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Abstract

We discuss some results concerning periodic and almot periodic solu-
tions of ordinary differential equations which are precursors of a result on
weak solutions of a semilinear elliptic boundary due to E. M. Landesman
and the author. It is observed that in the earliest of these, if one looks for
periodic solutions instead of almost peridic solutions, then the conditions
can be relaxed.

Let g : R→ R be a continuous function and assume that the limits

g(±∞) = lim
s→±∞

g(s)

exist and are finite, and that ∀ξ ∈ R, g(−∞) < g(ξ) < g(∞). In [3], E.M.
Landesman and the author considered the boundary-value problem

∆u + λku+ g(u) = h(x) in D (1.1)

u
∣∣
∂D
= 0 ,

where D is a bounded domain in Rn, h ∈ L2(D), and λk is a simple eigenvalue
of −∆. It was shown that if ϕk is an eigenfunction corresponding to λk, D+ =
{x ∈ D : ϕk(x) > 0}, and D− = {x ∈ D : ϕk(x) < 0}, then the condition

g(−∞)

∫
D+
ϕkdx+ g(∞)

∫
D−
ϕkdx <

∫
D

hϕkdx

< g(∞)

∫
D+
ϕkdx+ g(−∞)

∫
D−
ϕkdx

is both necessary and sufficient for the existence of a weak solution of (1.1).
Only a short time before D.E. Leach and the author [5] considered the ordi-

nary differential equation

u′′ + n2u+ g(u) = e(t) = e(t+ 2π) , (1.2)
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114 A Second look at the first result of Landesman-Lazer type

where n > 0 is an integer and g satisfies the same conditions as before, it was
shown that if

A =

∫ 2π
0

e(t) cos(nt) dt and B =

∫ 2π
0

e(t) sin(nt) dt ,

then the inequality 2(g(∞)− g(−∞)) >
√
A2 +B2 is both necessary and suffi-

cient for the existence of a 2π-periodic solution of (1.2).
It is natural to ask what happens if g satisfies the same conditions and n = 0

in (1.2). If we consider more generally

u′′ + cu′ + g(u) = e(t) = e(t+ 2π) , (1.3)

where c ∈ R, and we assume that there is a 2π-periodic solution û(t), then
integration from 0 to 2π shows that

∫ 2π
0

(e(t)− g(û(t))) dt = 0 .

Therefore, if

e0 ≡
1

2π

∫ 2π
0

e(t) dt ,

then a necessary condition for the existence of a 2π-periodic solution of (1.3) is

g(−∞) < e0 < g(∞) . (1.4)

That this condition is also sufficient can be derived from work of the author [4]
which predates [5]. Let c be constant and consider the differential equation

u′′ + cu′ + h(u) = p(t) = p(t+ 2π) . (1.5)

It was shown in [4], that if p and h are continuous, there exists ξ0 such that
h(ξ)ξ ≥ 0 for |ξ| ≥ ξ0, h(ξ)/ξ → 0 as |ξ| → ∞, and

1

2π

∫ 2π
0

p(t) dt = 0 ,

then (1.5) has a 2π-periodic solution. If g is continuous, g(∞) and g(−∞)
are finite, and (1.4) holds, then we can write (1.3) in the form (1.5) where
h(ξ) = g(ξ)− e0, p(t) = e(t)− e0, and the assumptions of [4] will hold so (1.3)
will have a 2π-periodic solution.
It was sometime after the publication of [4] and [5] that the author realized

that the condition (1.4) was both necessary and sufficient for the existence of
a 2π-periodic solution of (1.3) for a restricted type of functions g. The first to
see a Landesman-Lazer type condition was P.O. Frederickson. This condition
appeared in [2], written jointly by Frederickson and the author, which dealt
with almost periodic solutions of the two differential equations

x′′ + F (x′) + x = E(t) (1.6)
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and

x′′ + f(x)x′ + x = e(t) (1.7)

The two differential equations are related in that if F and E are C1, F ′ = f ,
and E′ = e, then the derivative of a solution of (1.6) is a solution of (1.7). We
shall limit our discussion mainly to (1.7) and let F denote an antiderivative of
f , which will be assumed to be continuous, when referring to this differential
equation.
Under the assumption that f is strictly positive except at isolated points

and that

F (∞)− F (−∞) =∞

Levinson [6] showed that for any continuous periodic e(t) with least period T > 0
there exists a unique T -periodic solution of (1.7) which is globally asymptotically
stable.
In [7] Reissig considered (1.6) under the assumptions that F is a continuous,

strictly increasing function, E(t) is a continuous periodic function with least
period T > 0, and that for arbitrary x0, y0, and t0, there is a unique solution of
(1.6) with x(t0) = x0, x

′(t0) = y0. Reissig showed that the condition

F (∞)− F (−∞) > maxE(t)−minE(t)

implies the existence and uniqueness of a T -periodic solution of (1.6) and that
this solution is globally asymptotically stable.
In [2] the assumption that e(t) is almost periodic implies the existence of

M [e(t) exp(−it)] = lim
T→∞

1

T

∫ t0+T
t0

e(t) exp(−it) dt

uniformly with respect to t0 ∈ R. It was shown in [2] that if f is continuous and
strictly positive except at isolated points, so that its antiderivative F is strictly
increasing, then

F (∞)− F (−∞) > π
∣∣M [e(t) exp(−it)]∣∣ (1.8)

is both necessary and sufficient for the existence of an almost periodic solution
of (1.7). Moreover, if this condition holds, there is a unique almost periodic
solution which is globally asymptotically stable.
In [2] the assumption that F is strictly increasing was used in an essential

way. The proof was based on a result of Amerio [1]. To use this result it was
necessary to show that if whenever {hm}∞1 is a sequence of real numbers such
that

e∗(t) = lim
m→∞

e(t+ hm)

exists uniformly with respect to t ∈ R, then the differential equation

x′′ + f(x)x′ + x = e∗(t)
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has a unique solution bounded on R. Since e∗(t) is almost periodic and

∣∣M [e∗(t) exp(−it)]∣∣ = ∣∣M [e(t) exp(−it)]∣∣,
verification of Amerio’s condition for (1.7) amounts to showing that condition
(1.8) and the other assumptions on f imply that (1.7) itself has a unique solution
bounded on R. Examination of the arguments given in [2] shows that it is enough
to assume the existence of the limits F (∞) and F (−∞) and the condition (1.8)
in order to ensure the existence of at least one solution of (1.7) which is bounded
on R. It is the proof of uniqueness which depends on the strict monotonicity of
F . This was accomplished by noting that if x1(t) and x2(t) are two solutions of
(1.7) and we set

x′1(t) = y1(t)− F (x1(t)),

x′2(t) = y2(t)− F (x2(t)),

d(t) ≡
√
(x1(t)− x2(t))2 + (y1(t)− y2(t))2,

then
d(t)d′(t) ≡ −(x1(t)− x2(t))(F (x1(t)) − F (x2(t))) ≤ 0 .

Actually, for reasons of exposition, we have simplified what was done in [2].
A more complicated system which contains (1.6) and (1.7) as special cases was
considered but the same type of reasoning described above was used.
What we would like to point out is in the case that e(t) is a 2π-periodic

function, the assumptions that F is strictly increasing can be replaced by the
assumption that the limits F (∞) and F (−∞) exist and that ∀ξ ∈ R,

F (−∞) < F (ξ) < F (∞).

With these assumptions (1.8) is still a necessary and sufficient condition for the
existence of a 2π-periodic solution. This has probably been observed before by
someone familiar with both [2] and [5].
A simple computation shows that if e(t) is a 2π-periodic function, then

∣∣M [e(t) exp(−it)]∣∣ = 1
2π

√
A2 +B2 ,

where

A =

∫ 2π
0

e(t) cos t dt, and B =

∫ 2π
0

e(t) sin t dt.

As before, we assume that f is continuous.

Addendum to the Frederickson-Lazer Theorem: If e(t) is 2π-periodic,
F (∞) and F (−∞) are finite and ∀ξ ∈ R, F (−∞) < F (ξ) < F (∞), then the
condition

2(F (∞)− F (−∞)) >
√
A2 +B2

is necessary and sufficient for the existence of a 2π-periodic solution of (1.7).
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We sketch the proof of the sufficiency using the same reasoning as in [2] and
the Brouwer fixed-point theorem.
If x(t) and y(t) satisfy

x′ = y − F (x), y′ = −x+ e(t) (1.9)

then x(t) will be a solution of (1.7) so we look for a 2π-periodic solution of this
system.
If r(t) =

√
x(t)2 + y(t)2 and r(t) 6= 0, then

r′(t) = −x(t)F (x(t))/r(t) + y(t)e(t)/r(t),

so, by the boundedness of F , there exists a constant M > 0 such that r(t) 6= 0
implies |r′(t)| ≤ M . From this we infer the existence of r0 > 0 such that
x(0)2 + y(0)2 ≥ r20, implies x(t)

2 + y(t)2 > 0 for 0 ≤ t ≤ 2π.
If x(0)2 + y(0)2 ≥ r20 and t ∈ [0, 2π] we can set x(t) = r(t) sin θ(t),

y(t) = r(t) cos θ(t), where

r′(t) = −F (r(t) sin θ(t)) sin θ(t) + e(t) cos θ(t) (1.10)

θ′(t) = 1−
F (r(t) sin θ(θ) cos θ(t)

r(t)
−
e(t) sin θ(t)

r(t)
. (1.11)

If for c ≥ r0 and ϕ ∈ R, r(t, c, ϕ) and θ(t, c, ϕ) denote the components of the
solution of the system (1.10)-(1.11) such that r(0, c, ϕ) = c, θ(0, c, ϕ) = ϕ, then

r(t, c, ϕ) = c+O(1) as c→∞

uniformly with respect to t ∈ [0, 2π] and ϕ ∈ R. Therefore, integration of (1.11)
yields θ(t, c, ϕ) = t+ ϕ+ 0(1/c) as c→∞ uniformly with respect to t ∈ [0, 2π]
and ϕ ∈ R.
Since

r(2π, c, ϕ) − c

=

∫ 2π
0

−F (r(t, c, ϕ) sin θ(t, c, ϕ)) sin θ(t, c, ϕ) + e(t) cos θ(t, c, ϕ) dt

the asymptotic estimates for r(t, c, ϕ) and θ(t, c, ϕ) together with the assump-
tions on F imply that

r(2π, c, ϕ) − c→

∫ 2π
0

e(t) cos(t+ ϕ)dt− 2[F (∞)− F (−∞)]

as c→∞ uniformly with respect to ϕ ∈ R. Since

∫ 2π
0

e(t) cos(t+ ϕ)dt = A cosϕ−B sinϕ ≤
√
A2 +B2,

our basic assumption implies the existence of c∗ ≥ r0 such that if c ≥ c∗, then
r(2π, c, ϕ) < c = r(0, c, ϕ) for all ϕ ∈ R.
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Let x(t, x0, y0) and y(t, x0, y0) denote the components of the solution of
the system which satisfy x(0, x0, y0) = x0, y(0, x0, y0) = y0. Since F is C

1, the
mapping R2 → R2 given by (x0, y0)→ (x(2π, x0, y0), y(2π, x0, y0)) is continuous.
Therefore, there exists ĉ ≥ c∗ such that x20+y

2
0 ≤ c

2
∗ implies that x(2π, x0, y0)

2+
y(2π, x0, y0)

2 ≤ ĉ2. Since, as shown above, x20+ y
2
0 ≥ c

2
∗ implies x(2π, x0, y0)

2+
y(2π, x0, y0)

2 < x20 + y
2
0 , the closed disk D = {(x0, y0)|x

2
0 + y

2
0 ≤ ĉ

2} is mapped
into itself. Letting (x̂0, ŷ0) denote a fixed point of the mapping, it follows that
col(x(t, x̂0, ŷ0), y(t, x̂0, ŷ0)) is a 2π-periodic solution of (1.9) so x(t, x̂0, ŷ0) is a
2π-periodic solution of (1.7).
Necessity can be proved as in [2] and [5]: If ϕ is chosen so that

cosϕ = B/
√
A2 +B2 , sinϕ = A/

√
A2 +B2 ,

then if u(t) is a 2π-periodic solution of (1.7) and v(t) = sin(t + ϕ), several
integrations by parts give

∫ 2π
0

e(t)v(t) + F (u(t))v′(t) dt =

∫ 2π
0

e(t)v(t) − f(u(t)u′(t)v(t) dt

=

∫ 2π
0

[u′′(t) + u(t)]v(t) dt

=

∫ 2π
0

[v′′(t) + v(t)]u(t) dt = 0 .

Since ∀ξ ∈ R, F (−∞) < F (ξ) < F (∞), if P and N denote the subintervals
of [0, 2π] on which v′ > 0 and v′ < 0 respectively, then

√
A2 +B2 =

∫ 2π
0

e(t)v(t) dt

= −

∫ 2π
0

F (u(t))v′(t) dt

< −F (∞)

∫
N

v′(t) dt− F (−∞)

∫
P

v′(t) dt

= 2(F (∞)− F (−∞)).

If E(t) is 2π-periodic and continuous and F is a locally Lipschitzian function
of the type considered above, then a necessary and sufficient condition for (1.6)
to have a 2π-periodic solution is

2(F (∞)− F (−∞)) >
√
C2 +D2

where

C =

∫ 2π
0

E(t) cos t dt, D =

∫ 2π
0

E(t) sin t dt

The proof follows from considering the system

x′ = y, y′ = −F (y)− x+ e(t) .
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After introducing polar coordinates, one can obtain asymptotic estimates and
show that the period map maps a closed disk into itself.
That Frederickson was the major contributor to [2] was acknowledged in [5].

After a third of a century his contribution to the development to what are called
Landesman-Lazer type results needs to be acknowledged again.
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