\documentclass[twoside]{article} \usepackage{amsfonts} % used for R in Real numbers \pagestyle{myheadings} \markboth{ Existence of many positive nonradial solutions } { Alfonso Castro \& Marcel B. Finan } \begin{document} \setcounter{page}{21} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent Nonlinear Differential Equations, \newline Electron. J. Diff. Eqns., Conf. 05, 2000, pp. 21--31\newline http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu or ejde.math.unt.edu (login: ftp)} \vspace{\bigskipamount} \\ % Existence of many positive nonradial solutions for a superlinear Dirichlet problem on thin annuli % \thanks{ {\em Mathematics Subject Classifications: 35J20, 35J25, 35J60} \hfil\break\indent {\em Key words: Superlinear Dirichlet problem, positive nonradial solutions, \hfil\break\indent variational methods} \hfil\break\indent \copyright 2000 Southwest Texas State University. \hfil\break\indent Published October 24, 2000. } } \date{} \author{ Alfonso Castro \& Marcel B. Finan } \maketitle \begin{abstract} We study the existence of many positive nonradial solutions of a superlinear Dirichlet problem in an annulus in ${\mathbb R}^N$. Our strategy consists of finding the minimizer of the energy functional restricted to the Nehrai manifold of a subspace of functions with symmetries. The minimizer is a global critical point and therefore is a desired solution. Then we show that the minimal energy solutions in different symmetric classes have mutually different energies. The same approach has been used to prove the existence of many sign-changing nonradial solutions (see \cite{kn:0.1}). \end{abstract} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \section{Introduction} In this article we study the existence of many positive nonradial solutions of the equation \begin{eqnarray} & \Delta u + f(u) = 0 \quad\mbox{in } \Omega_{\epsilon}&\nonumber \\ & u > 0 \quad\mbox{in } \Omega_{\epsilon} &\label{P}\\ & u = 0 \quad\mbox{on } \partial\Omega_{\epsilon}\,,&\nonumber \end{eqnarray} where \[ \Omega_{\epsilon} = \{x \in {\mathbb R}^3: 1-\epsilon < |x| < 1 \}. \] The non-linearity $f$ is of class $C^1({\mathbb R})$ and satisfies the following conditions: \begin{description} \item{\bf (C1)} $f(0) = 0$ and $f'(0) < \lambda_1$, where $\lambda_1$ is the smallest eigenvalue of $-\Delta$ with zero Dirichlet boundary condition in $\Omega_{\epsilon}$. \item{\bf (C2)} $f'(u) > \frac{f(u)}{u}$ for all $u \neq 0$. \item{\bf (C3)} (Superlinearity) $\lim_{|u| \rightarrow \infty} \frac{f(u)}{u} = \infty$. \item{\bf (C4)} (Subcritical growth) There exist constants $C>0$ and $p \in (1, 5)$ such that \[ |f'(u)| \leq C(|u|^{p-1} + 1), ~~~ \forall u \in {\mathbb R}. \] \item{\bf (C5)} There exist constants $m \in (0,1)$ and $\rho$ such that for $|u| > \rho$, \[ uf(u) \geq \frac{2}{m} F(u) > 0, \] where $F(u) = \int_{0}^{u} f(s)\,ds$. \end{description} \noindent This paper is motivated by the work of Coffman \cite {kn:1}, Li \cite{kn:2} and Lin \cite{kn:3}. In 1984, Coffman showed that for $f(t) = -t + t^p$, where $p = 2N +1, N =2$, the above problem has many positive nonradial solutions. His result was extended by Li \cite{kn:2} to the N-dimensional case with $N \geq 4$ or $N = 2$ and for $p \in (1, \frac{N+2}{N-2})$, when the nonlinear term is $\lambda t + t^p$ for $\lambda \leq 0$. Our main result (see Theorem ~\ref{main} below) concerns the case $N=3$. We will show that for $N=3$ our problem has many distinct nonradial solutions. We follow the strategy used in \cite{kn:1,kn:2} and \cite{kn:3}. That is, we look for the minimizer of the energy functional restricted to the Nehari manifold of a subspace of functions with symmetries. The minimizer is a global critical point and therefore is a solution to (\ref{P}). Then we show that the minimal energy solutions in different symmetric classes has mutually different energies. We would like to point out here that during the preparation of this article we were unaware of the papers by Byeon \cite{kn:01} and Catrina and Wang \cite{kn:02}, where the above problem has been solved. However, our approach is different from theirs. Our main result is the following \begin{theorem} \label{main} Let conditions (C1) - (C5) be satisfied. Then, for each positive integer $k$ there exists $\epsilon_{1}(k) > 0$ such that if $0 < \epsilon < \epsilon_{1}(k)$ then (\ref{P}) has $k$ distinct positive nonradial solutions. \end{theorem} We note that our argument works for $N \geq 2$ and not only for the three dimensional case. The approach used in proving Theorem \ref{main} is similar to the one used in \cite {kn:2}, i.e., we consider the functionals \[ J(u) = \int_{\Omega_{\epsilon}} \big\{ \frac{1}{2}|\nabla u|^2 - F(u) \big\} dx \] and \[ \gamma(u) = \int_{\Omega_{\epsilon}} \big(|\nabla u|^2 - uf(u) \big)\,dx \] on $H_{0}^{1}(\Omega_{\epsilon})$, and for $k \geq 1$, we consider the space of invariant functions \begin{eqnarray*} {H(\epsilon,\it k)} &:=& \mathop{\rm Fix} (G_{k} \times \{id_{{\mathbb R}}, - id_{{\mathbb R}}\})\\ &=& \big\{ v \in H_{0}^{1}(\Omega_{\epsilon}): v(g(x_1, x_2), Tx_3) = v(x_1, x_2, x_3), \\ &&\forall~(g,T) \in G_{k} \times \{id_{{\mathbb R}}, - id_{{\mathbb R}}\} \big\}\\[2pt] & = & \big\{v \in H_{0}^{1}(\Omega_{\epsilon}): v(x_1, x_2, x_3) = u(x_1, x_2, |x_3|)\mbox{ for some }u\\ &&\mbox{satisfying } u(g(x_1, x_2), |x_3|) = u(x_1, x_2, |x_3|)\; \forall g \in G_k\big\} \end{eqnarray*} where $G_{k} = \{ g^{i}: 0 \leq i \leq k-1\}$ and $gz = e^{2\pi i/k} z$, $z \in {\mathbb C} \simeq {\mathbb R}^2$. Also, we consider the Nehari manifold \[ {S(\epsilon, \it k)} = \{ v \in {H(\epsilon, \it k)} \backslash \{0\}: \gamma (v) = 0 \}. \] Similarly, we define the space of functions \begin{eqnarray*} {H(\epsilon, \infty)} &:=& {\bf O}(2) \times \{id_{{\mathbb R}}, - id_{{\mathbb R}}\} \\[1pt] & = & \big\{ v \in H_{0}^{1}(\Omega_{\epsilon}): v(g(x_1, x_2), Tx_3) = v(x_1, x_2, x_3),\\ && \forall (g,T) \in {\bf O}(2) \times \{id_{{\mathbb R}}, - id_{{\mathbb R}}\} \big\}\\[1pt] &= &\big \{v \in H_{0}^{1}(\Omega_{\epsilon}): v(x_1, x_2, x_3) = u(\sqrt{x_1^2 + x_2^2}, |x_3|),\mbox{ for some } u \big\}, \end{eqnarray*} and the manifold \[ {S(\epsilon, \infty)} = \{ v \in {H(\epsilon,\infty)}\backslash \{0\}: \gamma (v) = 0\}, \] where ${\bf O}(2)$ denotes the space of $2\times 2$ orthogonal matrices. Note that if $u \in H(\epsilon,\infty)$ then $u$ is $\theta-$independent. Associated with the above sets, we consider the numbers $$ j_{k}^{\epsilon} = \inf_{v \in S(\epsilon, \it k)} J(v) \quad \mbox{and}\quad j_{\infty}^{\epsilon} = \inf_{v \in S(\epsilon, \infty)} J(v).$$ We prove Theorem \ref{main} by establishing the following lemmas: \begin{lemma} \label{lem1} For $k = 1, 2, ..., \infty$, $j_{k}^{\epsilon}$ is achieved by some $u_{\epsilon,k} \in S(\epsilon, \it k)$ and $u_{\epsilon,k}$ is a critical point of $J$ on ${H(\epsilon, \it k)}.$ \end{lemma} \begin{lemma} \label{lem2} Let $u_{\epsilon, k}$ be as in Lemma \ref{lem1}. Then $u_{\epsilon, k}$ is a critical point of $J$ on $H_{0}^{1}(\Omega_{\epsilon}).$ \end{lemma} \begin{lemma} \label{lem3} Given a positive integer $k$, there exists $\epsilon_{1}(k)$ such that for $0<\epsilon<\epsilon_{1}(k)$ we have $$j_{k}^{\epsilon} < j_{\infty}^{\epsilon}.$$ \end{lemma} \begin{lemma} \label{lem4} For $n = 2,3,4,...$, $k = 1,2,3,...$, $j_{kn}^{\epsilon} < j_{\infty}^{\epsilon}$ implies $j_{k}^{\epsilon} < j_{kn}^{\epsilon}.$ \end{lemma} This article is organized as follows: In Section 2, we prove Lemmas \ref{lem1}--\ref{lem4}. In Section 3, we prove Theorem \ref{main}. \section{Proof of Lemmas \ref{lem1}--\ref{lem4}} \noindent{\it Proof of Lemma \ref{lem1}:} The proof follows from \cite{kn:0} combined with the facts that the embeddings $H(\epsilon, k)\subset L^{p}(\Omega_{\epsilon})$ and $H(\epsilon, \infty) \subset L^{\infty}(\Omega_{\epsilon})$ are compact (See \cite {kn:4}) \hfill$\diamondsuit$\smallskip Lemma \ref{lem2} is a result of the symmetric criticality principle: if $u_{\epsilon,k}$ is a critical point of $J$ on ${H(\epsilon, \it k)}$, then $u_{\epsilon,k}$ is a critical point of $J$ on $H_{0}^{1}(\Omega_{\epsilon})$ (See \cite {kn:4}). To prove Lemma \ref{lem3} we need the following results. \begin{lemma}[Poincar\'{e}'s inequality] \label{lem5} Let $\Omega \subset {\mathbb R}^N$ be a smooth bounded domain with diameter $d.$ Then for $u \in H_{0}^{1} (\Omega)$ we have \[ \int_{\Omega} u^2dx \leq \frac{d^2}{N} \int_{\Omega} |\nabla u|^2 dx\,. \] \end{lemma} \begin{lemma}[\cite{kn:0}] \label{lem6} 0 is a local minimum of $J$. If $u \in H(\epsilon,k) - \{0\}$, then there exists a unique $\alpha = \alpha(u) \in (0,\infty)$ such that $\alpha u \in S(\epsilon,k)$. Moreover, $J(\alpha u) = \max_{\lambda > 0}{J(\lambda u)} > 0$. \end{lemma} \begin{lemma}[\cite{kn:0.2}] \label{lem7} For $|v| > \rho$ and $s > 2$ we have $$svf(sv) \geq Cs^{2/m} v f(v)$$ for some constant $C > 0$. \end{lemma} \noindent {\it Proof of Lemma \ref{lem3}:} Let $k \geq 1$ be an integer and $\epsilon > 0$ to be chosen below. According to Lemma \ref{lem1}, there exist $u_{\epsilon,k} \in S(\epsilon,k)$ and $u_{\epsilon,\infty} \in S(\epsilon,\infty)$ such that $j_{k}^{\epsilon} = J(u_{\epsilon,k})$ and $j_{\infty}^{\epsilon} = J(u_{\epsilon,\infty})$. By Lemma \ref{lem2}, $u_{\epsilon,k}$ and $u_{\epsilon,\infty}$ are solutions to Problem \ref{P}. Let $\Omega_{\epsilon}^{k}$ be the set of points $x=(x_1,x_2,x_3) \equiv (r,\theta,x_3) \in \Omega_{\epsilon}$ such that $\theta \in [0,2\pi/k]$. Let $j$ be a positive integer to be chosen independent of $k$ and $\epsilon$. Define \[ \omega (r,\theta,x_3) = \left\{ \begin{array}{ll} u_{\epsilon,\infty}(r,|x_3|)\sin{(jk\theta)} & \mbox{for $\theta \in [0, \pi/(jk)]$}\\[2pt] 0 & \mbox{for $\theta \in [\pi/(jk), 2\pi/k]$}\,, \end{array} \right. \] where $r = (x_1^2 + x_2^2)^{1/2}$. Extend $\omega$ periodically to all of $\Omega_{\epsilon}$ in the $\theta$ direction. Let $z \in H(\epsilon,k)$ be the resulting extension. Since $u_{\epsilon,\infty}>0$ then $z>0$. By the chain rule we have \begin{eqnarray*} |\nabla \omega(r, \theta, x_3)|^2 & = & (u_{\epsilon,\infty})_{r}^2\sin^2{(jk\theta)} + \frac{1}{r^2} (u_{\epsilon,\infty})^2 (jk)^2\cos^2{(jk\theta)}\\ & &+ |\nabla_{x_3}u_{\epsilon,\infty}|^2\sin^2{(jk\theta)} \end{eqnarray*} if $\theta \in [0, \pi/(jk)]$, otherwise $\nabla \omega = 0.$ Thus, $$|\nabla \omega (r, \theta,x_3)|^2 \leq (u_{\epsilon,\infty})_r^2 + \frac{1}{r^2} (jk)^2(u_{\epsilon,\infty})^2 + |\nabla_{x_3} u_{\epsilon,\infty}|^2.$$ By Lemma \ref{lem5} we have \begin{eqnarray*} \int_{\Omega_{\epsilon}^{2jk}} u_{\epsilon,\infty}^2\,dx_1\,x_2\,dx_3 \leq \frac{(\mathop{\rm diam}(\Omega_{\epsilon}^{2jk}))^2}{3} \int_{\Omega_{\epsilon}^{2jk}} |\nabla u_{\epsilon,\infty}|^2 \,dx_1\,x_2\,dx_3. \end{eqnarray*} \noindent Thus, \begin{eqnarray} \lefteqn{\int_{\Omega_{\epsilon}} |\nabla z|^2 \,dx_1\,x_2\,dx_3 }\nonumber\\ & = & k\int_{\Omega_{\epsilon}^ {2jk}} |\nabla \omega|^2 \,dx_1\,x_2\,dx_3 \nonumber \\ & \leq & k \int_{\Omega_{\epsilon}^{2jk}} [(1 + \frac{16(jk)^2}{27}\epsilon^2) (u_{\epsilon,\infty})_{r}^2 + |\nabla_{x_3} u_{\epsilon,\infty}|^2]\,dx_1\,x_2\,dx_3 \nonumber \\ & \leq & 2k \int_{\Omega_{\epsilon}^{2jk}} ( (u_{\epsilon,\infty})_r^2 + |\nabla_{x_3} u_{\epsilon,\infty}|^2)\,dx_1\,x_2\,dx_3 \label{eq10} \\ & = & 2k\int_{\Omega_{\epsilon}^{2jk}} |\nabla u_{\epsilon,\infty}|^2 \,dx_1\,x_2\,dx_3 \nonumber \end{eqnarray} provided that $\epsilon < 3\sqrt{3}/(4jk)$. By Lemma \ref{lem6} we can find $\alpha > 0$ such that $\gamma (\alpha z)= 0$. Let $D = \{(r,\theta,x_3): u_{\epsilon,\infty}(r,|x_3|) > \rho, \theta \in [\frac{\pi}{4jk},\frac {\pi}{2jk}] \}$. Suppose that $\alpha > \sqrt{2}$. Then for $(r,\theta,x_3) \in D$ we have $\alpha \sin{(jk\theta)} > 2$. This, the fact that $tf(t)$ is bounded from below, say by $E$, and Lemma \ref{lem7} imply \begin{eqnarray} \lefteqn{\int_{\Omega_{\epsilon}} \alpha zf(\alpha z)\,dx_1\,x_2\,dx_3 }\nonumber\\ & = & k \int_{\Omega_{\epsilon}^{2jk}} \alpha \sin{(jk\theta)}u_{\epsilon,\infty} f(\alpha \sin{(jk\theta)}u_{\epsilon,\infty})\,dx_1\,x_2\,dx_3 \nonumber \\ & \geq & k\left( E |\Omega_{\epsilon}^{2jk}| + C\alpha^{2/m}\int_{D} u_{\epsilon,\infty}f(u_{\epsilon,\infty})\,dx_1\,x_2\,dx_3 \right) \label{eq7} \\ & = & k \left( E |\Omega_{\epsilon}^{2jk}| + C\alpha^{2/m} (\int_{u_{\epsilon,\infty}> \rho} u_{\epsilon,\infty}f(u_{\epsilon,\infty})r\,dr\,dx_3) ( \int_{\pi/(4jk)}^{\pi/(2jk)} d\theta) \right) \nonumber \\ & = & k E|\Omega_{\epsilon}^{2jk}| +k\frac{C}{4}\alpha^{2/m} (\int_{u_{\epsilon,\infty} > \rho} u_{\epsilon,\infty}f(u_{\epsilon,\infty})r\,dr\,dx_3) ( \int_{0}^{\pi/(jk)} d\theta)\,, \nonumber \end{eqnarray} where $|\Omega_{\epsilon}|$ denotes the volume of $\Omega_{\epsilon}$. Now, let $\epsilon < 1/4$. Then $K = \inf_{u \in S(1/4, k)} J(u) \leq \inf_{u \in S(\epsilon, k)} J(u)$. Let $u_{\epsilon,\infty}$ also denote the zero extension of $u_{\epsilon,\infty}$ to all of $\Omega_{1/4}$. Then $u_{\epsilon,\infty} \in S(1/4, k)$. Thus, $J(u_{\epsilon,\infty}) \geq K$ and consequently \begin{eqnarray} \int_{\Omega_{\epsilon}} |\nabla u_{\epsilon,\infty}|^2 \,dx_1\,x_2\,dx_3 & \geq & 2K + 2M|\Omega_{\epsilon}| \label{e3} \end{eqnarray} \noindent where $M = \inf{\{F(t): t \in {\mathbb R}\}}.$\\ If we choose $\epsilon$ so that $|\Omega_{\epsilon}| \rho} u_{\epsilon,\infty}f(u_{\epsilon,\infty})r\,dr\,dx_3}\\ & = & \int_{u_{\epsilon,\infty} \geq 0}u_{\epsilon,\infty} f(u_{\epsilon,\infty})r\,dr\,dx_3 - \int_{u_{\epsilon,\infty}\leq \rho} u_{\epsilon,\infty}f(u_{\epsilon,\infty})r\,dr\,dx_3 \\ \\ & = &\big[ 1 - \frac{\int_{u_{\epsilon,\infty} \leq \rho} u_{\epsilon,\infty}f(u_{\epsilon,\infty})r\,dr\,dx_3}{\int_{u_{\epsilon,\infty} \geq 0} u_{\epsilon,\infty}f(u_{\epsilon,\infty})r\,dr\,dx_3} \big] \int_{u_{\epsilon,\infty} \geq 0} u_{\epsilon,\infty}f(u_{\epsilon,\infty})r\,dr\,dx_3 \\ \\ & = & \big[ 1 - \frac{2\pi \int_{u_{\epsilon,\infty} \leq \rho} u_{\epsilon,\infty}f(u_{\epsilon,\infty})r\,dr\,dx_3}{\int_{\Omega_{\epsilon}} |\nabla u_{\epsilon,\infty}|^2 \,dx_1\,x_2\,dx_3} \big] \int_{u_{\epsilon,\infty} \geq 0} u_{\epsilon,\infty}f(u_{\epsilon,\infty})r\,dr\,dx_3 \\ \\ & \geq & (1 - C\epsilon) \int_{u_{\epsilon,\infty} \geq 0} u_{\epsilon,\infty}f(u_{\epsilon,\infty})r\,dr\,dx_3 \end{eqnarray*} where the constant $C$ is independent of $(\epsilon, j, k)$. By choosing $\epsilon$ in such a way that $1 - C\epsilon > 1/2$ we conclude \[ \int_{u_{\epsilon,\infty} > \rho} u_{\epsilon,\infty}f(u_{\epsilon,\infty})r\,dr\,dx_3 > \frac{1}{2} \int_{\Omega_{\epsilon}} u_{\epsilon,\infty}f(u_{\epsilon,\infty}) r\,dr\,dx_3. \] This reduces (\ref{eq7}) to \begin{equation} \label{eq8} \int_{\Omega_{\epsilon}} \alpha zf(\alpha z)\,dx_1\,dx_2\,dx_3 \geq kE|\Omega_{\epsilon}^{2jk}| + kC\alpha^{2/m} \int_{\Omega_{\epsilon}^{2jk}} |\nabla u_{\epsilon,\infty}|^2\,dx_1\,dx_2\,dx_3. \end{equation} On the other hand, using (\ref{eq10}) we have \begin{eqnarray} \label{eq9} \int_{\Omega_{\epsilon}} \alpha zf(\alpha z)\,dx_1\,x_2\,dx_3 & = & \alpha^2 \int_{\Omega_{\epsilon}} |\nabla z|^2 \,dx_1\,x_2\,dx_3 \nonumber \\ & \leq & 2k\alpha^2 \int_{\Omega_{\epsilon}^{2jk}} |\nabla u_{\epsilon,\infty}|^2 \,dx_1\,x_2\,dx_3. \end{eqnarray} Combining (\ref{eq8}) and (\ref{eq9}) to obtain \[ (C\alpha^{2/m} - 2\alpha^2)\int_{\Omega_{\epsilon}^{2jk}} |\nabla u_{\epsilon,\infty}|^2 \,dx_1\,x_2\,dx_3 \leq \frac{C\epsilon}{jk} \] Hence, \begin{eqnarray*} C\alpha^{2/m} - 2\alpha^2 & \leq & \frac{C\epsilon/(jk)}{ \int_{\Omega_{\epsilon}^{2jk}} |\nabla u_{\epsilon,\infty}|^2\,dx_1\,x_2\,dx_3} \\ & \leq & \frac{C\epsilon}{\int_{\Omega_{\epsilon}} |\nabla u_{\epsilon,\infty}|^2 \,dx_1\,x_2\,dx_3} \leq M_{1}\,, \end{eqnarray*} where we have used (\ref{eq11}). But the function $g(\alpha) = C\alpha^{2/m} - 2 \alpha^2$ satisfies $g(0) = 0$ and $\lim_{\alpha \rightarrow\infty} g(\alpha) = +\infty$. Thus, if $g(\alpha) \leq M_{1}$ then there is a constant $K'$ such that $\alpha \leq K'$. By letting \begin{equation} \alpha \leq \max{\big\{\sqrt{2}, K'\big\}} \equiv K'' \label{e4} \end{equation} we conclude that $\alpha$ is bounded. Let $w = \alpha z \in S(\epsilon, k).$ \noindent Since $F(t)$ is bounded from below, say by $M$, then (\ref{e4}) and (\ref{eq10}) imply \begin{eqnarray} J(w) & = & \int_{\Omega_{\epsilon}} \left( \frac{|\nabla w|^2}{2} - F(w) \right) \,dx_1\,x_2\,dx_3 \nonumber \\ & = & \int_{\Omega_{\epsilon}} \frac{\alpha^2 |\nabla z|^2 }{2} \,dx_1\,x_2\,dx_3 - \int_{\Omega_{\epsilon}} F(w)\,dx_1\,x_2\,dx_3 \nonumber \\ & \leq & 2(K'')^2 k \int_{\Omega_{\epsilon}^{2jk}} \frac{|\nabla u_{\epsilon,\infty} |^2}{2} \,dx_1\,x_2\,dx_3 - kM|\Omega_{\epsilon}^{2jk}| \nonumber \\ & \leq & 2\frac{(K'')^2}{j} \int_{\Omega_{\epsilon}} \frac{|u_{\epsilon,\infty}|^2}{2} \,dx_1\,x_2\,dx_3 + \frac{kC\epsilon}{jk} \nonumber \\ & \leq & \frac{(K'')^2}{j} \int_{\Omega_{\epsilon}} \frac{|\nabla u_{\epsilon,\infty}|^2}{2} \,dx_1\,x_2\,dx_3 + \frac{1}{j} \int_{\Omega_{\epsilon}} \frac{|\nabla u_{\epsilon,\infty}|^2}{2} \,dx_1\,x_2\,dx_3 \nonumber \\ & \leq & \frac{C}{j}\int_{\Omega_{\epsilon}} \frac{|\nabla u_{\epsilon,\infty}|^2}{2} \,dx_1\,x_2\,dx_3 \label{e6} \end{eqnarray} where we have used (\ref{e3}) with $\epsilon$ chosen in such a way that $C\epsilon< K$ and $|\Omega_{\epsilon}| < K/(-2M)$. We claim that there exists a constant $C$ such that $$ \int_{\Omega_{\epsilon}} \frac{|\nabla u_{\epsilon,\infty}|^2}{2}\,dx_1\,x_2\,dx_3 \leq CJ(u_{\epsilon,\infty}). $$ Indeed, since $\gamma (u_{\epsilon,\infty}) = 0$ and by (C5) we have \begin{eqnarray*} \lefteqn{\int_{\Omega_{\epsilon}} u_{\epsilon,\infty} f(u_{\epsilon,\infty})\,dx_1\,x_2\,dx_3 }\\ & = & \int_{\Omega_{\epsilon}} |\nabla u_{\epsilon,\infty}|^2\,dx_1\,x_2\,dx_3\\ & = & \int_{\Omega_{\epsilon}} ( |\nabla u_{\epsilon,\infty}|^2 - 2F(u_{\epsilon, \infty}))\,dx_1\,x_2\,dx_3 + 2\int_{\Omega_{\epsilon}} F(u_{\epsilon,\infty})\,dx_1\,x_2\,dx_3\\ &\leq & 2 (J(u_{\epsilon,\infty}) + \frac{m}{2}\int_{\Omega_{\epsilon}} u_{\epsilon,\infty}f(u_{\epsilon,\infty}) \,dx_1\,x_2\,dx_3 + C|\Omega_{\epsilon}| ). \end{eqnarray*} It follows that \begin{equation} \label{e5} (1-m) \int_{\Omega_{\epsilon}} u_{\epsilon,\infty}f(u_{\epsilon,\infty}) \,dx_1\,x_2\,dx_3 \leq 2(J(u_{\epsilon,\infty}) +C|\Omega_{\epsilon}|). \end{equation} On the other hand, using (\ref{e3}) and (C5) we have \begin{eqnarray*} J(u_{\epsilon,\infty}) & = & \int_{\Omega_{\epsilon}} (\frac{1}{2}|\nabla u_{\epsilon,\infty}|^2 - F(u_{\epsilon,\infty})) \,dx_1\,x_2\,dx_3 \\ & \geq & (\frac{1-m}{2})\int_{\Omega_{\epsilon}} u_{\epsilon,\infty}f(u_{\epsilon,\infty}) \,dx_1\,x_2\,dx_3 - C'|\Omega_{\epsilon}| \\ &\geq & (\frac{1-m}{2})K - C'|\Omega_{\epsilon}|. \end{eqnarray*} By choosing $\epsilon$ in such a way that $C'|\Omega_{\epsilon}| <\frac{1}{4}(1-m)K$, we see that $J(u_{\epsilon,\infty}) > (\frac{1-m}{4})K.$ Now, we choose $\epsilon$ such that $C|\Omega_{\epsilon}| < (\frac{1-m}{4})K.$ Using this in (\ref{e5}) we obtain \[ \int_{\Omega_{\epsilon}} u_{\epsilon,\infty}f(u_{\epsilon,\infty}) \,dx_1\,x_2\,dx_3 \leq CJ(u_{\epsilon,\infty}). \] Also, using this in (\ref{e6}) we obtain $$ J(w) \leq \frac{C}{j} J(u_{\epsilon,\infty}). $$ Choosing $j$ such that $j >2C$ we obtain $J(w) < J(u_{\epsilon,\infty})$ and this concludes the present proof. \hfill$\diamondsuit$\smallskip To prove Lemma \ref{lem4} we need \begin{lemma} \label{lem0} Let $v \in H_{0}^{1}(\Omega_{\epsilon})$. Then the function $$P_{v}(\lambda) = \frac{\lambda vf(\lambda v)}{2} - F(\lambda v)$$ is increasing on $(0,\infty).$ \end{lemma} \noindent {\it Proof.} Differentiating $P-{v}$ with respect to $\lambda$ we find $$P_{v}'(\lambda) = \frac{\lambda v^2}{2} \left( f'(\lambda v) - \frac{f(\lambda v)}{\lambda v}\right) > 0\,,$$ where we have used (C2). This completes the proof \hfill$\diamondsuit$ \smallskip \noindent {\it Proof of Lemma \ref{lem4}:} Fix $k$ and $n$. Let $0 < \epsilon < \epsilon_{1}(kn)$. Lemma \ref{lem1} guarantees the existence of a minimizer $u_{\epsilon,kn}$ of $J$ on $S(\epsilon,kn)$. From Lemma \ref{lem2} we see that $u_{\epsilon,kn}$ is a solution to (\ref{P}). Furthermore, from Lemma \ref{lem3} we know that $u_{\epsilon,kn}$ is nonradial. Now, by the regularity theory of elliptic equations we know that $u_{\epsilon,kn}$ is a $C^2$ function. Let $x = (r, \theta)$ be the polar coordinates of $x \in {\mathbb R}^2$ and write $u = u_{\epsilon,kn}(r, \theta, |x_3|)$. Then $$ \int_{\Omega_{\epsilon}} |\nabla u|^2 \,dx_1\,x_2\,dx_3 = \int_{(r,|x_3|)} \int_{0}^{2\pi} (u_{r}^2 + \frac{1}{r^2}u_{\theta}^2 + |\nabla_{x_3} u|^2)r\,dr\,d\theta \,dx_3$$ and $$ \int_{\Omega_{\epsilon}} F(u)\,dx_1\,x_2\,dx_3 = \int_{(r,|x_3|)} \int_{0}^{2\pi} F(u)r\,dr\,d\theta \,dx_3\,.$$ Define the function $$ v(r, \theta, |x_3|) = u(r, \frac{\theta}{n}, |x_3|),\quad 0 \leq \theta \leq 2\pi.$$ Then \begin{eqnarray*} v(r, \theta + \frac{2\pi}{k}, |x_3|) & = & u(r, \frac{\theta}{n} + \frac{2\pi}{kn}, |x_3|) \\ & = & u(r, \frac{\theta}{n}, |x_3|) \\ & = & v(r, \theta, |x_3|). \end{eqnarray*} It follows that $v \in H(\epsilon,k)$. On the other hand, it is easy to check that the following equalities hold $$\displaylines{ v_{r} (r, \theta, |x_3|) = u_{r} (r, \frac{\theta}{n}, |x_3|)\,, \cr v_{\theta} (r, \theta, |x_3|) = \frac{1}{n} u_{\theta} (r, \frac{\theta}{n}, |x_3|) \,,\cr \nabla_{x_3} v(r, \theta, |x_3|) = \nabla_{x_3} u(r, \frac{\theta}{n}, |x_3|). }$$ Therefore, \begin{eqnarray*} \int_{\Omega_{\epsilon}} |\nabla v|^2\,dx_1\,x_2\,dx_3 &=& k \int_{(r,|x_3|)} \int_{0}^{2\pi/k} (u_{r}^2(r,\frac{\theta}{n},|x_3|) + \frac{1}{r^2n^2}u_{\theta}^2(r, \frac{\theta}{n},|x_3|) \\ &&+ |\nabla_{x_3} u(r,\frac{\theta}{n},|x_3|)|^2) r\,dr\,d\theta \,dx_3 \\ & = & kn \int_{0}^{\frac{2\pi}{nk}} (u_{r}^2(r,\theta,|x_3|) + \frac{1}{r^2n^4}u_{\theta}^2(r,\theta,|x_3|) \\ &&+ |\nabla_{x_3} u(r,\theta,|x_3|)|^2)r\,dr\,d\theta \,dx_3 \\ & = & \int_{(r,|x_3|)} \int_{0}^{2\pi} (u_{r}^2(r,\theta,|x_3|) + \frac{1}{r^2n^4}u_{\theta}^2(r,\theta,|x_3|) \\ &&+ |\nabla_{x_3} u(r,\theta,|x_3|)|^2)r\,dr\,d\theta \,dx_3. \end{eqnarray*} Also \begin{eqnarray*} \int_{\Omega_{\epsilon}} F(v)\,dx_1\,x_2\,dx_3 &=& k \int_{(r,|x_3|)} \int_{0}^{2\pi/k} F(u(r,\frac{\theta}{n},|x_3|))r\,dr\,d\theta \,dx_3 \\ & = & \int_{(r,|x_3|)} \int_{0}^{2\pi} F(u(r,\theta,|x_3|))r\,dr\,d\theta \,dx_3\,. \end{eqnarray*} Since $u$ does not belong to $S(\epsilon, \infty)$ we have \begin{eqnarray*} \int_{(r,|x_3|)} \int_{0}^{2\pi} u_{\theta}^2(r,\theta,|x_3|) r\,dr\,d\theta dx_3> 0\,. \end{eqnarray*} It follows that \begin{eqnarray*} \gamma (v) & = & \int_{\Omega_{\epsilon}} (|\nabla v|^2 - vf(v))\,dx_1\,x_2\,dx_3 \\ & = & \int_{(r,|x_3|)} \int_{0}^{2\pi} (u_{r}^2(r,\theta,|x_3|) + \frac{1}{r^2n^4}u_{\theta}^2(r,\theta,|x_3|) \\ &&+|\nabla_{x_3} u(r,\theta,|x_3|)|^2 - uf(u))r\,dr\,d\theta \,dx_3\\ & < & \int_{(r,|x_3|)} \int_{0}^{2\pi} (u_{r}^2(r,\theta,|x_3|) + \frac{1}{r^2}u_{\theta}^2(r,\theta,|x_3|) \\ &&+ |\nabla_{x_3} u(r,\theta,|x_3|)|^2 - uf(u))r\,dr\,d\theta \,dx_3 \\ & = & \int_{\Omega_{\epsilon}} (|\nabla u|^2 - uf(u))\,dx_1\,x_2\,dx_3 = 0. \end{eqnarray*} This yields \begin{eqnarray} \label{v} \int_{\Omega_{\epsilon}} |\nabla v|^2 \,dx_1\,x_2\,dx_3 < \int_{\Omega_{\epsilon}} vf(v)\,dx_1\,x_2\,dx_3\,. \end{eqnarray} Now, by Lemma \ref{lem6} we can find $0< \alpha < 1$ such that $\alpha v \in S(\epsilon, k)$. Let $w = \alpha v \in S(\epsilon, k)$. Using Lemma \ref{lem0} and the definition of $j_{k}^{\epsilon}$ we have \begin{eqnarray*} j_{k}^{\epsilon} & \leq & J(w) = J(\alpha v) = P_{v}(\alpha) \\ & < & P_{v}(1) \\ & = & \int_{\Omega_{\epsilon}} (\frac{1}{2}vf(v) - F(v))\,dx_1\,x_2\,dx_3 \\ & = & \int_{\Omega_{\epsilon}} (\frac{1}{2}uf(u) - F(u))\,dx_1\,x_2\,dx_3\\ & = & J(u) = j_{kn}^{\epsilon}. \end{eqnarray*} Putting together all the arguments above we conclude a proof of the lemma \hfill$\diamondsuit$ \section{Proof of Main Theorem} For any integer $k \geq 1$, according to Lemma \ref{lem3} there exists $\epsilon_1 (2^k)$ such that if $0 < \epsilon < \epsilon_{1}(2^k)$ then $$ j_{2^k}^{\epsilon} < j_{\infty}^{\epsilon}.$$ \noindent It follows from Lemma \ref{lem4} that \begin{equation} \label{2} j_{2}^{\epsilon} < j_{2^2}^{\epsilon} < ... < j_{2^k}^{\epsilon} < j_{\infty}^{\epsilon}. \end{equation} \noindent According to Lemma \ref{lem1}, there exists $u_{\epsilon,i} \in S(\epsilon, i), i = 1, ..., k$, such that $$ j_{2^i}^{\epsilon} = J(u_{\epsilon,i}).$$ \noindent Moreover, by Lemma \ref{lem2} $u_{\epsilon,i}$ is a solution of Problem \ref{P}, $i = 1,\dots ,k$. By (\ref{2}), $\{u_{\epsilon,i} \}_{i=1}^{k}$, are nonrotationally equivalent and nonradial. This completes the proof of the theorem. \hfill$\diamondsuit$ \begin{thebibliography}{10} {\frenchspacing \bibitem{kn:01} J. Byeon, \textit{Existence of many nonequivalent nonradial positive solutions of semilinear elliptic equations on three dimensional annuli,} J. Differential Equations, Vol. 136 (1997), 136--165. \bibitem{kn:02} F. Catrina and Z.Q. Wang, \textit{Nonlinear elliptic equations on expanding symmetric domains,} to appear in J. Differential Equations. \bibitem{kn:0} A. Castro, J. Cossio and J.M.Neuberger,\textit{A sign changing solution for a superlinear Dirichlet Problem,} Rocky Mountain J. Math. 27 (1997), 1041--1053. \bibitem{kn:0.2} A. Castro, J. Cossio and J.M. Neuberger, \textit{A minmax principle, index of the critical point, and existence of sign-changing solutions to elliptic boundary value problems,} Electron. J. Differential Equations, Vol. 1998 (1998), N0.2, 1--18. \bibitem{kn:0.1} A. Castro and M.B. Finan, \textit{ Existence of many sign-changing nonradial solutions for a superlinear Dirichlet problem on thin annuli}, Topological Methods in Nonlinear Analysis Vol. 13, No.2 (1999), 273--279 \bibitem{kn:1} C.V. Coffman, \textit{A nonlinear boundary value problem with many positive solutions,} J. Differential Equations 54 (1984), 429--437. \bibitem{kn:2} Y.Y. Li, \textit{Existence of many positive solutions of semilinear elliptic equations on an annulus,} J. Differential Equations 83 (1990), 348--367. \bibitem{kn:3} S.S. Lin, \textit{Existence of many positive nonradial solutions for nonlinear elliptic equations on an annulus,} J. Differential Equations 103 (1993), 338--349. \bibitem{kn:4} M. Willem, \textit{Minimax Theorems,} Birkh\"{a}user, 1996. }\end{thebibliography}\medskip \noindent{\sc Alfonso Castro}\\ Division of Mathematics and Statistics\\ University of Texas at San Antonio\\ San Antonio, TX 78249 USA.\\ e-mail: castro@math.utsa.edu \medskip \noindent {\sc Marcel B. Finan}\\ Department of Mathematics \\ The University of Texas at Austin\\ Austin, TX 78712 USA. \\ e-mail: mbfinan@math.utexas.edu \end{document}