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A remark on infinity harmonic functions ∗

Michael G. Crandall & L. C. Evans

Abstract

A real-valued function u is said to be infinity harmonic if it solves
the nonlinear degenerate elliptic equation −

∑n
i,j=1 ux1uxjuxixj = 0 in

the viscosity sense. This is equivalent to the requirement that u enjoys
comparison with cones, an elementary notion explained below. Perhaps
the primary open problem concerning infinity harmonic functions is to
determine whether or not they are continuously differentiable. Results
in this note reduce the problem of whether or not a function u which
enjoys comparison with cones has a derivative at a point x0 in its domain
to determining whether or not maximum points of u relative to spheres
centered at x0 have a limiting direction as the radius shrinks to zero.

1 Introduction

Let U ⊂ Rn be an open set and u : U → R. Then u is said to be infinity
harmonic in U if it is continuous and satisfies

−∆∞u = −
n∑
i,j=1

ux1uxjuxixj = 0 in U (1)

in the sense of viscosity solutions of nonlinear possibly degenerate elliptic equa-
tions. We refer to Crandall, Evans and Gariepy [4] for terminology not defined
here; however, the theory of viscosity solutions is not needed to read this paper.
Indeed, this note employs only an elementary property which is shown to be
equivalent to infinite harmonicity in [4]. One says that u enjoys comparison
with cones from above in U if for every open set V b U (i.e., V is an open
subset of U whose closure is a compact subset of U), a, b ∈ R and y ∈ Rn such
that

u(x) ≤ a+ b|x− y| for x ∈ ∂(V \ {y})

one then has u(x) ≤ a + b|x − y| for x ∈ V . Similarly, one defines comparison
with cones from below and then defines “u enjoys comparison with cones” as
the conjunction of the two one-sided notions. In [4] it is shown that −∆∞u = 0
in U in the viscosity sense if and only if u enjoys comparison with cones in U .
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124 A remark on infinity harmonic functions

We refer to [4] for orientation and references beyond the following remarks.
The equation (1) arises as the Euler equation for the problem of minimizing
‖Du‖ in the L∞ norm subject to Dirichlet conditions. That is, (1) guarantees
that if V b U and u = v on ∂V , then ‖Du‖L∞(V ) ≤ ‖Dv‖L∞(V ). We call
this property (AML) for “absolutely minimizing Lipschitz”. This aspect of
(1) was introduced and studied by Aronsson [1], [2], [3] in the case of smooth

functions. However, the nonsmooth function u(x1, x2) = x
4/3
1 − x4/32 solves (1)

(equivalently, enjoys comparison with cones) in R2. This function has Hölder
continuous first partial derivatives but is not twice differentiable along the lines
x1 = 0, x2 = 0. This example, again due to Aronsson, sets limits on the
reliability of results derived for (1) via pde arguments valid for smooth functions.
For example, Aronsson showed that classical solutions of (1) in two variables are
either constant or have a nowhere vanishing gradient. However, the example is
not constant and the gradient vanishes at the origin. Classical solutions of (1)
also have the property that |D(u(X(t))| is constant when dX(t)/dt = Du(X(t))
(gradient flow). In fact, this property is easily seen to be equivalent to (1) for
smooth functions. However |Du| is not constant on gradient flow lines in the
example.

R. Jensen [5] used approximation of (1) by the p-Laplace equation to prove
the equivalence of (1) in the viscosity sense and the extremal property (AML).
He proved as well that the Dirichlet problem for (1) was uniquely solvable.
Jensen used approximation by the p-Laplacian in his remarkable analysis. A
direct elementary proof that functions enjoying comparison with cones have the
property (AML) was given in [4].

It remains a mystery as to whether or not solutions of (1) are everywhere
differentiable. Our main results imply that u can only fail to be differentiable
via complex phenomena — roughly speaking, simple bad behaviors that do
not scale to planes are ruled out. More precisely, we prove that if u enjoys
comparison with cones in U , x0 ∈ U , rj ↓ 0 and

v(x) = lim
j→∞

u(rjx+ x0)− u(x0)

rj
(2)

holds locally uniformly in Rn, then v is linear.

As a consequence of the above and arguments in the proof, we establish an
equivalent condition to differentiability of u at x0. Suppose x0 is not a point at
which Du(x0) exists and Du(x0) = 0. Then u is differentiable at x0 if and only
if the following condition holds: if |zr − x0| = r and u(zr) = max{|z−x0|=r} u(z)
for small r > 0, then

lim
r↓0

zr − x0
r

exists. (3)

We reduce the problem of showing u is differentiable at x0 to verifying (3).
However, we have not yet determined if (3) is always satisfied.
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2 The Proofs

We employ the notation

Sr(x0) = {z ∈ R
n; |z − x0| = r}

for the sphere of radius r centered at the x0.
Let u enjoy comparison with cones in the open subset U of Rn. We note that

only this simple property is needed in all that follows. The equivalence with
the satisfaction of the equation is not needed, nor are devices more conveniently
dealt with in terms of the equation (changes of variables, etc.). It follows from
Lemma 2.5 of [4] that u is locally Lipschitz continuous. The functions

L+r (y) = max
z∈Sr(y)

u(z)− u(y)

r
and L−r (y) = min

z∈Sr(y)

u(z)− u(y)

r

are defined for y ∈ U and r < dist(y, ∂U) as are the limits

L+(y) = lim
r↓0
L+r (y) and L−(y) = lim

r↓0
L−r (y). (4)

The latter quantities are well defined by Lemma 2.4 of [4], which establishes
that L+r (y) (respectively, L

−
r (y)) is nonnegative (respectively, nonpositive) and

nondecreasing (respectively, nonincreasing) in r. Moreover, by Lemma 2.7 of [4]

L+(y) = −L−(y). (5)

We will show that if 0 ∈ U , rj ↓ 0 and v ∈ C(Rn) is the locally uniform limit

v(x) = lim
j→∞

u(rjx)− u(0)

rj
(6)

then v is necessarily linear. Note that as u is locally Lipschitz continuous, any
sequence Rk ↓ 0 has a subsequence rj ↓ 0 for which the limit (6) is defined on
R
n and the convergence is uniform on any bounded subset of Rn.
Define

L0 = L
+(0) = −L−(0).

This number is computed from the original function u. Let v be given by (6).
It is obvious that locally uniform limits of functions enjoying comparison with
cones likewise enjoy comparison with cones, so v enjoys comparison with cones.
Hereafter the quantities

L+r (y) = max
z∈Sr(y)

v(z)− v(y)

r
and L−r (y) = min

z∈Sr(y)

v(z)− v(y)

r
(7)

are computed from v. Correspondingly, L+(y), L−(y) are now defined from v
and not u.
To see that v is linear, we will prove that

−L−r (y), L
+
r (y) ≤ L0 for y ∈ Rn, 0< r, (8)
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and
−L−(0) = L0 = L

+(0). (9)

Let us first show why (8), (9) imply that v is linear. First (8), (9) and L+(y) ≤
L+r (y) together with Lemma 2.7 (ii) of [4] imply that

L0 is the least Lipschitz constant for v. (10)

Next, let z±r ∈ Sr(0) be such that

L+r (0) =
v(z+r )− v(0)

r
=
v(z+r )

r
, L−r (0) =

v(z−r )− v(0)

r
=
v(z−r )

r
. (11)

Since L0 ≤ L+r (0) and L0 ≤ −L
−
r (0) because of (9) and monotonicity, it follows

from (8) and (11) that

L+r (0) = −L
−
r (0) = L0 =

v(z+r )− v(z
−
r )

2r
. (12)

The function
g(t) = v(z−r + t(z

+
r − z

−
r ))− v(z

−
r )

is Lipschitz with constant L0|z+r − z
−
r | by (10) and satisfies

|g(1)− g(0)| = |g(1)| = |v(z+r )− v(z
−
r )| = 2rL0

by (12). Hence 2rL0 ≤ L0|z+r − z
−
r | and this implies that

z+r = −z
−
r (13)

since both points lie in Sr(0). Moreover, |g(1) − g(0)| is then the Lipschitz
constant for g, which forces g to be linear for 0 ≤ t ≤ 1. We conclude that

v(z−r + t(z
+
r − z

−
r ))− v(z

−
r ) = L02rt for 0 ≤ t ≤ 1.

The net result of this analysis is that for each r > 0 there is a unique point
z+r ∈ Sr(0) such that v is linear on the line segment joining −z

+
r and z

+
r and

achieves its Lipschitz constant on these segments. The uniqueness follows from
the result (13). Then all the points z+r lie on a common line and thus there is
a line through the origin on which v is linear and attains its Lipschitz constant.
This forces v to be linear. Indeed, we may change coordinates to assume that
the line through the origin is along the first coordinate axis (x1, 0, · · · , 0), −∞ <
x1 <∞. That is, we assume that v(x1, 0, . . . , 0)−L0x1 ≡ 0. Write (x1, y) for a
general point in Rn; “y” contains the last n−1 coordinates. Consider w(x1, y) =
v(x1, y)/L0, which has 1 as a Lipschitz constant and satisfies w(x1, 0) ≡ x1.
Then we have

|w(x1, y)− w(s, 0)|
2 = |w(x1, y)− x1 + x1 − w(s, 0)|

2 (14)

= |w(x1, y)− x1 + x1 − s|
2

= |w(x1, y)− x1|
2 + 2(x1 − s)(w(x1, y)− x1) + |x1 − s|

2

≤ |x1 − s|
2 + |y|2.
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Here the last inequality is due to 1 being a Lipschitz constant for w:

|w(x1, y)− w(s, 0)|
2 ≤ |(x1, y)− (s, 0)|

2.

We conclude that 2(x1 − s)(w(x1, y)− x1) ≤ |y|2 where s is free. This can only
be if w(x1, y)− x1 ≡ 0.
Let 〈·, ·〉 be the Euclidean inner-product. For later use, let us observe that

if v(x) = 〈p, x〉 then |p| is determined by (10):

|p| = L0 = lim
r↓0
max
|z|=r

u(z)− u(0)

r
. (15)

Remark: The proof just given is essentially a special case of the proof of Lemma

4.2 of [4]. There is is shown that if w has 1 as a Lipschitz constant then
x1 → w(x1, y)−x1 is nonincreasing and its limits as x1 → ±∞ are independent
of y. In our case, when y = 0 these limits are 0. In view of the monotonicity,
we then have w(x1, y)− x1 ≡ 0, again establishing the linearity.

It remains to prove (8), (9). We treat the case of the superscript “+”. First
fix y and consider z ∈ Sr(y) such that

L+r (y) =
v(z)− v(y)

r
= lim
j→∞

u(rjz)− u(rjy)

rjr
.

We have rjz ∈ Srjr(rjy) and then

u(rjz)− u(rjy)

rjr
≤ L+u,rjr(rjy) ≤ L

+
u,R(rjy) (16)

for rjr < R < dist(rjy, ∂U). Here the notation is reflecting that we are comput-
ing quantities associated with u and the final inequality is due to monotonicity.
However, L+u,R(rjy) is continuous in rjy so combining (1) and (16) we find

L+r (y) ≤ lim
j→∞

L+u,R(rjy) = L
+
u,R(0)

and in the limit R ↓ 0 (8) follows. Finally, if we take y = 0 then for z ∈ Sr(0)

L+r (0) ≥ max
z∈Sr(0)

v(z)

r
= lim
j→∞

max
z∈Sr(0)

u(rjz)− u(0)

rrj
= lim
j→∞

L+u,rjr(0) = L0.

Thus (9) holds.

Remark: Given a Lipschitz continuous function u such that every limit (2)
is linear, the most optimistic among us might hope that u is then necessarily
differentiable. However, this is not so. D. Priess provided us with a classical
counterexample in R: u(x) = x sin(log(| log(|x|)|)). The function u is differen-
tiable except at x = 0 and it is Lipschitz continuous near x = 0, which is all
that matters here. All subsequential limits of the quotients u(rx)/r as r ↓ 0 are
linear, but the limiting slope can be arranged to be any number between -1 and
1.
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We have still to establish that (3) characterizes differentiability of u at points
x0 where u does not have a vanishing derivative. Assume x0 = 0 and let
L0 = L

+(0) be as above. A first point is that if Du(0) exists and Du(0) = 0,
then L+(0) = 0 is immediate. Conversely, if L+(0) = 0 then

|u(x)− u(0)|

|x|
≤ max

(
L+|x|(0),−L

−
|x|(0)

)
≤ max

(
L+r (0),−L

−
r (0)
)

for 0 < |x| < r and L+r (0),−L
−
r (0) → L0 = 0 shows that Du(0) = 0. Thus

L+(0) = L0 > 0 is assumed throughout what follows.
In general, if u is differentiable at 0 and p = Du(0) 6= 0 we have

u(x) = u(0) + 〈p, x〉+ o(|x|) as x→ 0; (17)

If zr is a maximum point of u on the sphere |x| = r then u(x) ≤ u(zr) for |x| = r
and so, by (17),

〈p, x〉 ≤ 〈p, zr〉+ o(r) for |x| = r

and elementary considerations show that this implies zr/r→ p/|p| as r ↓ 0. For
the converse, if rj ↓ 0 and

v(x) = lim
j→∞

u(rjx)− u(0)

rj
(18)

holds locally uniformly, it was proved above v that is linear. According to (15)
and current assumptions v is not constant. Say v(x) = 〈p, x〉. If we show that p
is independent of the sequence rj ↓ 0 the result follows. Indeed, then a standard
compactness argument shows that

v(x) = 〈p, x〉 = lim
r↓0

u(rx)− u(0)

r
holds locally uniformly.

That is, Du(0) exists and Du(0) = p.
We already know by (15) that |p| is unique. Let zr be any maximum point

for u on the sphere of radius r centered at the origin and assume that then

lim
r↓0

zr

r
= ω. (19)

Of course, we show p = |p|ω to complete the argument. Now x = zrj/rj is
a maximum point for the function on the right of (18) relative to the sphere
|x| = 1. Using (19) to pass to the limit in the relation

u(rjx)− u(0)

rj
≤
u(zrj )− u(0)

rj
=
u
(
rj
zrj
rj

)
− u(0)

rj
for |x| = 1

we find v(x) ≤ v(ω) for |x| = 1. As v(x) = 〈p, x〉 we conclude that p = |p|ω.
This completes the argument.
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