\documentclass[twoside]{article} \usepackage{amsfonts, amsmath} \pagestyle{myheadings} \markboth{Behaviour of solutions to inequalities} {Marie-Fran\c{c}oise Bidaut-V\'eron} \begin{document} \setcounter{page}{29} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent USA-Chile Workshop on Nonlinear Analysis, \newline Electron. J. Diff. Eqns., Conf. 06, 2001, pp. 29--44\newline http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu or ejde.math.unt.edu (login: ftp)} \vspace{\bigskipamount} \\ % Behaviour near zero and near infinity of solutions to elliptic equalities and inequalities % \thanks{ {\em Mathematics Subject Classifications:} 35J55, 35J60. \hfil\break\indent {\em Key words:} A priori estimates, non-existence results, degenerate quasilinear inequalities. \hfil\break\indent \copyright 2001 Southwest Texas State University. \hfil\break\indent Published January 8, 2001. } } \date{} \author{ Marie-Fran\c{c}oise Bidaut-V\'eron } \maketitle \begin{abstract} Here we consider elliptic equations and inequalities involving quasilinear operators in divergence form and nonlinear lower order terms: $$-\mathop{\rm div}\left(\mathcal{A}(x,u,\nabla u)\right) \geq |x|^\sigma u^Q\quad(Q>0,\sigma \in \mathbb{R}), $$ in dimension $N\geq 3$. We study the asymptotic behaviour of the solutions and give {\it a priori} estimate and non-existence results. \end{abstract} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \renewcommand{\theequation}{\thesection.\arabic{equation}} \catcode`@=11 \@addtoreset{equation}{section} \catcode`@=12 \section{ Introduction\label{intro}} Here we study the existence and the asymptotic behaviour near zero and near infinity of nonnegative solutions to elliptic problems involving quasilinear operators in divergence form. We study equalities of the form \begin{equation} -\mathop{\rm div}\left[ \mathcal{A}(x,u,\nabla u)\right] =|x|^{\sigma }u^{Q}, \label{equa} \end{equation} and more generally inequalities of the form \begin{equation} -\mathop{\rm div}\left[ \mathcal{A}(x,u,\nabla u)\right] \geq |x|^{\sigma }u^{Q}, \label{sal} \end{equation} where $Q,\sigma \in \mathbb{R}$, $Q>0$, in an open set $\Omega $ of $\mathbb{% R}^{N}$ $(N\geq 3)$. A great part of the results extends to systems of the form \begin{equation} \gathered -\mathop{\rm div}\left[ \mathcal{A}(x,u,\nabla u)\right] =|x|^{a}u^{S}v^{R}, \\ -\mathop{\rm div}\left[ \mathcal{B}(x,v,\nabla v)\right] =|x|^{b}u^{Q}v^{T}, \endgathered\label{syl} \end{equation} where $Q,R,S,T\geq 0$, and to systems of inequalities; see for example \cite{B1,BVP}. Let $B_{r}=\left\{ \left| x\right| 0$. Let $\Omega $ be either $\mathbb{R}^{N}$ or $\mathbb{R}^{N}\backslash \left\{ 0\right\} $, or an exterior or interior domain \begin{equation*} \Omega _e=\left\{ x\in \mathbb{R}^{N}\left| \;\left| x\right| >1\right. \right\} ,\quad \Omega _i=\left\{ x\in \mathbb{R}^{N}\left| \;0<\left| x\right| <1\right. \right\} =B_{1}\backslash \left\{ 0\right\} \end{equation*} or the half-space $\mathbb{R}^{N\,+}=$ $\left\{ x\in \mathbb{R}^{N}\left| \;x_{N}>0\right. \right\} $, or \begin{equation*} \Omega _e^{+}=\Omega _e\cap \mathbb{R}^{N\,+},\quad \Omega _i^{+}=\Omega _i\cap \mathbb{R}^{N\,+}. \end{equation*} Our aim is to point out many results on this subject and to show some short proofs to some results. We cannot present a complete survey, because it would be too long, we rather give references that seem to be significant. \section{The Laplacian case} We begin by the model case of the Laplace operator, with the equation \begin{equation} -\Delta u=|x|^{\sigma }u^{Q}, \label{eq} \end{equation} or the inequality \begin{equation} -\Delta u\geq |x|^{\sigma }u^{Q}, \label{de} \end{equation} where $\sigma \in \mathbb{R}$, $Q>0,Q\neq 1$. By solution of (\ref{eq}) or (% \ref{de}), we mean any nonnegative function $u\in C^{0}(\Omega )\cap W_{{\rm loc}}^{1,1}(\overline{\Omega })$ with $\Delta u\in L_{{\rm loc}}^{1}(\overline{% \Omega })$, solution in the sense of $\mathcal{D}^{\prime }($ $\Omega )$. We set \begin{equation*} Q_{\sigma }=(N+\sigma )/(N-2). \end{equation*} Recall that the equation admits a particular solution of the form \begin{equation} u^{\ast }=C^{\ast }|x|^{-(2+\sigma )/(Q-1)}, \label{part} \end{equation} for some $C^{\ast }>0$ if and only if $Q>Q_{\sigma }>1$, or $Q1$. \\ i) There exists a nontrivial solution of (\ref{de}) in $\Omega _i$ if and only if $\sigma >-2$. \\ ii) There exists a nontrivial solution of (\ref{de}) in $\Omega _e$ if and only if $Q>Q_{\sigma }$. \\ iii) There exists a nontrivial solution of (\ref{de}) in $\mathbb{R}^{N}$ or $\mathbb{R}^{N}\backslash \left\{ 0\right\} $ if and only if $Q>Q_{\sigma}$ and $\sigma >-2$. \end{theorem} \paragraph{Proof.} i) and ii) For the part ''if'', the particular solution (\ref{part}) is a solution in $\mathbb{R}^{N}\backslash \left\{ 0\right\} $, hence in $\Omega _i$ and $\Omega _e$. For the part ''only if'', \textit{the problem reduces to the radial one}. By Kelvin transform we reduce to the case of $% \Omega _i$. Suppose there exists a nontrivial solution $u$ of (\ref{de}% ). Let \begin{equation} \overline{u}(r)=\frac{1}{\left| S^{N-1}\right| }\int_{S^{N-1}}u(r,\theta )\,d\theta \label{vm} \end{equation} be the mean value of $u$ on the sphere of center 0 and radius $r$. Then $% \overline{u}$ also satisfies (\ref{de}), from the Jensen inequality, that is \begin{equation*} -(r^{N-1}\overline{u}_{r})_{r}\geq r^{N-1+\sigma }\overline{u}^{Q}, \end{equation*} and $\overline{u}>0$ . Then either $\lim_{r\rightarrow 0}r^{N-1}\overline{u}% _{r}\in \left( 0,+\infty \right] ;$ then $\lim_{r\rightarrow 0}\overline{u}$ $=C>0$ and we reach a contradiction. Or $\overline{u}_{r}\leq 0$ near $0$. By integration we get \begin{equation*} r^{N-1}\overline{u}_{r}+\overline{u}^{Q}\int_{0}^{r}t^{N-1+\sigma }dt \leq 0 \end{equation*} hence $\sigma +N>0$ and \begin{equation*} \overline{u}^{-Q}\overline{u}_{r}+r^{\sigma +1}/(N+\sigma )\leq 0\,. \end{equation*} Integrating again it implies that $\sigma >-2$, and we have the estimate near $0$: \begin{equation} \overline{u}\leq Cr^{-(2+\sigma )/(Q-1)}. \label{aa} \end{equation} iii) The part ''only if'' is obvious. For the part ''if'', when $% Q>Q_{\sigma }$ and $\sigma >-2$, the function $u(x)=c(1+|x|^{2+\sigma })^{-1/(Q-1)}$ is a solution of (\ref{de}) in $\mathbb{R}^{N}$, hence in $% \mathbb{R}^{N}\backslash \left\{ 0\right\} $ if $c$ is small enough. This example can be found in \cite{MP1} when $\sigma =0$. \hfill$\diamondsuit$\smallskip Now we consider the case $Q<1$. The following was proved by \cite{Ra} for the equation, and extended in \cite{BVRa} and \cite{B1}. \begin{theorem} \label{ploc}Assume $Q<1$.\\ i)There exists a nontrivial solution of (\ref{de}) in $\Omega _i$ if and only if $Q0$, and we can define $w=1/u$. It is subharmonic and satisfies \begin{equation*} -\Delta w+|x|^{\sigma }w^{m}\leq 0 \end{equation*} with $m=2-Q>1$. Then from Osserman's estimate (see \cite{B1}), \begin{equation*} w\leq C\left\{ \begin{array}{c} |x|^{-(2+\sigma )/(m-1)}\quad \text{if }\sigma \neq -2 \\ |\ln |x||^{-1/(m-1)}\quad \text{if }\sigma =-2 \end{array} \right. \end{equation*} in $\frac{1}{2}\Omega _i$. That means \begin{equation} u\geq C\left\{ \begin{array}{c} |x|^{(2+\sigma )/(1-Q)}\quad \text{if }\sigma \neq -2, \\ |\ln |x||^{1/(1-Q)}\quad \text{if }\sigma =-2. \end{array} \right. \label{bb} \end{equation} But $|x|^{\sigma }u^{Q}\in L_{{\rm loc}}^{1}(B(0,1))$, hence in any case $% Q0$ such that for any $x\in \frac{1}{2}\Omega _i$, \begin{equation} w(x)\geq C(N)\overline{w}(\left| x\right| ). \label{NA} \end{equation} \end{lemma} \begin{remark} \rm In particular, the exterior problem \begin{equation*} -\Delta u\geq u^{Q} \end{equation*} in $\Omega _e$ has no solution except $0$ for any $01, \end{equation*} \begin{equation*} C_{1}r^{(2+\sigma )/(1-Q)}\leq \overline{u}\leq C_{2}r^{2-N}\quad \text{in\ }\frac{1}{2}\Omega _i\quad \text{if\ }Q<1. \end{equation*} In the case of $\Omega _e$, it follows that \begin{equation*} \overline{u}\leq C\min (r^{-(2+\sigma )/(Q-1)},1)\quad \text{in\ }2\Omega _e\quad \text{if\ }Q>1, \end{equation*} \begin{equation*} C_{1}r^{(2+\sigma )/(1-Q)}\leq \overline{u}\leq C_{2}\quad \text{in\ }% 2\Omega _e\quad \text{if\ }Q<1. \end{equation*} \end{remark} Now let us come to the case of the equation. In the radial case, we have a well-known nonexistence result in whole $\mathbb{R}^{N}$. \begin{lemma} \label{truc} There exists a nontrivial radial solution of (\ref{eq}) in $% \mathbb{R}^{N}$ (that means a radial ground state) if and only if \begin{equation} Q\geq Q_{\sigma }^{\ast }=\frac{N+2+2\sigma }{N-2}>1 \label{tric} \end{equation} \end{lemma} \paragraph{Proof.} Assume (\ref{tric}). First one constructs a local solution near $0$ such that $u(0)=1$ and $u_{r}(0)=0$. By concavity it extends to a solution of the equation \begin{equation*} -\Delta u=|x|^{\sigma }\left| u\right| ^{Q-1}u \end{equation*} in $\left[ 0,+\infty \right) $. Now suppose that $u(r_{0})=0$ for some $% r_{0}>0$. The change of variable (first used by Fowler) \begin{equation*} u(r)=r^{-\gamma }U(t)\quad \gamma =\frac{2+\sigma }{Q-1},\quad t=-\ln r, \end{equation*} reduces the equation to an autonomous one: \begin{equation*} U_{tt}-AU_{t}-BU+\left| U\right| ^{Q-1}U=0 \end{equation*} with $A=N-2-2\gamma >0$ and $B=\gamma ((N-2-\gamma )>0$. Then the energy function \begin{equation*} E=\frac{U_{t}^{2}}{2}-B\frac{U^{2}}{2}+\frac{\left| U\right| ^{Q+1}}{Q+1} \end{equation*} is nondecreasing, since $E_{t}=AU_{t}^{2}$, with $\lim_{t\rightarrow +\infty }E(t)=0$, and $E(-\ln r_{0})\geq 0$. Then $E(t)=E_{t}(t)=0$ for $t\geq -\ln r_{0}$, hence $U$ is constant, and we reach a contradiction. Reciprocally suppose there exists a ground state. Then first $\sigma >-2$. Suppose $% Q0$ and $% \lim_{t\rightarrow -\infty }U_{t}(t)=0$, since $U_{tt}$ is bounded and $% \int_{-\infty }^{0}U_{t}^{2}<+\infty $. Then $\lim_{t\rightarrow -\infty }U(t)=\ell =(B(Q+1)/2)^{1/(Q-1)}$. By linearisation $U(t)\equiv \ell $, hence a contradiction holds. \hfill$\diamondsuit$ \begin{remark} \rm The existence in $\mathbb{R}^{N}\backslash \left\{ 0\right\} $ is obviously different: there exists a nontrivial radial positive solution of (\ref{eq}) in $\mathbb{R}^{N}\backslash \left\{ 0\right\} $ if and only if $Q>Q_{\sigma }>1$. Indeed the particular solution (\ref{part}) exists in that range. \end{remark} Now let us come to the nonradial case. Here the results are not complete: they require that \begin{equation*} Q\leq Q_{0}^{\ast }=\frac{N+2}{N-2}, \end{equation*} where the well-known $Q_{0}^{\ast }$ is the limit value of $Q$ for the compacity of the Sobolev injection from $L^{Q+1}$ into $W^{1,2}$. Or they require additional assumptions on the behaviour at infinity, see \cite{Z}. They require difficult techniques, either linked to the Bernstein method of a priori estimates of $\left| \nabla u\right| ^{2}$, or to the moving plane method of Alexandroff. The pionneer works are due to Gidas, Spruck and Caffarelli \cite{GS}, \cite{CGS}. \begin{theorem}[\protect\cite{GS}] i) Assume that $1Q_{\sigma }^{\ast }$, then either $% u=u^{\ast }$ or $u$ is a solution in $\mathbb{R}^{N}$ (ground state). \end{theorem} \begin{remark}\rm The result was extended to the case $Q=Q_{0}^{\ast }$ in \cite{CGS}. When $% Q>Q_{0}^{\ast }$ the result is not known. In the case $Q=(N+1)/(N-3)$, $% \sigma =0$, it is shown in \cite{BV} that(\ref{res}) cannot hold with a constant independant on $u$. \end{remark} Now let us give a few results concerning the case of the half-space. Concerning the inequality (\ref{de}), the usual proofs of nonexistence lie on the use of the first eigenvalue $\lambda _{1}=N-1$ of the Beltrami operator on the half sphere $(S^{N-1})^{+}$ with Dirichlet conditions on $% \partial (S^{N-1})^{+}$, and the corresponding positive normalized eigenfunction $\phi _{1}$, and extend to cones and systems. We refer for example to \cite{Be} and \cite{BiM} . In case of the half space, we have the following theorem. \begin{theorem} Assume that $N\geq 2$, and $Q>1$. \\ i)If $Q\leq (N+1+\sigma )/(N-1)$, the problem (\ref{de}) in $\Omega _e^{+}, $ with $u\in C^{1}(\overline{\Omega _e^{+}})$, has only the solution $u\equiv 0$. \\ ii) If $Q+\sigma +1\leq 0$, the problem in $\Omega _i^{+}$, with $u\in C^{1}(\overline{\Omega _i^{+}}\backslash \left\{ 0\right\} )$ has only the solution $u\equiv 0$. \end{theorem} \paragraph{Proof.} We follow the method of \cite{CM} given in the case $u\in C^{1}(\overline{% \mathbb{R}^{N}}\backslash \left\{ 0\right\} )$. They still show that the problem can be reduced to a radial one, by considering the mean value function \begin{equation} u_{\sharp }(r)=\frac{1}{\left| (S^{N-1})^{+}\right| }% \int_{(S^{N-1})^{+}}u(r,\theta )\phi _{1}\,d\theta . \end{equation} Namely function $u_{\sharp }$ satisfies the inequality \begin{equation*} -r^{-N}((r^{N+1}(r^{-1}u_{\sharp })_{r})_{r})=-\Delta u_{\sharp }+(N-1)\frac{% u_{\sharp }}{r^{2}}\geq r^{\sigma }u_{\sharp }^{Q}. \end{equation*} By Kelvin transform we are reduced to the case of $\Omega _i^{+}$. Let $% v=r^{-1}u_{\sharp }$. Then \begin{equation*} -(r^{N+1}v_{r})_{r}\geq r^{N+Q+\sigma }v^{Q}, \end{equation*} and $\overline{u}>0$ . Then either $\lim_{r\rightarrow 0}r^{N+1}v_{r}\in \left( 0,+\infty \right] ;$ then $\lim_{r\rightarrow 0}v$ $=C>0$ and we reach a contradiction. Or $v_{r}\leq 0$ near $0$. By integration we get \begin{equation*} r^{N+1}v_{r}+v^{Q}\int_{0}^{r}t^{N+Q+\sigma }dt\leq 0 \end{equation*} hence $N+Q+\sigma >0$ and \begin{equation*} v^{-Q}v_{r}+r^{\sigma +Q}/(N+Q+\sigma )\leq 0. \end{equation*} Integrating again it implies that $\sigma +Q+1>0$, and we have the estimate near $0:$ \begin{equation*} u_{\sharp }\leq Cr^{-(2+\sigma )/(Q-1)}. \end{equation*} \hfill$\diamondsuit$\smallskip In the case of the equation (\ref{eq}), Gidas and Spruck have obtained a better result: \begin{theorem}[\protect\cite{GS1}] Assume that $Q<(N+2)/(N-2)$. Then equation (\ref{eq}) with $\sigma =$0 has no nontrivial solution in $\mathbb{R}^{N+}$. \end{theorem} \section{The p-Laplacian case} Now we consider the case of the $p$-Laplace operator ($p>1$): \begin{equation} -\Delta _{p}u=-\mathop{\rm div}(\left| \nabla u\right| ^{p-2}\nabla u)=|x|^{\sigma }u^{Q} \label{eqp} \end{equation} and the inequality \begin{equation} -\Delta _{p}u\geq |x|^{\sigma }u^{Q}. \label{dep} \end{equation} In the radial case, the first estimates concerning (\ref{dep}) are due to Guedda and V\'{e}ron \cite{GuV}, where they give the behaviour in $\Omega _i$ and some global properties; and the first nonexistence results are given in \cite{NS}, \cite{NS2}. Then the non-radial case was studied in \cite {B0}, where one can also find a complete description of the radial case. Here one cannot use any Kelvin transform, so that the behaviour at infinity cannot reduced to the behaviour near $0$. Also one cannot use the mean value of $u$ since the problem is not linear. But many of the results can be extended. The equation has a particular solution \begin{equation} u^{\ast }(x)=C^{\ast }|x|^{-\Gamma },\quad \Gamma =\frac{p+\sigma }{Q-p+1}% ,\quad C^{\ast }>0, \label{*} \end{equation} if and only if $Q>Q_{\sigma ,p}>p-1$, or $Qp-1$. \\ i) There exists a nontrivial solution of (\ref{dep}) in $\Omega _i$ if and only if $\sigma >-p$. \\ ii) There exists a nontrivial solution of (\ref{dep}) in $\Omega _e$ if and only if $Q>Q_{\sigma ,p}$. \end{theorem} \paragraph{Proof.} Let us prove for example ii). Suppose that $Q\leq Q_{\sigma ,p}$ and that (% \ref{dep}) has a nontrivial solution $u$. Then $u>0$ from the strong maximum principle. Let $m=\min_{\left| x\right| =2}u(x)$. Let $n\in \mathbb{N}^{\ast }$ be fixed, such that $n>2$. By minimization we construct a sequence $(u_{n,k})_{k\in \mathbb{N}}$ of radial nonnegative functions with $u_{n,0}\equiv 0$ and \begin{gather*} -\Delta _{p}u_{n,k}=|x|^{\sigma }u_{n,k-1}\text{ \quad for }2<\left| x\right| 1$. Let $u$ be a nonnegative solution of (% \ref{dep}) in $\Omega _i$ $($resp. $\Omega _e)$. \\ i) If $Q>p-1$, then for small $\rho $ (resp. for large $\rho )$ \begin{equation} \Big( \oint_{\mathcal{C}_{\rho /2,\rho }\mathcal{\ }}u^{Q}\Big) ^{1/Q}\leq C\rho ^{-\Gamma }. \label{ab} \end{equation} ii) If $Q0$. Let $1-p<\alpha <0$ . By computation the function $u_{\alpha }=u^{1+\alpha /(p-1)}$ is also superharmonic and satisfies \begin{equation*} -\Delta _{p}u_{\alpha }\geq C(\alpha )\left( \left| x\right| ^{\sigma }u^{Q+\alpha }+u^{\alpha -1}\left| \nabla u\right| ^{p}\right) \end{equation*} for some $C(\alpha )>0$. Then we multiply by a test function $\varphi =\xi ^{\lambda }$ with $\lambda $ large enough, and $\xi \in $ $\mathcal{D} (\Omega )$ with values in $\left[ 0,1\right] $, such that $\xi =1$ for $\rho /2\leq \left| x\right| \leq \rho $ and $\left| \nabla \xi \right|\leq C/\rho $. We get (with other constants $C=C(\alpha ,\lambda )$) \begin{eqnarray*} \int_{\Omega _i}\left| x\right| ^{\sigma }u^{Q+\alpha }\xi ^{\lambda }+\int_{\Omega _i}u^{\alpha -1}\left| \nabla u\right| ^{p}\xi ^{\lambda } &\leq & C\int_{\Omega _i}\left| \nabla u_{\alpha }\right| ^{p-1}\xi ^{\lambda -1}\left| \nabla \xi \right|\\ &\leq& C\int_{\Omega _i}u^{\alpha}\left| \nabla u\right| ^{p-1} \xi ^{\lambda -1}\left| \nabla \xi \right| \end{eqnarray*} and setting $\theta =Q/(p-1+\alpha )>1$ we get from the H\"{o}lder inequality \begin{eqnarray} \lefteqn{\int_{\Omega _i}\left| x\right| ^{\sigma }u^{Q+\alpha } \xi ^{\lambda}+\int_{\Omega _i}u^{\alpha -1}\left| \nabla u\right| ^{p} \xi ^{\lambda} }\nonumber\\ &\leq& C\left( \int_{\Omega _i}u^{Q}\xi ^{\lambda }\right) ^{1/\theta }\left( \int_{\Omega _i}\xi ^{\lambda -p\theta'}\left| \nabla \xi \right| ^{p\theta'}\right) ^{1/\theta'} \label{hui} \end{eqnarray} Now we take $\xi ^{\lambda }$ as test function directly in (\ref{dep}) and get by using the same $\alpha $ \begin{eqnarray*} \int_{\Omega _i}\left| x\right| ^{\sigma }u^{Q}\xi ^{\lambda } &\leq &\lambda \int_{\Omega _i}\left| \nabla u\right| ^{p-1}\xi ^{\lambda -1}\left| \nabla \xi \right| \\ &\leq &\lambda \int_{\Omega _i}u^{(\alpha -1)/p^{\prime }}\left| \nabla u\right| ^{p-1}u^{(1-\alpha )/p^{\prime }}\xi ^{\lambda -1}\left| \nabla \xi \right| \\ &\leq &C\left( \int_{\Omega _i}u^{\alpha -1}\left| \nabla u\right| ^{p}\xi ^{\lambda }\right) ^{1/p^{\prime }}\left( \int_{\Omega _i}u^{(1-\alpha )(p-1)}\xi ^{\lambda -p}\left| \nabla \xi \right| ^{p}\right) ^{1/p} \end{eqnarray*} And from (\ref{hui}), choosing $\alpha $ small enough such that $\tau =Q/(1-\alpha )(p-1)>1$ , \begin{eqnarray} \int_{\Omega _i}u^{Q}\xi ^{\lambda } &\leq &C\rho ^{-\sigma }\left( \int_{\Omega _i}u^{Q}\xi ^{\lambda }\right) ^{1/\theta p^{\prime }+1/\tau p}\times \notag \\ &&\left( \int_{\Omega }\xi ^{\lambda -\theta'p}\left| \nabla \xi \right| ^{\theta'p}\right) ^{1/\theta'p^{\prime }}\left( \int_{\Omega }\xi ^{\lambda -\tau'p}\left| \nabla \xi \right| ^{\tau'p}\right) ^{1/\tau'p}. \label{bla} \end{eqnarray} And $1/\theta p^{\prime }+1/\tau p=(p-1)/Q=1-(1/\theta'p^{\prime }+1/\tau'p)$, hence (\ref{ab}) follows. \hfill$\diamondsuit$ \begin{remark} \rm In the case $Q>p-1$, Theorem \ref{unp} can be found again in a longer way by using these upper estimates. Indeed following the technique of comparison of theorem \ref{unp}, one can prove lower estimates. Consider the radial elementary $p$-harmonic functions in $\mathbb{R}^{N\,}\backslash \left\{ 0\right\} $, that means functions \begin{equation*} \Phi _{1,p}(r)\equiv 1,\quad \Phi _{2,p}(r)=\left\{ \begin{array}{ll} r^{(p-N)/(p-1)}& \text{if }N>p, \\ \ln r& \text{if }N=p\,. \end{array} \right. \end{equation*} Then any super-$p$-harmonic function $u$ in $\Omega _i$ (resp. $\Omega _e)$ satisfies \begin{equation*} u\geq C\Phi _{1,p}\quad \text{in }\frac{1}{2}\Omega _i\quad (\text{% resp.\quad }u\geq C\Phi _{2,p}\quad \text{in }2\Omega _e)\,; \end{equation*} see \cite{BVP}. \end{remark} Above all, the integral estimates can give \textit{punctual estimates} in the case of the equation (\ref{eqp}), in the subcritical case. The following is proved in \cite{B0} when $\sigma =0$, and in \cite{BVP} in the general case. \begin{theorem} \label{souk}Assume that $N\geq p>1$. Let $u$ be a nonnegative solution of (\ref{eqp}) in $\Omega _i$. Assume that \begin{equation*} 0p-1$, \begin{equation} u(x)\leq C\min (\left| x\right| ^{-\Gamma },\left| x\right| ^{(p-N)/(p-1)})% \text{\quad in }\frac{1}{2}\Omega _i; \label{glic} \end{equation} if $Qp-1$. We write the equation under the form \begin{equation*} -\Delta _{p}u=h\;u^{p-1},\quad h=\left| x\right| ^{\sigma }u^{Q-p+1}. \end{equation*} If $\sigma =0$, we remark that $u^{Q}\in L^{1}(B_{1/2})$ from the Br\'{e}zis-Lions theorem. Hence $h^{s}\in L^{1}(B_{1/2})$ for $s=Q/(Q-p+1)>N/p$, since $Q1$, and the Harnack inequality still holds. \hfill$\diamondsuit$\smallskip As in the case $p=2$, the question of the estimates is harder in the case $% Q>Q_{0,p}$. Serrin and Zou have announced in January 2000 the following beautiful result, which extends the one of \cite{GS} and of \cite{B0}: \begin{theorem}[\protect\cite{SZ}] Assume that $1p-1$: \begin{theorem} Assume that $N\geq p>1$, $Q>p-1$. Let $u$ be a nonnegative solution of (\ref {dep}) in $\Omega _i^{+}($resp. $\Omega _e^{+})$ . Let $K_{a}=\left\{ x\in \mathbb{R}^{N\,+}\right| \left. x_{N}\geq a\left| x\right| \right\}$ for any $a>0$. Then for small $\rho $ (resp. for large $\rho )$ \begin{equation} \Big( \oint_{K_{a}\cap \mathcal{C}_{\rho /2,\rho }\mathcal{\ }}u^{Q}\Big) ^{1/Q}\leq C\rho ^{-\Gamma }. \end{equation} \end{theorem} Here also we can find lower estimates by comparison to the $p$-harmonic functions which vanish on the set $x_{N}=0$. In the case $p=2$, they are given by $x\longmapsto x_{N}$ and $x\longmapsto x_{N}/\left| x\right| ^{N}$. In the general case, they are given by \begin{equation} \Psi _{1,p}(x)=x_{N},\quad \Psi _{2,p}(x)=\frac{\varpi (x/\left| x\right| )% }{\left| x\right| ^{\beta _{p,N}}}, \label{psi} \end{equation} for some unique $\beta _{p,N}>0$ and $\varpi \in C^{1}(S^{N-1})$, $\varpi >0, $ with maximum value $1$, from \cite{KV}. The exact value of $\beta _{p,N}$ is unknown if $p\neq 2$, except in the case $N=2$. We prove that any super-$p $-harmonic function $u$ in $C^{1}(\overline{\Omega _i^{+}}% \backslash \left\{ 0\right\} )$ (resp. $C^{1}(\overline{\Omega _e^{+}})$) satisfies \begin{equation*} u\geq C\Psi _{1,p}\quad \text{in }\frac{1}{2}\Omega _i\quad (\text{% resp.\quad }u\geq C\Psi _{2,p}\quad \text{in }2\Omega _e). \end{equation*} So that we deduce a new nonexistence result: \begin{theorem}[\protect\cite{BVP}] Assume that $N\geq p>1$, and $Q>p-1.$\\ i) If $Q0$, and for all $(x,u,\eta )\in \Omega \times \mathbb{R% }^{+}\times \mathbb{R}^{N}$. Up to some variants, the condition (\ref{S}) is a classical frame for the study of quasilinear operators, see \cite{S1}. It implies the weak Harnack inequality, and hence the strong maximum principle. We shall say that $\mathcal{A}$ is weakly $p$-coercive if \begin{equation} \mathcal{A}(x,u,\eta ).\eta \geq K\left| \mathcal{A}(x,u,\eta )\right|^{p'} \label{W} \end{equation} for some $K>0$, and for all $(x,u,\eta )\in \Omega \times \mathbb{R}% ^{+}\times \mathbb{R}^{N}$. This condition (\ref{W}) is clearly weaker than (% \ref{S}), and does not imply the Harnack inequality. It is satisfied in particular by the mean curvature operator $u\mapsto -\mathop{\rm div}(\nabla u/\sqrt{1+\left| \nabla u\right|^{2}})$ with $p=2$. \subsection*{Operators with a weak coercivity} For a general weakly $p$-coercive operator, first we can extend Theorem \ref{kle}. \begin{theorem}[\protect\cite{BVP}] \label{kle2} Assume that $N\geq p>1$, and $\mathcal{A}$ is weakly $p$-coercive. Let $u$ be a nonnegative solution of (\ref{ali}) in $\Omega _i$ (resp. $\Omega _e$). If $Q>p-1$, then (\ref{ab}) holds for small $\rho$ (resp. for large $\rho )$. If $Qp-1-Q$, then \begin{equation} \Big( \oint_{\mathcal{C}_{\rho /2,\rho }\mathcal{\ }}u^{\ell }\Big) ^{1/\ell }\geq C\rho ^{-\Gamma }. \end{equation} \end{theorem} \paragraph{Proof.} It is an extension of the one of theorem \ref{kle}: we multiply the inequality by $u^{\alpha }\varphi $, where $1-p<\alpha <0$ , and $\varphi$ is a test function, in order to get coercivity, then directly by $\varphi $. \hfill$\diamondsuit$\smallskip Then one can give nonexistence results in whole $\mathbb{R}^{N}$: \begin{theorem}[\protect\cite{BVP}] \label{rn} Assume that $N\geq p>1$, $Q>p-1$, and $\mathcal{A}$ is weakly $p$% -coercive. If $Q\leq Q_{\sigma ,p}$, there exists no nontrivial solution of (% \ref{ali}) in $\mathbb{R}^{N}$ . \end{theorem} \paragraph{Proof.} From the a priori estimate of theorem \ref{kle2}, one deduces \begin{equation*} \int_{B_{\rho }}\left| x\right| ^{\sigma }u^{Q}\leq C\rho ^{\theta } \end{equation*} with $\theta =(N-p)(Q-Q_{\sigma })/(Q-p+1)\leq 0$. If $\theta <0$, then as $% \rho \rightarrow +\infty $, we deduce that $\int_{\mathbb{R}^{N}}|x|^{\sigma }u^{Q}=0$, hence $u\equiv 0$. If $\theta =0$, then $|x|^{\sigma }u^{Q}\in L^{1}(\mathbb{R}^{N})$, hence $\lim \int_{\mathcal{C}_{2^{n},2^{n+1}}}|x|^{% \sigma }u^{Q}=0$. And we show that \begin{equation*} \int_{B_{2^{n}}}|x|^{\sigma }u^{Q}\leq C\Big( \int_{\mathcal{C}% _{2^{n},2^{n+1}}}|x|^{\sigma }u^{Q}\Big) ^{(p-1)/Q} \end{equation*} hence again $u\equiv 0$. \hfill$\diamondsuit$\smallskip For some weakly $p$-coercive operators which only depend on the gradient of $% u$, we can also extend the nonexistence results in $\Omega _i$ and $\Omega _e$. \begin{theorem}[\protect\cite{BVP}] Assume that $\mathcal{A}(x,u,\eta )=A(\left| \eta \right| )\eta $, with $t\mapsto A(t)t$ non-decreasing and \begin{equation} \gathered A(t)\leq Mt^{p-2},\quad \text{for } t>0, \\ A(t)\geq M^{-1}t^{p-2}\quad \text{for small }t>0, \endgathered \label{ta} \end{equation} for some $M>0$. If $\sigma \leq -p$ , there exists no nontrivial solution of (\ref{ali}) in $\Omega _i$. If $Q\leq Q_{\sigma ,p}$, there exists no nontrivial solution of (\ref{ali}) in $\Omega _e$. \end{theorem} The result applies in particular to the mean curvature operator with $p=2$. \subsection*{Operators with a strong coercivity} For a general strongly $p$-coercive operator, one can give nonexistence results in $\mathbb{R}^{N}\backslash \left\{ 0\right\} $. The method is a combination of the two techniques of multiplication, either by $u^{\alpha}(\alpha <0)$ or by $(k-u)^{+}(k>0)$. \begin{theorem}[\protect\cite{BVP}] \label{rno}Assume that $N\geq p>1$, $Q>p-1$, and$\mathcal{A}$ is weakly $p$-coercive. If $Q