\documentclass[twoside]{article} \usepackage{amsfonts} % used for R in Real numbers \pagestyle{myheadings} \setcounter{page}{131} \markboth{ Three solutions for quasilinear equations in near resonance } { Pablo De N\'apoli \& Mar\'{\i}a Cristina Mariani } \begin{document} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent USA-Chile Workshop on Nonlinear Analysis, \newline Electron. J. Diff. Eqns., Conf. 06, 2001, pp. 131--140.\newline http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu or ejde.math.unt.edu (login: ftp)} \vspace{\bigskipamount} \\ % Three solutions for quasilinear equations in $\mathbb{R}^n$ near resonance % \thanks{ {\em Mathematics Subject Classifications:} 35J20, 35J60. \hfil\break\indent {\em Key words:} p-Laplacian, resonance, nonlinear eigenvalue problem. \hfil\break\indent \copyright 2001 Southwest Texas State University. \hfil\break\indent Published January 8, 2001. } } \date{} \author{ Pablo De N\'apoli \& Mar\'{\i}a Cristina Mariani } \maketitle \begin{abstract} We use minimax methods to prove the existence of at least three solutions for a quasilinear elliptic equation in $\mathbb {R}^n$ near resonance. \end{abstract} \newtheorem{theorem}{Theorem}[section] \newtheorem{lem}[theorem]{Lemma} \newtheorem{rem}[theorem]{Remark} \newtheorem{prop}[theorem]{Proposition} \renewcommand{\theequation}{\thesection.\arabic{equation}} \catcode`@=11 \@addtoreset{equation}{section} \catcode`@=12 \section{Introduction} J. Mawhin and K. Smichtt \cite{MS}, proved the existence of at least three solutions for the two-point boundary value problem \[\displaylines{ -u''-u+\varepsilon u=f(x,u)+h(x)\cr u(0)=u(\pi)=0 }\] for \( \varepsilon >0 \) small enough, \( h \) orthogonal to \( \sin x \) and \( f \) bounded satisfying the sign condition \( uf(x,u)>0 \). In \cite{TS}, To Fu Ma and L. Sanchez considered the problem \begin{equation}\label{problema-1} -\Delta _{p}u-\lambda_{1}|u|^{p-2}u+\varepsilon |u|^{p-2}u=f(x,u)+h(x) \end{equation} in \(W_0^{1,p}(\Omega)\) with \( \Omega \subset \mathbb {R}^n \) a bounded domain, and \( \lambda _{1} \) the first eigenvalue of \begin{eqnarray}\label{problema-2} & -\Delta _{p}u=\lambda |u|^{p-2}u\quad \hbox{in }\Omega &\\ & u=0\quad\hbox {on } \partial \Omega \,.&\nonumber \end{eqnarray} They proved the following result. \begin{theorem} Suppose that \( p\geq 2 \) and that the following two conditions hold:\begin{enumerate} \item[(H1)] \( f:\overline{\Omega }\times \mathbb {R}^n\to \mathbb {R}^n \) is a continuous function and there exist \( \theta >\frac{1}{p} \) such that $\theta sf(x,s)-F(x,s)\to -\infty$ as $|s|\to \infty$ \item[(H2)] There exists \( R>0 \) such that $sf(x,s)>0$ for all $x\in \Omega$, $|s|\geq R$ \end{enumerate} Then for every \( h\in L^{p'}(\Omega ) \) with \( \int _{\Omega }h(x)\varphi _{1}(x)dx=0 \), where \( \varphi _{1} \) is the first eigenfunction of (\ref{problema-2}), the equation (\ref{problema-1}) has at least three solutions for \( \varepsilon >0 \) small enough. \end{theorem} We recall that the assumptions on \( f \) imply the growth condition \[ |f(x,s)|\leq c_{1}+c_{2}|s|^{\sigma }\] with \( \sigma =\frac{1}{\theta }

0 \) in \( \Omega ^{+} \) with \( \left| \Omega ^{+}\right| >0 \). Also $g$ satisfies one the following two conditions \begin{description} \item{$(G^{+})$} \( g(x)\geq 0 \) a.e. in \( \mathbb {R}^n \) \item{$(G^{-})$} \( g(x)<0 \) for \( x\in \Omega ^{-} \), with \( |\Omega ^{-}|>0 \). \end{description} \begin{theorem} \begin{enumerate} \item Let \( g \) satisfy $(G)$ and \( (G^{+}) \). Then equation (\ref{eigenvalue-problem}) admits a positive first eigenvalue, \begin{equation} \label{minimization-problem} \lambda _{1}=\inf _{B(u)=1}\left\| u\right\| _{D^{1,p}}^{p} \end{equation} with $B(u)=\int _{\mathbb{R}^n }|u(x)|^{p}g(x)\,dx$. \item Let \( g \) satisfy $(G)$ and \( (G^{-}) \). Then problem (\ref{eigenvalue-problem}) admits two first eigenvalues of opposite sign: \[ \lambda ^{+}_{1}=\inf _{B(u)=1}\left\| u\right\|_{D^{1,p}}^{p}\quad \lambda ^{-}_{1}=-\inf _{B(u)=-1}\left\| u\right\|_{D^{1,p}}^{p}\] In both cases the associated eigenfunctions \( \varphi ^{+}_{1} \), \( \varphi ^{-}_{1} \) belong to \( D^{1,p}\cap L^{\infty } \). \item The set of eigenvectors corresponding to \( \lambda _{1} \) is a one dimensional subspace. \end{enumerate}\end{theorem} \begin{rem} The first eigenfunction \( \varphi _{1} \) does not change its sign in \( \Omega \), so we may assume \( \varphi _{1}\geq 0 \). \end{rem} \paragraph{Proof.} Taking \( \varphi ^{-} \) as a test function in (\ref{eigenvalue-problem}) with \( \lambda =\lambda _{1} \) we see that \[ \int _{\mathbb{R}^n }|\nabla (\varphi ^{-})|^{p}=\lambda _{1}\int _{\mathbb{R}^n }|\varphi ^{-}_{1}|^{p}g(x)dx\] It follows that \( \varphi ^{-}=0 \) (and \( \varphi \geq 0 \) ), or \( \varphi ^{-}_{1} \) is also a solution of the minimization problem (\ref{minimization-problem}). In the last case, from the simplicity of the first eigenvalue \( \varphi _{1}^{-}=c\varphi _{1} \). It follows that \( \varphi ^{-}=-\varphi _{1} \), so \( \varphi _{1}\leq 0 \). \hfill$\diamondsuit$ \subsection*{Existence of multiple solutions} In this paper we study quasilinear elliptic equation \begin{equation} \label{our-problem} -\Delta _{p}u=(\lambda _{1}-\varepsilon )g(x)|u|^{p-2}u+f(x,u)+h(x) \end{equation} in \( \mathbb {R}^n \). We assume the following: \begin{enumerate} \item \( 10 \) \item On the weight \( g \) we make the assumptions \( (G) \) and \( (G^{+}) \) of \cite{FMST} \item \( h\in L^{p^{*\prime }} \) and \( \int _{\mathbb {R}^n}h\varphi _{1}dx=0 \) \item We assume that the non linearity \( f:\mathbb {R}^n\times \mathbb {R}\to \mathbb {R} \) is continuous and satisfies \begin{description} \item{(H0)} Growth condition. \[ |f(x,s)|\leq c_{1}(x)+c_{2}(x)|s|^{\sigma -1}\] with \( \sigma

0 \). \item{(H1)} If \( F(x,s)=\int ^{s}_{0}f(x,t)dt \) then $\frac{1}{p}sf(x,s)-F(x,s)\to -\infty$ as $|s|\to \infty$. \item{(H2)} Sign condition. There exists \( R>0 \) such that: $sf(x,s)>0$ for all $x\in \mathbb {R}^n$, $|s|\geq R$. \end{description} \end{enumerate} \par For example we may take $f(x,s)= c_2(x) |s|^{\sigma-1}s \cdot \rm{sgn}\;s$ where $c_2(x)$ satisfies the conditions above, $c_2(x)>0$, and $\sigma0 \) small enough. \label{our-main} \end{theorem} \section{Technical Lemmas} For the proof of theorem \ref{our-main} we will need the following results: \subsection*{A compactness result in weighted \protect\protect\protect\( L^{p}\protect \protect \protect \) spaces} If \( u\in D^{1,p} \), \( 1 \leq q \leq p^* \), \( \frac{1}{r}+\frac{q}{p^{*}}=1 \; \)and \( g\in L^{r},g\geq 0 \), then from H\"older and Sobolev inequalities, we have that \begin{equation} \label{imbedding} \int _{\mathbb {R}^n}|u|^{q}g\leq C\int _{\mathbb {R}^n}|\nabla u|^{p} \end{equation} and it follows that \( D^{1,p}\subset L_{g}^{q} \). The following result proves that under appropriate conditions, this imbedding is also compact. (Other previous results can be found in \cite{KP}). \begin{prop} Let \( 1\leq q < p^{*} \), \( \frac{1}{r}+\frac{q}{p^{*}}=1 \), \( g\in L^{r}\cap L_{loc}^{r+\varepsilon } \) for some \( \varepsilon >0 \). Then the imbedding \[ D^{1,p}\subset L_{g}^{q}(\mathbb {R}^n)\] is compact.\label{prop-compacidad} \end{prop} \paragraph{Proof.} Let \( (u_{n})\subset D^{1,p} \) be a bounded sequence: \[ \left\| u_{n}\right\| _{1,p}\leq C\] Then, as \( D^{1,p} \) is reflexive, we may extract a weakly convergent subsequence \( (u_{n_{k}}) \). For simplicity we assume that \( u_{n}\rightharpoonup u \). We want to prove that in fact \( u_{n}\to u \) strongly. From H\"older and Sobolev inequalities we have: \[ \int _{|x|>R}g|u-u_{n}|^{q}\leq \Big( \int _{|x|>R}|g|^{r}\Big) ^{1/r}\Big( \int _{|x|>R}|u_{n}-u|^{p^{*}}\Big) ^{p/p^{*}}\leq C\Big( \int _{|x|>R}|g|^{r}\Big) ^{1/r}\] Given \( \varepsilon >0 \), as \( g\in L^{r} \) we can choose \( R>0 \) verifying \[ \int _{|x|>R}g|u-u_{n}|^{q}\leq \frac{\varepsilon }{2}\] Now \( D^{1,p}(\mathbb {R}^n)\subset W_{loc}^{1,p}(\mathbb {R}^n) \) continously and by the Rellich-Kondrachov theorem \[ u_{n}\to u \;\hbox {strongly} \;\hbox {in} \; L^{t}(B_{R})\] if \(1 \leq t1 \) such that \( s'=r+\varepsilon \), then \( s<\frac{p^{*}}{q} \), and \[ \int _{|x|\leq R}g|u_{n}-u|^{q}\leq \Big( \int _{|x|\leq R}|g|^{s'}\Big) ^{1/s'}\Big( \int _{|x|0 \) such that $\inf_{u\in W} J_{\epsilon }(u)\geq -m$. \end{lem} \paragraph{Proof.} We suppose \( 0<\varepsilon <\lambda _{1} \), then \[ J_{\varepsilon }(u)\geq \frac{1}{p}\left( 1-\frac{\lambda _{1}-\epsilon }{\lambda _{1}}\right) \int _{\mathbb{R}^n }|\nabla u|^{p}-\int _{\mathbb{R}^n }(F(x,u)+hu)\] and \[ J_{\varepsilon }(u)\geq \frac{\epsilon }{p\lambda _{1}}\left\| u\right\| ^{p}_{1,p}-C_{1}-C_{2}\left\| u\right\| _{1,p}^{\sigma }-\left\| h\right\| _{(p^{*})^{\prime }}\left\| u\right\| _{p^{*}}\] As \( \sigma

\lambda _{1} \). In fact if \( \lambda _{1}=\lambda _{W} \) then we would have \( w\in W \) verifying \[ \int _{\mathbb{R}^n }|w|^{p}=\lambda _{1},\int _{\mathbb{R}^n }|w|^{p}g(x)dx=1\] So by the simplicity of the first eigenvalue, \( w=c\varphi _{1} \) but this contradicts the definition of \( W \). Then, for \( u\in W \) we have \[ J_{\varepsilon }(u)\geq \frac{\lambda _{W}-\lambda _{1}}{p\lambda _{W}}\left\| u\right\| ^{p}_{1,p}-C_{1}-C_{2}\left\| u\right\| _{1,p}^{\sigma }-\left\| h\right\| _{(p^{*})'}\left\| u\right\| _{p^{*}}\] Then \( J_{\varepsilon } \) is uniformly coercive in \( W \) respect to \( \varepsilon \), and in particular is uniformly bounded from below. \hfill$\diamondsuit$ For stating the next result we need the two open sets: \[\displaylines{ O^{+}=\Big\{ w\in D^{1,p}:\int_{\mathbb{R}^n} g(x)|\varphi _{1}|^{p-2}\varphi _{1}w>0\Big\}, \cr O^{-}=\Big\{ w\in D^{1,p}:\int_{\mathbb{R}^n} g(x)|\varphi _{1}|^{p-2}\varphi _{1}w<0\Big\} } \] The next condition is a variant of the Palais-Smale condition (PS). We will say that a functional \( \phi:D^{1,p} \to \mathbb{R} \) verifies the \((PS)_{O^{\pm },c}\) condition if any sequence \( (u_{n}) \) in \( O^{+} \) (respectively in \( O^{-} \)) with \( \phi (u_{n})\to c \), \( \phi' (u_{n})\to 0 \), has a subsequence \( (u_{n_{k}})\to u\in O^{+} \). \begin{prop} The operator \( -\Delta _{p}:D^{1,p}\to (D^{1,p})^{*} \) satisfies the \( (S_{+}) \) condition: if \( u_{n}\rightharpoonup u \) (weakly in \( D^{1,p}(\mathbb {R}^n) \) ) and \( \lim \sup _{n\to \infty } \left\langle -\Delta _{p}u_{n},u_{n}-u\right\rangle \leq 0 \), then \( u_{n}\to u \) (strongly in \( D^{1,p} \) ) \end{prop} \paragraph{Proof.} This follows from the uniform convexity of \( D^{1,p}(\mathbb {R}^n) \) (see \cite{DJM}) \begin{lem} \( J_{\epsilon } \) satisfies the \( (PS) \) condition, and it verifies \( (PS)_{O^{\pm },c} \) if \( c<-m \).\label{lema2} \end{lem} \paragraph{Proof.} Let \( (u_{n})\subset D^{1,p} \) be a \( (PS) \) sequence such that \[ J_{\varepsilon }(u_{n})\to c, J_{\varepsilon }^{\prime }(u_{n})\to 0\] Since \( J_{\varepsilon }\; \) is coercive, it follows that \( (u_{n}) \) is bounded in \( D^{1,p} \), which is reflexive, so (after passing to a subsequence) we may assume that \( u_{n}\to u \) weakly. We want to show that in fact, \( u_{n}\to u \) strongly. We have that \begin{eqnarray*} J_{\varepsilon }'(u_{n})(u_{n}-u) &=&\int |\nabla u_{n}|^{p-2}\nabla u_{n}\cdot \nabla (u_{n}-u)\\ &&-(\lambda_{1}-\varepsilon )\int |u_{n}|^{p-2}u_{n}(u_{n}-u)g(x)dx \\ &&-\int h(u_{n}-u)-\int f(x,u_{n})(u_{n}-u) \end{eqnarray*} Clearly \( \int h(u_{n}-u)\to 0 \) since \( u_{n}\rightharpoonup u \) weakly. Then \( u_{n}\to u \) strongly in \( L_{g}^{p}(\mathbb {R}^n) \) since the imbedding \( D^{1,p}\subset L_{g}^{p} \) is compact. It follows that: \( \int |u_{n}|^{p-2}u_{n}(u_{n}-u)g(x)dx\to 0 \) From proposition \ref{n} and the H\"older inequality \[ \int f(x,u_{n})(u_{n}-u)dx = \int [f(x,u)-f(x,u_n)](u_n-u) dx + \int f(x,u)(u_n-u) \to 0\,.\] Since \(J_{\varepsilon }'(u_{n})(u_{n}-u)\to 0\), it follows that \[ \int |\nabla u_{n}|^{p-2}\nabla u_{n}\cdot \nabla (u_{n}-u)dx\to 0\] or equivalently, $\left\langle -\Delta _{p}u_{n},u_{n}-u\right\rangle \to 0$. By the \( S_{+} \) condition, this implies that \( u_{n}\to u \) strongly in \( D^{1,p} \). To prove that \( J_{\epsilon } \) satisfies \( (PS)_{O^{\pm },c} \) for \( c<-m \), consider \( (u_{n})\subset O^{\pm } \) be a \( (PS)_{c} \) sequence. There exists a convergent subsequence: \( u_{n_{k}}\to u \), and it is enough to prove that \( u\in O^{\pm } \), but if \( u\in \partial O^{\pm }=W \), then \( c=J(u)\geq -m \), a contradiction. \hfill$\diamondsuit$ \begin{lem} If \( \varepsilon >0 \) is small enough, there exists two numbers, $t^{-}<0\rho }\varphi ^{p}_{1}gdx<\frac{m}{2}\] and we split the integral \( J_{\varepsilon } \) in two parts: $J_{\varepsilon }=J_{\varepsilon }^{1}+J_{\varepsilon }^{2}$, where \( J_{\varepsilon }^{1} \) is the integral over \( |x|\leq \rho \), and \( J_{\varepsilon }^{2} \) is the integral over \( |x|>\rho \). We define \[\displaylines{ A(t)=\{x:|x|\leq \rho :\varphi _{1}(x)>R/t\}\cr B(t)=\{x:|x|\leq \rho :\varphi _{1}(x)\leq R/t\} }\] Then \[ \int _{B(t)}[\frac{\varepsilon }{p}t^{p}\varphi ^{p}_{1}-F(x,t\varphi _{1}(x))]dx\] is uniformly bounded in \( \varepsilon \) and \( t \) for \( \varepsilon \leq \varepsilon _{0} \). Let \begin{eqnarray*} M_{\varepsilon }(t)&=&\int _{A(t)} \left( \frac{1}{p}t\varphi _{1}(x)f(x,t\varphi _{1}(x))-F(x,t\varphi _{1}(x)) \right) \\ &&+\int_{B(t)} \left[\frac{\varepsilon }{p}t^{p}\varphi ^{p}_{1}-F(x,t\varphi _{1}(x))\right]dx \end{eqnarray*} Then, from \( (H1) \) and Fatou lemma, $M_{\varepsilon }(t)<-2m$ for \( t \) big enough, and \( \varepsilon \leq \varepsilon _{0} \). By \( (H2) \) there exists \( 0<\varepsilon _{t}\leq \varepsilon _{0} \) such that \[ \varepsilon _{t}u^{p-1}g(x)R/t \) and \( |x|\leq \rho \) we have: \[ \varepsilon _{t}t^{p-1}\varphi _{1}(x)^{p-1}g(x)\rho }\varepsilon _{t}t^{p}\varphi ^{p}_{1}dx<\frac{m}{2}\] and we conclude that $J_{\varepsilon _{t}}(t\varphi _{1})<-m$ for any \( \varepsilon _{t}\leq \varepsilon _{0} \). In a similar way, choosing first \( t \) big enough, and then \( \varepsilon _{t} \) small, we can prove that \( J_{\varepsilon _{t}}(-t\varphi _{1})<-m \) \hfill$\diamondsuit$ \subsection*{Proof of theorem \ref{our-main}} For \( \varepsilon >0 \) small enough, from lemmas \ref{lema2} and \ref{lema3} we have that \[ -\infty <\inf _{O^{\pm }}J_{\varepsilon }<-m\] and since \( (PS)_{c,O^{\pm }} \) holds for all \( c<-m \), it follows from the deformation lemma that the above infima are attained, say at \( u^{-}\in O^{-} \) and \( u^{+}\in O^{+} \). Since \( O^{\pm } \) are both open in \( D^{1,p} \) we have found two critical points of \( J_{\varepsilon } \). Let \[ c=\inf _{\gamma \in \Gamma }\max _{t\in [0,1]}J_{\varepsilon }(\gamma (t))\] with \[ \Gamma =\{\gamma \in C([0,1],D^{1,p}(\mathbb {R}^n):\gamma (0)=u^{-},\gamma (1)=u^{+}\}\] We observe that \( \gamma ([0,1])\cap W\neq 0 \) for any \( \gamma \in \Gamma \), so we conclude that \[ c=\inf _{W} J_{\varepsilon }\geq -m\] \( J_{\varepsilon } \) verifies \( (PS) \), and from Ambrossetti-Rabinowitz's Mountain Pass Theorem \cite{AR} we conclude that \( c \) is a third critical value of \( J_{\varepsilon } \), and since \( J_{\varepsilon }(u^{\pm })<-m \), the corresponding critical point is different from \( u^{+},u^{-} \). \begin{thebibliography}{00} \bibitem{AR} A. Ambrosetti \& P. H. Rabinowitz, {\em Dual Variational Methods in Critical Point Theory and Applications}, Jounal Functional Analysis 14 (1973) pp.349-381 \bibitem{B} H. Brezis, Analyse fonctionnelle, Masson, Paris 1983 \bibitem{DJM} G. Dinca, P. Jebelean, \& J. Mawhin, {\em Variational and Topological Methods for Dirichlet Problems with p-Laplacian}- Recherches de math‰matique (1998) Inst. de Math. Pure et. Apliqu‰e, Univ. Cath. de Louvain. \bibitem{FMST} J. Fleckinger, R.F. Man\'asevich, N.M. Stavrakakis, \& F. De Thëlin, {\em Principal Eigenvalues for Some Quasilinear Elliptic Equations on \( \mathbb {R}^n \)}, Advances in Differential Equations - Vol. 2, Number 6, November 1997 ,pp. 981-1003 \bibitem{G} J.-P. Gossez, {\em Some Remarks on the Antimaximum Principle}, Revista de la Uni\'{o}n Matem\'{a}tica Argentina- vol. 41, 1 (1998) pp. 79-84 \bibitem{KP} I. Kuziw \& S. Pohozaev, {\em Entire Solutions of Semilinear Elliptic Equations}, Progress in Nonlinear Differential Equations and Their Applications - Vol 33. - Birkhauser \bibitem{MS} Mawhin J. \& Schmitt K., {\em Nonlinear eigenvalue problems with the parameter near resonance}, Ann. Polonici Math. LI (1990) pp. 241-248 \bibitem{O} Jo\~ao Marcos B. do \'O, {\em Solutions to perturbed eigenvalue problems of the p-Laplacian in \( \mathbb {R}^n \)}, Electronic Journal of Diff. Eqns., Vol. 1997(1997), No. 1, pp. 1-15 \bibitem{TS} To Fu Ma \& L. Sanchez, {\em Three solutions of a Quasilinear Elliptic Problem Near Resonance}, Universidade de Lisboa CAUL/CAMAF-21/95 \end{thebibliography} \noindent{\sc Pablo L. De N\'apoli} (e-mail: pdenapo@dm.uba.ar) \\ {\sc M. Cristina Mariani} (e-mail: mcmarian@dm.uba.ar) \\[2pt] Universidad de Buenos Aires \\ FCEyN - Departamento de Matem\'atica \\ Ciudad Universitaria, Pabell\'on I \\ Buenos Aires, Argentina \end{document}