x, z) ≤
1
2 〈A0z, z〉, for all |z| ≤ r, for a.e.

x ∈ Ω.

The following theorem give us a version of Theorem 1.1 under the resonant
condition at the origin.

Theorem 1.2 Suppose F ∈ C2(Ω̄×R2,R) satisfies (F1)− (F3), with n(A) 6= 0
and n(A0) 6= 0. Then the system (1.1) possesses a nonzero solution provided F
satisfies (F4) and i(A1) > i(A0) + 1.

Assuming the following version of (F4)

(F̂4) there exists r > 0 such that F (x, z) ≥
1
2 〈A0z, z〉,for all |z| ≤ r, for a.e.

x ∈ Ω,

we obtain

Theorem 1.3 Suppose F ∈ C2(Ω̄ × R2,R) satisfies (F1)-(F3), with n(A) 6= 0
and n(A0) 6= 0. Then the system (1.1) possesses a nonzero solution provided F
satisfies (F̂4) and i(A1) > i(A0) + n(A0) + 1.

Theorems 1.1, 1.2 and 1.3 are related to earlier results by Costa-Magalhães
[10, 11] and Kryszewski-Szulkin [18]. We note that, under conditions (F1) −
(F3), the associated functional may not satisfy any version of the Palais-Smale
compactness condition [27, 4] on levels belonging to a very general subset of the
real line. This fact does not allow us to apply the abstract results considered
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in [10, 11, 18]. We should also note that versions of the above theorems can be
proved when we assume that lim sup|z|→∞D2F (x, z) is bounded from above by
RA1 (see Remark 5.8).
As observed earlier, the proofs of Theorems 1.1, 1.2 and 1.3 are based on a

critical point theorem, due to the author [31], for strongly indefinite functionals
which are asymptotically quadratic at infinity. In this article, we establish a
slightly improved version of that result. We believe that the proof given here is
more clarifying than the one in [31].
We should observe that the method applied here, and in [31], for establishing

critical point theorems when the functional does not satisfy a compactness con-
dition is based on perturbation arguments, a construction associated with the
existence of a local linking structure [22, 28, 29], and the estimates established
by Lazer-Solimini [21, 33] for the Morse index of a functional at a critical point
associated to a given minimax level.
It is worthwhile mentioning that the above method is related to the methods

used by Masiello-Pisane [25], Hirano-Li-Wang [15] and Li-Wang [23] to study
the scalar problem under strongly resonant conditions at infinity. Note that the
conditions (F1)− (F3) include such class of problems and that we are assuming
pointwise limits in conditions (F1) and (F3). Finally, we should remark that
corresponding results for periodic solutions of asymptotically linear Hamiltonian
systems have been derived in [5, 32, 9, 1].
This article has the following structure: in section 2, we state the main

critical point theorem. In section 3, after presenting some preliminary results,
we prove an abstract theorem that gives us an estimate for the Morse index
of the the functional at a critical point belonging to a level c 6= 0. The main
critical point theorem is proved in section 4 by applying the theorem of section
3 and a perturbation argument. Finally, we reserve the section 5 for the proofs
of Theorems 1.1, 1.2 and 1.3.

2 A critical point theorem

Let H be a real separable Hilbert space with the inner product 〈·, ·〉 and let
I : H → R be a functional of class C2 having the origin as a critical point.
Our goal in this section is to provide sufficient conditions for the existence of a
nonzero critical point for the functional when I is of the form

I(u) =
1

2
〈Lu, u〉+ J(u), (2.1)

where L is a bounded self-adjoint linear operator and J is a functional of class
C2 satisfying, respectively,

(I1) the number zero is an isolated point of the spectrum of L with finite
multiplicity,

(I2) J
′ : H → H is compact and lim‖u‖→∞

‖J′(u)‖
‖u‖ = 0.
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Note that the condition (I2) implies that I is asymptotically quadratic at infin-
ity, and the condition (I1) says that the associated quadratic form is degenerate.
Invoking the spectral theory for self-adjoint operators, we may write H =

H+ ⊕ H0 ⊕ H−, where H+, H−, H0 are the orthogonal closed subspaces of
H on which L is strictly positive definite, strictly negative definite and null,
respectively. Furthermore, H0 is a nontrivial finite dimensional subspace of
H . We also recall that the index of L, denoted ind(L), is the dimension of the
subspace H−.
Here, we are interested in the situation where I is strongly indefinite in the

sense that both subspaces H+ and H− have infinite dimensions. This is indeed
the case for the noncooperative elliptic system considered in this article.
In order to apply a Galerking type argument in our setting, we assume the

existence of a family of closed subspaces Hk = H+k ⊕H
0 ⊕H−k of H such that

H±1 ⊂ . . . ⊂ H±k ⊂ . . . ⊂ H±. If dim(H±) < ∞, we set H±k = H± for every
k ∈ N. We also suppose the existence of a basis {ej | j ∈ J ⊂ N} of H such that,
for every j ∈ J , there exists kj ∈ N so that {e1, . . . ej} ⊂ Hkj . In the following
we denote by Ik the restriction of the functional I to the subspace Hk.
We now recall the versions of the Palais-Smale condition associated to the

family (Hk) [3, 22, 28, 29]:

Definition 2.1 (i) Given c ∈ R, we say that (uj) ⊂ H is a (PS)∗c-sequence,
for c ∈ R, if I(uj) → c, as j → ∞, and there exists (kj) ⊂ N, with kj → ∞,
such that uj ⊂ Hkj , for every j ∈ N, and ‖I

′
kj
(uj)‖ → 0, as j →∞.

(ii) we say that I ∈ C1(H,R) satisfies the [(PSB)∗c ] (PS)
∗
c condition if every

[bounded] (PS)∗c-sequence possesses a convergent subsequence.
(iii) If I satisfies [(PSB)∗c ] (PS)

∗
c on every level c ∈ R, we simply say that I

satisfies [(PSB)∗] (PS)∗ .

It is worthwhile mentioning that we may have dimHk =∞, for every k ∈ N.
Furthermore, when Hk = H for k sufficiently large, the Definition 2.1 provides
exactly the definitions of the (PS) and the (PSB) conditions.
In this work we also suppose the following local condition [22]:

(I3) there exist ρ > 0 and subspaces X
i
k, i = 1, 2, of Hk, for every k ∈ N, such

that Hk = X
1
k ⊕X

2
k , dimX

1
k <∞, and

(i) I(u) ≥ 0, ∀ u ∈ X2k ∩Bρ(0),
(ii) I(u) ≤ 0, ∀ u ∈ X1k ∩Bρ(0).

We observe that the above generalization of the local linking condition has been
introduced in [28] (see also [29, 7]). Note that under the condition (I3) the origin
may be a degenerate critical point of I and the Morse index of the functional
at that point may be infinite.
Given α > 0, we set Cα = {u ∈ H : ‖u‖ ≤ (1 + α)‖P0u‖}, where P0 denotes

the orthogonal projection of H onto ker(L) = H0. The following conditions
allow us to compare the Morse index of the functional at the origin with the
indexes of L and of D2I(u), for u ∈ Cα, with ‖u‖ sufficiently large.

(I4) dimX
1
k + 1 ≤ dim(H

−
k ⊕H

0), for every k ∈ N,
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(I5) there exist α, µ > 0 andM > 0 such that dimX1k+1 < ind(D
2Ik(u)+µid),

for every u ∈ Hk ∩ Cα, ‖u‖ ≥M .

Condition (I5) is slightly weaker than the corresponding condition assumed in
[31]. Now, we state our main abstract theorem.

Theorem 2.2 Let H be a real separable Hilbert space. Suppose I ∈ C2(H,R)
satisfies (I1)−(I5) and (PSB)∗. Then the functional I possesses a critical point
other than zero.

The proof of Theorem 2.2 is based on another abstract result which is proved
in section 3. In that section we suppose that L is an isomorphism and that
Hk = H , for every k ∈ N. We also assume that the condition (I3) has some
special structure (see Definition 3.2). Under those assumptions, we establish a
critical point theorem that relates the Morse index at a nonzero critical point of
the functional with the dimension of X1k ≡ X1. The Theorem 2.2 is proved in
section 4 by applying the theorem of section 3 to an appropriate perturbation
of the functional Ik, for k sufficiently large.

3 A version of Theorem 2.2

In this section we suppose that Hk = H for every k ∈ N. Under this hypothesis
and supposing that L, given by (2.1), is an isomorphism, we are able to provide
an estimate for the Morse index of the functional at a critical point associated
to a level c 6= 0.
In this article we represent by K(I) the set of critical points of I. Given

c ∈ R, we set Ic = {u ∈ H : I(u) ≤ c}, Kc(I) = {u ∈ H : I(u) = c, I ′(u) = 0}.
We also set Kba(I) = ∪

b
c=aKc(I), for every a < b ∈ R .

Denoting by S the family of continuous map Φ ∈ C([0, 1]×H,H) such that
Φ(0, ·) = id and considering the subsets S andQ ofH , we say that S and ∂Q link
if Φ(t, Q)∩S 6= ∅, for every 0 ≤ t ≤ 1, whenever Φ ∈ S and Φ([0, 1]×∂Q)∩S = ∅
[6, 27]. The following characterization of the link was introduced in [28] (see
also [29, 7]):

Definition 3.1 Given I ∈ C1(H,R), we say that the link between S and ∂Q is
of deformation type (with respect to I) if there exist γ′ ≤ γ and Φ ∈ S such that

(L1) Φ(t, ∂Q) ∩ S = ∅, for all t ∈ [0, 1],

(L2) Φ(1, ∂Q) ⊂ Iγ
′
,

(L3) I(u) > γ, for all u ∈ S.

We now introduce the corresponding notion when the functional I satisfies
the local condition (I3).
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Definition 3.2 We say that the condition (I3) is a local linking of deformation
type (with respect to I) if there exist 0 < c1 < c, 0 < d < r < ρ, a homeo-
morphism ψ : H → H and a continuous map η : [0, 1] × ∂Bρ(0) ∩ X1 → H
satisfying

(d1) ψ(u) = u, for all u ∈ (H \Br(0)) ∪X1,

(d2) I(ψ(u)) ≥ c > 0, for all u ∂Bd(0) ∩X2,

(d3) η(0, u) = u, for all u ∈ ∂Bρ(0) ∩X1,

(d4) I(η(t, u)) ≤ −ct, for all (t, u) ∈ [0, 1]× ∂Bρ(0) ∩X1,

(d5) r < ‖η(t, u)‖ < 2ρ, for all (t, u) ∈ [0, 1]× ∂Bρ(0) ∩X1,

(d6) I(u) > −c1, for all u ∈ Br(0).

Remark 3.3 If the functional I has the origin as an isolated critical point
and satisfies the (PSB) condition, we may apply the local deformation lem-
mas proved in [28, 29] to conclude that the condition (I3) is a local linking of
deformation type.

Representing by m(I, u) the Morse index of I ∈ C2(H,R) at the critical
point u ∈ H , we may state the deformation lemma:

Lemma 3.4 Let φ : A → Ib be a continuous map, with A ⊂ Rn compact.
Suppose I ∈ C2(H,R) satisfies (PS)c for every c ∈ [a, b]. Assume that Kba(I) =
{uj}mj=1, with uj non-degenerate and m(I, uj) > n, for every 1 ≤ j ≤ m. Then,

there exists a continuous map τ : [0, 1]×A→ Ib such that

(τ1) τ(0, u) = φ(u), for all u ∈ A,

(τ2) τ(t, u) = φ(u), for all t ∈ [0, 1], if φ(u) ∈ Ia,

(τ3) τ(1, A) ⊂ Ia.

Remark 3.5 The Lemma 3.4 is proved by applying the second deformation
lemma [8] combined with a local deformation based on the Morse Lemma for
nondegenerate critical points (see Lemma 2.9 in [31]). As observed in [31]
(see also Lemma 3.10), the above result and the perturbation argument due to
Marino-Prodi [24, 21] provide some useful estimates for the Morse index at a
nontrivial critical point for functionals satisfying the local linking condition (I3).

Assuming the version of the condition (I1)

(Î1) L is an isomorphism,

we state the main result of the section:
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Theorem 3.6 Let H be a real Hilbert space. Suppose I ∈ C2(H,R) satisfies
(Î1), (I2), (I3) and (I4), with Hk = H, for every k ∈ N, and (I3) a local linking
of deformation type. Then I possesses a critical point u ∈ H such that either
I(u) ≤ −c and m(I, u) ≤ dimX1, or I(u) ≥ c and m(I, u) ≤ dimX1+1, where
c > 0 is given by Definition 3.2.

Remark 3.7 (i) The conditions (Î1) and (I2) imply that K(I) is compact. Con-
sequently, under those hypotheses, the functional satisfies the Palais-Smale con-
dition. (ii) If X1 = {0}, we may apply the Mountain Pass Theorem [2] and
the corresponding Morse index estimate [8] to obtain a critical point u of I
such that I(u) ≥ c and m(I, u) ≥ 1. (iii) If dimX2 = 1, we use (I4) and
(Î1) to conclude that H = H− and that I has a critical point u such that
I(u) = max{I(v) | v ∈ H} ≥ c. Clearly, m(I, u) ≤ dimX1 + 1.

Proof of Theorem 3.6: Supposing that m(I, u) > dimX1 for every critical
point u ∈ H such that I(u) ≤ −c, we prove the Theorem 3.6 by verifying
that I has a critical point u0 such that I(u0) ≥ c and m(I, u0) ≤ dimX1 + 1.
That verification is lengthy so we will sketch it first. We start by showing the
existence of a functional which is quadratic away from zero and has the same
set of critical points than I. Furthermore, that functional will be equal to I on
a ball containing K(I). Using a perturbation argument due to Marino-Prodi
and Lemma 3.4, we verify the existence of a linking of deformation type and
of a critical value b ≥ c. We conclude the proof of Theorem 3.6 by applying
the Morse index estimates for the minimax critical points provided by Lazer-
Solimini [21, 33].
By Remark 3.7, we may assume without loss of generality that X1 6= {0}

and dim(X2) ≥ 2. Considering

(Î2) I is bounded on bounded sets, and there exists R0 > 0 such that J(u) = 0,
for every u ∈ H such that ‖u‖ ≥ R0,

The next lemma provides the first step for the proof of Theorem 3.6 (see [31]).

Lemma 3.8 Suppose I ∈ C2(H,R) is given by (2.1) and satisfies (Î1) and
(I2)−(I4), with (I3) a local linking of deformation type. Let R1 > 2ρ, with ρ > 0
given by (I3), be such that K(I) ⊂ int(BR1(0)). Then there exists I1 ∈ C

2(H,R)
satisfying (PS), (Î1), (Î2), (I3), (I4), and

I1(u) = I(u), ∀ u ∈ H, ‖u‖ ≤ R1. (3.1)

Furthermore, K(I1) = K(I).

Remark 3.9 (i) Since R1 > 2ρ, (I3) is a local linking of deformation type
with respect to I1. Moreover, the constants {c1, c, d, r, ρ}, given in Definition
3.2, are the same for I and I1. (ii) By lemma 3.8, to prove the Theorem 3.6
it suffices to verify that I1 has a critical point u0 such that I1(u0) ≥ c and
m(I1, u0) ≤ dimX1 + 1.
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Let I1 be the functional given by Lemma 3.8. Considering r > 0 given by
Definition 3.2 and R0 given in (Î2), we fix R > R0 such that

{u = v1 + v2, vi ∈ X
i, i = 1, 2, :

‖vi‖

ρ
+
‖v2‖

R
= 1} ∩Br(0) = ∅. (3.2)

We now take e ∈ H− ∩X2, ‖e‖ = 1, and we define Q = Q(R) ⊂ Re⊕X1 by

Q = {u = se+ v : v ∈ X1s ≥ 0,
s

R
+
‖v‖

ρ
≤ 1}.

Writing u = u+ + u−, ui ∈ Hi, i = +,−, and considering that I1 satisfies (Î1)
and (Î2), we find a < −c such that

I(u) > a, ∀ u = u+ + u−, ‖u−‖ ≤ R. (3.3)

Lemma 3.10 Let a ∈ R be given by (3.3). Suppose m(I, u) > dimX1 for every
u ∈ K(I) ∩ I−c. Then there exists a continuous map η1 : [0, 1]× ∂Bρ(0) → H
satisfying

(η1) η1(0, u) = u, for all u ∈ ∂Bρ(0) ∩X1,

(η2) I1(η1(t, u)) ≤ 0, for all (t, u) ∈ [0, 1]× ∂Bρ(0) ∩X1,

(η3) ‖η1(t, u)‖ > r, for all (t, u) ∈ [0, 1]× ∂Bρ(0) ∩X1,

(η4) η1(1, ∂Bρ(0) ∩X1) ⊂ Ia1 ,

(η5) ‖η
−
1 (1, u)‖ ≥ R, for all u ∈ ∂Bρ(0) ∩X

1.

Proof: First, we claim that there exists b ∈ (c1, c) such that m(I1, u) >
dimX1, for every u ∈ K(I1) ∩ I

−b
1 . Effectively, assuming otherwise, by Lemma

3.8, we find (um) ⊂ K(I) such that I(um) → −c, as m → ∞, and m(I, um) ≤
dimX1, for every m ∈ N. Since K(I) is compact, we may suppose that
um → u ∈ K(I), as m → ∞. Hence, I(u) = −c and m(I, u) ≤ dimX1.
This prove the claim.
Now, considering 0 < ε < (c − b)/2, we use the condition (I2), K(I1) =

K(I) ⊂ intBR1(0) , (3.1) and the perturbation method introduced by Marino-
Prodi [24] to find I ∈ C2(H,R) such that K(I2)∩I

−c+ε
2 is a finite set possessing

only non-degenerate critical points,

‖I2(u)− I1(u)‖ < ε, ∀ u ∈ H. (3.4)

and
m(I2, u) > dimX

1, ∀ u ∈ K(I2) ∩ I
−c+ε
2 . (3.5)

Taking η given by Definition 3.2, from (d4) and (3.4), we have that η(1, .) :
∂Bρ(0)∩X1 → I−c+ε2 . Hence, invoking (3.5) and Lemma 3.4, we find a contin-
uous map τ : [0, 1]× ∂Bρ(0) ∩X1 → I−c+ε2 satisfying

τ(0, u) = η(1, u), ∀ u ∈ ∂Bρ(0) ∩X
1, (3.6)
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τ(1, ∂Bρ(0) ∩X
1) ⊂ Ia−ε2 . (3.7)

Now, we define η1 : [0, 1]× ∂Bρ(0) ∩X1 → H by

η1(t, u) =

{
η(2t, u), 0 ≤ t ≤ 1

2 , u ∈ ∂Bρ(0) ∩X
1,

τ(2t− 1, η(1, u)), 1
2 < t ≤ 1, u ∈ ∂Bρ(0) ∩X1.

By (3.6), η1 is a well defined continuous map. We shall verify that η1 satisfies
the conditions (η1) − (η5). First, we note that (η1) is a direct consequence of
the definition of η1 and (d3). Considering that −c + 2ε < −c1, from (3.4), we
get that

τ([
1

2
, 1]× ∂Bρ(0) ∩X

1) ⊂ int(I−c11 ). (3.8)

This fact and (d4) show that η1 satisfies (η2). The relation (3.8), (d5) and (d6)
imply that (η3) holds. The condition (η4) is a consequence of (3.4) and (3.7).
Finally, we observe that (η5) is implied by (η4) and (3.3). The Lemma 3.10 is
proved. ♦
Invoking (η5), R > R0 and (Î2), we obtain

I1(sη
+
1 (1, u) + η

−
1 (1, u)) ≤ 0, ∀ u ∈ ∂Bρ(0) ∩X

1, 0 ≤ s ≤ 1.

Using the above relation, (η1) − (η5) and the fact that dim(X2) ≥ 2, by [28]
(see also Lemma 1.25 in [29]), we have

Proposition 3.11 There exists Φ ∈ S satisfying

(L̂1) Φ([0, 1]× ∂Q) ⊂ {u ∈ H | ‖u‖ ≥ r} ∪X1,

(L̂2) Φ(1, ∂Q) ⊂ I01 .

Conclusion of the proof of Theorem 3.6: From (3.2) and (d1), we have
that S = ψ(∂Bd(0) ∩ X2) and ψ(∂Q) = ∂Q since 0 < d < r and ψ is a
homeomorphism. We claim that this link is of deformation type with respect
to I1. Effectively, taking Φ ∈ S given by Proposition 3.11, we see easily that
(L2) and (L3) hold with γ ≥ c > 0 = γ′. Moreover, the condition (L1) is a
consequence of (d1), (L̂1) and d < r. The claim is proved.
As I1 satisfies (PS), we may invoke [28, 29] to conclude that I1 has a critical

value b ≥ c > 0 given by

b = infΦ∈Γmax
u∈Q

I1(Φ(1, u)), (3.9)

where
Γ = {Φ ∈ S : Φ satisfies (L1) and (L2)}. (3.10)

Finally, considering that Q ⊂ Re⊕X1 we may apply the Morse index estimates
for minimax critical points given by [21, 33] to conclude that I1 has a critical
point u0 ∈ H such that I1(u0) = b ≥ c and m(I1, u0) ≤ dimX1 + 1. That
concludes the proof of Theorem 3.6. ♦
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4 Proof of Theorem 2.2

Arguing by contradiction, we suppose that u = 0 is the only critical point of I
in H . First, we note that given 0 < r1 < R1, from (I1), (I2) and (PSB)

∗, there
exist δ > 0 and k0 ∈ N such that

‖I ′k(u)‖ ≥ δ > 0, ∀ r1 ≤ ‖u‖ ≤ R1, k ≥ k0. (4.1)

The next lemma is a direct consequence of the local deformations lemmas
proved in [28, 29] (see also Lemma 3.8 in [31]).

Lemma 4.1 There exists k1 ∈ N such that (I3) is a local linking of defor-
mation type with respect to Ik, for every k ≥ k1. Furthermore, the constants
{c, c1, r, d, ρ} appearing in Definition 3.2 are independent of k ≥ k1.

Consider c, ρ > 0 given by Lemma 4.1 and take 0 < β < c. Since I(0) = 0,
there exists 0 < r1 < ρ so that

|I(u)| ≤ β, ∀ u ∈ Br1(0). (4.2)

Fixing R > 2ρ and using (I1) − (I2) and (PSB)∗, we find k2 ≥ k1 and δ̂ > 0
such that, for every k ≥ k2,

‖I ′k(u)‖ ≥ δ̂ > 0, ∀ r1 ≤ ‖u
0‖ ≤ R+ 1. (4.3)

Now, taking χ : R → [0, 1] of class C∞ such that χ(s) = 0, if s ≤ 0, and
χ(s) = 1, if s ≥ 1, we set χR(s) = χ(s−R) and define Ik,ε ∈ C2(H,R) by

Ik,ε = Ik(u)−
ε

2
χR(‖u

0‖)‖u0‖2, ∀ u ∈ H, (4.4)

for k ≥ k2 and ε > 0. We take M̂ > {M, (R + 1)/(α + 1)}, M,α > 0 given by
(I5), and use (4.4), (I1)− (I2) and (PSB)∗ to obtain k ≥ k2 and ε > 0 so that

M̂ < ‖u‖ < (1 + α)‖u0‖, ∀ u ∈ K(Ik,ε) \Br1(0), (4.5)

Setting Î = Ik,ε, from (4.3), (4.5) and (I5), we get

m(Î , u) > dimX1k + 1, ∀ u ∈ K(Î) \Br1(0). (4.6)

On the other hand, by (4.4) and Lemma 4.1, we obtain that Î satisfies (Î1),
(I2)− (I4), with (I3) a linking of deformation type with respect to Î. Thus, by
Theorem 3.6, Î possesses a critical point u0 ∈ H such that |Î(u0)| ≥ c > 0, c
given by Lemma 4.1, and m(Î , u0) ≤ dimX1k + 1. Noting that Î(u) = I(u), for
every u ∈ Br1(0), we obtain a contradiction with β < c, (4.2) and (4.6). The
proof of Theorem 2.2 is complete. ♦
We finish this section by presenting a version of Theorem 2.2 when (Hk)

satisfies Hk = H , for every k ∈ N.
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Theorem 4.2 Let H be a real Hilbert space. Suppose I ∈ C2(H,R) satisfies
(I1)− (I5), with Hk = H, for every k ∈ N. Assume that the origin is an isolated
critical point of I. Then there exists c > 0 such that I possesses a critical point
u ∈ H satisfying either I(u) ≤ −c and m(I, u) ≤ dimX1, or I(u) ≥ c and
m(I, u) ≤ dimX1 + 1.

Remark 4.3 The Theorem 4.2 generalizes the Theorem 2.18 in [31].

5 Proofs of Theorems 1.1, 1.2 and 1.3

We start by recalling the variational structure associated to the problem (1.1).
Consider the Hilbert spaceH = H10 (Ω)×H

1
0 (Ω) endowed with the inner product

〈z, ξ〉 =

∫
Ω

〈∇z,∇ξ〉 dx, ∀ z, ξ ∈ H,

where ∇z = (∇u,∇v), for z = (u, v) ∈ H . Denoting by I : H → R the
functional associated to (1.1), we may write

I(z) = QA(z) + J(z), ∀ z ∈ H, (5.1)

with

QA(z) =
1

2
〈LAz, z〉 =

1

2

∫
Ω

(〈R∇z,∇z〉 − 〈RAz, z〉) dx, (5.2)

J(z) =

∫
Ω

G(x, z) dx, (5.3)

and G(x, z) = 1
2 〈RAz, z〉 − F (x, z). We note that a standard argument [27]

shows that I ∈ C2(H,R) and that the critical points of I are solutions of (1.1).
Furthermore, we have that the self-adjoint linear operator LA : H → H , given
by (5.2), satisfies the condition (I1). In the following, we denote by H

+(A),
H0(A) and H−(A) the spectral decomposition of H associated to LA. We also
set TA = LA−L0, where L0 is the linear operator associated to the null matrix.
For every j ∈ N, we set ej = (ϕj , 0) and e−j = (0, ϕj), where ϕj is the

eigenvector associated to the eigenvalue λj of the operator −∆ on H10 (Ω). We

note that H+(0) = span{ej | j ∈ N} and H−(0) = span{e−j | j ∈ N}, where
H+(0) and H−(0) are the subspaces given by the spectral decomposition of H
associated to the linear operator L0.
In order to apply the Theorem 2.2 to our problem, we consider the family of

closed subspaces (Hk) of H defined by Hk = H−k (0)⊕H
+(0), where H−k (0) =

span{e−1, . . . , e−k}, for every k ∈ N. The following lemma is proved in [10, 11].

Lemma 5.1 Let A be an anti-symmetric 2×2 matrix. Then the linear operator
TA = LA − L0 is compact. Furthermore, for every k ∈ N, Hk is an invariant
subspace of TA.
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Remark 5.2 (i) As a consequence of Lemma 5.1, we have that Hk = H
+(A)⊕

H0(A) ⊕ H−k (A), for k sufficiently large, where H
−
k (A) is a finite subspace of

H−(A). (ii) Considering the definitions given in the introduction, we obtain
that n(A) = dimH0(A) and i(A) = ik(LA) − ik(L0) = dim(H

−
k (A)) − k, for k

sufficiently large, where ik(L) denotes the index of the operator L restricted to
Hk.

Taking X1 = H−(A0) and X
2 = H0(A0) ⊕H+(A0), the proof of the next

lemma can be based on the argument used in [28, 29] (see also [31]).

Lemma 5.3 Suppose F ∈ C2(Ω̄×R2,R) satisfies (F2), with (F4) holding when
n(A0) 6= 0. Then there exists ρ > 0 such that
(i) I(u) ≥ 0, for all u ∈ X2 ∩Bρ(0),
(ii) I(u) ≤ 0, for all u ∈ X1 ∩Bρ(0).

Setting X ik = X i ∩Hk, i = 1, 2, for every k ∈ N, as a direct consequence of
Lemma 5.3, we obtain

Corollary 5.4 Suppose F ∈ C2(Ω̄ × R2,R) satisfies (F2), with (F4) holding
when n(A0) 6= 0. Then the functional I satisfies (I3).

We omit the proof of the next result since it is similar to the proof of Lemma
5.6 (see also [14] and references therein),

Lemma 5.5 Suppose F ∈ C2(Ω̄×R2,R) satisfies (F1). Then the functional J
given by (5.3) satisfies the condition (I2).

The next lemma allows us to handle the pointwise limit assumed in condition
(F3).

Lemma 5.6 Suppose F ∈ C2(Ω̄ × R2,R) satisfies (F3). Then, given β > 0,
there exists M > 0 and α > 0 such that∫

Ω

(
〈D2F (x, z)w,w〉 − 〈RA1w,w〉

)
dx ≥ −β, ∀ w ∈ ∂B1(0), (5.4)

for every z ∈ Cα, ‖z‖ > M .

Proof: Arguing by contradiction, we suppose that there exist sequences (zn) ⊂

H and (wn) ⊂ ∂B1(0) satisfying ‖zn‖ → ∞,
‖z0n‖
‖zn‖

→ 1, as n→∞, and∫
Ω

gn(x) dx ≤ −β, ∀ n ∈ N, (5.5)

where gn(x) = 〈D2F (x, zn(x))wn(x), wn(x)〉 − 〈RA1wn(x), wn(x)〉, for x ∈ Ω.
Taking vn = zn/‖zn‖ in ∂B1(0) and using that H0 = H0(A) is finite dimen-
sional, we may assume that vn(x)→ v(x) ∈ ∂B1(0)∩H0. Hence, by the unique
continuation property, we must have

|zn(x)| → ∞, for a. e. x ∈ Ω. (5.6)
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Considering N > 2 and invoking the Sobolev Embedding Theorem, we may
assume that there exists w ∈ H such that

wn ⇀ w, weakly in H,

wn(x)→ w(x), for a. e. x ∈ Ω, (5.7)

|wn(x)| ≤ hq(x) ∈ Lq(Ω), 1 ≤ q < 2N/(N − 2), for a. e. x ∈ Ω.

Observing that (|wn(x)|2) ⊂ LN/(N−2)(Ω) is bounded and that wn(x) → w(x),
a. e. on Ω, we may also suppose (see [17]) that |wn(x)|2 ⇀ |w(x)|2, weakly in

LN/(N−2)(Ω). Thus, since C(x) ∈ L
N
2 (Ω), we get

lim
n→∞

∫
Ω

C(x)|wn(x)|
2 dx =

∫
Ω

C(x)|w(x)|2 dx. (5.8)

Now, we use (5.7) and (F3) one more time to find h ∈ L1(Ω) such that

gn(x) − C(x)|wn(x)|
2 ≥ h(x), for a. e. x ∈ Ω.

Hence, invoking (5.6), (5.7), (F3), the above inequality and Fatou’s Lemma, we
have

lim inf
n→∞

∫
Ω

(
gn(x) − C(x)|wn(x)|

2
)
dx ≥ −

∫
Ω

C(x)|w(x)|2 dx.

But, this last relation and (5.8) contradict (5.5). The Lemma 5.6 is proved. ♦

Proposition 5.7 Suppose F ∈ C2(Ω̄ × R2,R) satisfies (F2) − (F3), with (F4)
holding when n(A0) 6= 0. If i(A1) > i(A0) + 1, then the functional I given by
(5.1) satisfies the conditions (I4) and (I5).

Proof: First, we invoke the Lemma 5.1 and the Remark 5.2 to find k1 ∈ N
such that, for every k ≥ k1, we have

ik(LA) = i(A) + k = dim(H
−
k (A)),

ik(LA1) = i(A1) + k = dim(H
−
k (A1)),

ik(LA0) = i(A0) + k = dim(X
1
k).

(5.9)

Observing that the conditions (F1) and (F3) imply that LA ≤ LA1 , from i(A1) >
i(A0) + 1 and (5.9), we get that dim(H

−
k (A)) ≥ dim(X

1
k) + 1, for k ≥ k1. Thus,

I satisfies the condition (I4).
We now verify that the condition (I5) is satisfied by I: applying the Lemma

5.1 one more time and taking k1 larger if necessary, we may suppose that∫
Ω

〈RA1w,w〉 dx ≤
1

2
‖w‖2, ∀ w ∈ H⊥k1 ∩H. (5.10)

We now consider the subspace V = H−k1(A1) of Hk1 and take 0 < β < 1/4 so
that

〈LA1v, v〉 ≤ −2β‖v‖
2, ∀ v ∈ V. (5.11)
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Applying Lemma 5.6, we find M > 0, α > 0 such that (5.4) holds for β given
above.
Given k > k1, we set Yk = span{e−(k1+1), . . . , e−k} and Ĥk = V ⊕ Yk.

Taking w ∈ Ĥk ∩ ∂B1(0), we write w = v + y, with v ∈ V , y ∈ Yk, and we use
(5.4), (5.10) and (5.11), to obtain

〈D2Ik(z)w,w〉 ≤ −β‖v‖
2 −

(
1

2
− 2β

)
‖y‖2,

for every z ∈ Cα with ‖z‖ > M . Since, by (5.9), dim(Ĥk) = dim(V ) + k− k1 =
i(A1) + k > i(A0) + 1 + k = dimX

1
k + 1, we conclude that I satisfies (I5) for

every 0 < µ < {−β, 12 − 2β}. That concludes the proof of Proposition 5.7. ♦

Proofs of Theorems 1.1 and 1.2: As observed above the functional I given
by (5.1) satisfies (I1). The Corollary 5.4, the Lemma 5.5 and the Proposition
5.6 imply that I satisfies (I2) − (I5). Since Hk is an invariant subspace of LA
and I satisfies (I1) and (I2), we also have that the (PSB)

∗ condition is satisfied
by I. Invoking the Theorem 2.2, we obtain that I has a critical point other than
zero. That concludes the proofs of Theorems 1.1 and 1.2. ♦

Proof of Theorem 1.3: We just observe that under the hypotheses (F̂4) and
i(A1) > i(A0) + n(A0) + 1, we may prove the corresponding versions of Lemma
5.3 and Proposition 5.7 by taking X1 = H−(A0)⊕H0(A0) and X2 = H+(A0),
respectively. ♦

Remark 5.8 We note that versions of the Theorems 1.1, 1.2 and 1.3 can be
proved when we have lim sup|z|→∞D2F (x, z) bounded from above by RA1. On
that case, the results should be given in function of the relative numbers of
negative eigenvalues of the problem (1.2) associated to the matrices A0 and A1.
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