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Abstract

We review various results on the exponential decay of the eigenfunc-
tions of two-body Schrödinger operators. The exponential, isotropic bound
results of Slaggie and Wichmann [15] for eigenfunctions of Schrödinger
operators corresponding to eigenvalues below the bottom of the essential
spectrum are proved. The exponential, isotropic bounds on eigenfunctions
for nonthreshold eigenvalues due to Froese and Herbst [5] are reviewed.
The exponential, nonisotropic bounds of Agmon [1] for eigenfunctions cor-
responding to eigenvalues below the bottom of the essential spectrum are
developed, beginning with a discussion of the Agmon metric. The analytic
method of Combes and Thomas [4], with improvements due to Barbaroux,
Combes, and Hislop [2], for proving exponential decay of the resolvent,
at energies outside of the spectrum of the operator and localized between
two disjoint regions, is presented in detail. The results are applied to
prove the exponential decay of eigenfunctions corresponding to isolated
eigenvalues of Schrödinger and Dirac operators.

1 Introduction

The decay properties of bound state wave functions of Schrödinger operators
have been intensively studied for many years. We are concerned here with the
simplest part of the theory: The decay of the wave functions for two-body
Schrödinger operators. We consider a Schrödinger operator of the form

H = −∆+ V, (1.1)

acting on L2(Rn). The potential V is a real-valued function assumed to be
sufficiently regular so that H is essentially self-adjoint on C∞0 (R

n). We will
assume that

lim
‖x‖→∞

|V (x)| = 0. (1.2)
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266 Exponential decay of two-body eigenfunctions: A review

We also assume that V is well-enough behaved so that the spectrum of H ,
denoted by σ(H), has the standard form

σ(H) = σess(H) ∪ σd(H)

= [0,∞) ∪ {Ej | − Ej > 0, j = 0, 1, . . .} (1.3)

For example, if V is continuous and satisfies (1.2), then the spectrum of H
has this form. This is due to the invariance of the essential spectrum under
relatively-compact perturbations [9]. In many commonly encountered cases,
for example, when V has decaying derivatives, the essential spectrum is purely
absolutely continuous. However, it is known that condition (1.2) is not sufficient
to guarantee the absolute continuity of the spectrum. There are examples due to
Pearson [12] of bounded, decaying potentials for which the Schrödinger operator
has purely singular continuous spectrum. We will not need these fine spectral
results here.
Suppose that E < 0 is an eigenvalue ofH with eigenfunction ψE ∈ L2(Rn) so

that HψE = EψE . We will always assume that the eigenfuncton is normalized
so that ∫

Rn

|ψE(x)|
2 dnx = 1.

We are interested in the spatial behavior of this function ψE(x), as ‖x‖ → ∞.
The well-known example of the eigenfunctions of the hydrogen atom Hamil-
tonian provides a guide. The hydrogen atom Hamiltonian on L2(R3) has the
form

H = −∆−
1

‖x‖
. (1.4)

It is easy to check that the spherically symmetric function

ψE(x) =
1
√
8π
e−
√
1
4‖x‖, (1.5)

is a normalized eigenfunction of H with eigenvalue E = −1/4, the ground state
energy. We note that the eigenfunction decays exponentially with a factor given
by the square root of the distance from the eigenvalue E = −1/4 to the bottom
of the essential spectrum inf σess(H) = 0. We will see that this is a characteristic
exponential decay behavior.
In general, we do not know if an eigenfunction is continuous, and so pointwise

bounds are not meaningful. For the general case, it is convenient to describe
the decay of an eigenfunction in the L2-sense. For a nonnegative function F ,
we say that ψ decays like e−F in the L2-sense if

‖eFψ‖ ≤ C0, (1.6)

for some finite constant C0 > 0. Of course, if we know more about the regularity
of the potential V , we can use a simple argument to conclude the regularity of
the eigenfunction ψE corresponding to an eigenvalueE < 0. From this regularity
and an L2-exponential decay estimate, we can prove the pointwise decay of the
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eigenfunction. Simple regularity results are based on the Sobolev Embedding
Theorem, which we now state.

Theorem 1.1 Any function f ∈ Hs+k(Rn), for s > n/2 and k ≥ 0, can be
represented by a function f ∈ Ck(Rn).

Proposition 1.2 Suppose that H is a self-adjoint Schrödinger operator and the
potential V is bounded and satisfies (1.2). If, additionally, V ∈ C2k(Rn), with
bounded derivatives, then an eigenfunction ψE ∈ L2(Rn), corresponding to an
eigenvalue E < 0, satisfies ψE ∈ H2k+2(Rn). If (2k + 2) > n/2 + l, then the
eigenfunction satisfies ψE ∈ Cl(Rn).

Proof. We note that since E < 0, the resolvent of H0 = −∆ exists at energy E.
Furthermore, the resolvent R0(E) = (H0 − E)−1 maps Hs(Rn) → Hs+2(Rn),
for all s ∈ R. The eigenvalue equation can be written as

ψE = −R0(E)V ψE . (1.7)

Since V is bounded, the potential is a bounded operator on L2(Rn). Equation
(1.7) then shows that ψE ∈ H2(Rn). We now repeat this argument k-times since
V is a bounded operator on Hs(Rn), provided s ≤ k. From this, we conclude
that ψE ∈ H2k+2(Rn). The last statement follows from the Sobolev Embedding
Theorem. �
Once regularity of the eigenfunction has been established, the pointwise

decay estimate is derived from a local estimate of the following type (cf. [9] for
a simple case, or [1], for a general proof). Let B(y, r) denote the ball of radius
r > 0 about the point y ∈ Rn. There exists a constant CE,V , depending on the
potential V , the energy E, and inf σ(H), but independent of x0 ∈ Rn, so that

maxx∈B(x0,1/2)|ψE(x)| ≤ CE,V ‖ψE‖L2(B(x0,1)). (1.8)

Let us suppose that the exponential weight F in (1.6) is translation invariant and
satisifes a triangle inequality: F (x) ≤ F (x − y) + F (y). With this assumption
and estimate (1.8), we find

maxx∈B(x0,1/2) |ψE(x)e
F (x)|

≤ CE,V

(
maxx∈B(x0,1)e

F (x)
) (
maxy∈B(x0,1)e

−F (y)
)
‖ψEe

F ‖L2(B(x0,1))

≤ C1‖ψEe
F ‖L2(Rn)

≤ C2, (1.9)

where we used the triangle inequality to combine the exponential terms. This
proves that |ψE(x0)| ≤ C1e

−F (x0), for a constant C1 independent of x0. Since
x0 is arbitrary, the eigenfunction satisfies a pointwise exponential bound.

There are two basic types of upper bounds on wave functions as ‖x‖ → ∞.
We will present these as pointwise estimates on the eigenfunction, although they
can be formulated in the L2-sense as described above. We say that a function
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φ satisfies an isotropic decay estimate if there exists a nonnegative function
F : R+ → R+ so that

|φ(x)| ≤ Cαe
−F (‖x‖). (1.10)

In many situations, we have F (‖x‖) = α‖x‖, for some 0 < α < ∞. In the
situation where |V (x)| → 0 uniformly with respect to ω ∈ Sn−1, as ‖x‖ → ∞,
isotropic decay estimates are optimal. We have seen this from the example of the
hydrogen atom ground state wave function. In the situation that the potential
has different limits at infinity, depending on the direction, or, the limit at infin-
ity is not achieved uniformly, as in the case of some nonspherically-symmetric
potentials, it is more precise to replace the isotropic exponential factor with an
anisotropic function which expresses this variation. These anisotropic exponents
are described by a function ρE(x) : R

n → R+ that, as we will see, depends on
the eigenvalue E and the potential V . An anisotropic upper bound has the form

|φ(x)| ≤ C0e
−ρE(x). (1.11)

This is the case for N -body Schrödinger operators when the potential is a sum
of pair potentials. Agmon [1] has developed an extensive theory of anisotropic
decay estimates.
We will generalize the family of Hamiltonians described so far in order to

incorporate Schrödinger operators with gaps in the essential spectrum. The
situation we envision is the perturbation of a periodic Schrödinger operator
Hper = −∆ + Vper by a compactly supported potential W . It is well-known
that the spectrum of Hper is the union of intervals Bj , called bands, so that

σ(Hper) = ∪j≥0Bj . (1.12)

For many periodic potentials, there exist two consecutive bands Bj and Bj+1
that do not overlap. We say that there is an open spectral gapG between the two
bands. A local perturbation W , with compact support, preserves the essential
spectrum. In the case thatW has fixed sign, sayW ≥ 0, it is easy to show, using
the Birman-Schwinger principle, that for λ > 0 sufficiently large, the perturbed
Hamiltonian, H(λ) = Hper + λW , has bound states at energies in the gap G.
Suppose that E ∈ G. The existence of an eigenvalue for H(λ) = H0+λW at E,
for some λ 6= 0, is equivalent to the existence of an eigenvalue of the compact,
self-adjoint operator K(E) ≡W 1/2(H0−E)−1W 1/2 equal to −1/λ. We simply
choose λ ∈ R so that −1/λ is an eigenvalue of the compact, self-adjoint operator
K(E). This argument can be generalized to perturbations W with compact
support (or, sufficiently rapid decay) and not necessarily fixed sign [7]. We
are interested in the exponential decay of the eigenfunctions corresponding to
eigenvalues in open spectral gaps.
The methods used to describe eigenfunction decay below cover three main

cases encountered in the study of Schrödinger operators:

1. Isolated eigenvalues below the bottom of the essential spectrum;

2. Eigenvalues embedded in the essential spectrum;
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3. Eigenvalues lying in the spectral gap of an unperturbed operator.

As we will discuss in section 3, embedded eigenvalues at positive energies do
not occur for most Schrödinger operators. The embedded eigenvalues referred
to in point 2 occur at negative energies in the N -body case for N ≥ 3. A no-
table exception is the Wigner-von Neumann potential in one-dimension that has
an embedded eigenvalue at positive energy. In general, embedded eigenvalues
do occur for Schrödinger operators, but they are rare. The methods presented
here, especially the Agmon technique, can be extended so as to apply to reso-
nance eigenfunctions (cf. [9]). The methods can also be applied to the study of
eigenfunctions for the Laplace-Beltrami operator on noncompact Riemannian
manifolds (cf. [8]). Other references on the exponential decay of eigenfunctions
can be found in [13].

2 The Slaggie-Wichmann Results on Two-Body

Wave Functions

In 1962, Slaggie and Wichmann [15] published a paper in which they studied the
decay properties of the eigenfunctions of three-body Schrödinger operators using
integral operator methods. Although we will not discuss the many-body problem
here, we are interested in their proof of exponential decay of eigenfunctions
corresponding to negative energies Ej < 0 in the two-body situation. The
proof of Slaggie and Wichmann is very simple and requires minimum regularity
on the potential. The method capitalizes on a basic fact that will be used
again below: The Green’s function for the unperturbed operator H0 = −∆, in
dimensions n ≥ 3 and at negative energies, decays exponentially in space. In
three dimensions, the kernel of the resolvent is given by

R0(z)(x, y) = {4π‖x− y‖}
−1ei

√
z‖x−y‖, (2.1)

with the branch cut for the square root taken along the positive real axis. In
higher dimensions, the kernel of the resolvent is given by a Hankel functions of
the first kind that exhibits similar exponential decay. Since the spectrum of H0
is the half-axis [0,∞), the bound state energies of H lie outside the spectrum
of H0 and, consequently, the free Green’s function exhibits exponential decay
at those energies. In section 5, we will discuss the exponential decay of the
resolvent in more detail.
The hypotheses of Slaggie and Wichmann on the real-valued potential V are

rather general.

Hypothesis 1. There exists a positive, continuous function Q(s), with s ∈ R+,
having the properties

lim
s→∞

Q(s) = 0 (2.2)

lim
s→0

sQ(s) ≤ C0, (2.3)
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and such that

|V (x)| ≤ Q(‖x‖), for x 6= 0. (2.4)

We also assume that V ∈ L1loc(R
3), and that V is relatively Laplacian bounded

with relative bound less than one.
These conditions allow a Coulomb singularity at the origin and slow decay

at infinity. It is not difficult to prove, using a Weyl sequence argument, that
σess(H) = [0,∞). Alternatively, one can show that |V |1/2(−∆ + 1)−1 is a
compact operator. It follows that (−∆+ 1)−1V (−∆+ 1)−1 is compact so that
σess(H) = σess(−∆) = [0,∞).

Theorem 2.1 Let H = −∆+ V be a two-body Schrödinger operator satisfying
Hypothesis 1. Let Ej < 0 be a negative bound state energy and let φj be any
corresponding normalized eigenfunction satisfying Hφj = Ejφj. For any 0 <

θ <
√
|Ej |, there is a constant 0 < C(θ) <∞, so that

|φj(x)| ≤ C(θ)e
−θ‖x‖. (2.5)

Let us note that this bound is saturated for the Coulomb ground state wave

function which is ψ(x) = C0e
−
√
|E0| ‖x‖, with E0 = −1/4. The square root in

the energy behavior comes from the dependence of the free Green’s function on
the energy, as seen in (2.1).
Simon [14] proved a similar result on the exponential decay of eigenfunc-

tions corresponding to negative eigenvalues of two-body Schrödinger operators
on L2(R3), with V ∈ L2(R3) (and also for V in the Rollick class), using the
integral equation (2.7). Simon used a result, proved in [14], on the solutions
of certain integral equations associated with Hilbert-Schmidt kernels. Suppose
that K(x, y) is a Hilbert-Schmidt kernel, that is,∫

R3

∫
R3

|K(x, y)|2 d3xd3y <∞,

and suppose that G(x) is a nonzero, measurable function, and that G(x)−1

exists. Consider the kernel M(x, y) = G(x)K(x, y)G(y)−1, and suppose that
the kernel M(x, y) is also Hilbert-Schmidt. If ψ ∈ L2(Rn) satisfies Kψ = ψ,
then G(x)ψ(x) ∈ L2(Rn). In the application of this general result, we note that
the kernel of the integral equation (2.7) is Hilbert-Schmidt. For the function
G(x), we choose G(x) = eθ‖x‖, for 0 ≤ θ <

√
|Ej |, as in Theorem 2.1. It is

easy to show that the modified kernel M(x, y) is also Hilbert-Schmidt, so the
exponential decay of the eigenfunction follows.

Proof of Theorem 2.1. We will repeated use one basic fact below. An L2-
eigenfunction in 3-dimensions is necessarily continuous. This is a consequence
of the facts that such an eigenfunction is in the Sobolev space H2(R3), and the
Sobolev Embedding Theorem, Theorem 1.1. The eigenvalue equation

(−∆+ V )ψj = Ejψj , (2.6)
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implies the integral equation for ψj ,

ψj(x) = −

∫
R3

e−
√
|Ej |‖x−x

′‖

4π‖x− x′‖
V (x′)ψj(x

′) d3x′. (2.7)

It follows immediately from Hypothesis 1 and (2.7) that

|ψj(x)| ≤

∫
R3

e−
√
|Ej |‖x−x

′‖

4π‖x− x′‖
Q(‖x′‖)|ψj(x

′)| d3x′. (2.8)

Let us define a function m(x) by

m(x) ≡ sup
x′
{ |ψj(x

′)|e−θ‖x−x
′‖ }, (2.9)

and, motivated by (2.8), another function hθ(x) by

hθ(x) ≡

∫
R3

e−(
√
|Ej |−θ)‖x−x

′‖

4π‖x− x′‖
Q(‖x′‖) d3x′, (2.10)

for 0 < θ < |Ej |. It is easy to check that hθ is continuous, rotationally invariant,
and thus a function of ‖x‖ only. These two definitions and inequality (2.8) imply
that

|ψj(x)| ≤ hθ(‖x‖)m(x). (2.11)

We next prove that

lim
‖x‖→∞

hθ(‖x‖) = 0. (2.12)

We divide the region of integration R3 into two regions: ‖x − x′‖ < ε and
‖x−x′‖ > ε, for some ε > 0, to be determined below. In the first region, we easily
show that hθ(x) ≤ Cε2‖x‖−1. In the second region, we use the boundedness of
Q and write∫

‖x−x′‖>ε

e−λ‖x−x
′‖

4π‖x− x′‖
Q(‖x‖)d3x′ ≤

C0

4πε

∫
R3

e−λ‖u‖d3u, (2.13)

where λ =
√
|Ej |− θ > 0. If we choose ε = ‖x‖1/4, for example, property (2.12)

follows from these two estimates.
This decay of the function hθ(x) as ‖x‖ → ∞ controls the decay of the

eigenfunction in the following sense. Because hθ vanishes at infinity, there exists
a region R ⊂ R3 on which hθ(x) < 1. We can simply take R = R3\BR(0), for
a radius R sufficiently large. We denote by Rc the complement of this region.
We have from (2.11) that |ψj(x)| < m(x), for x ∈ R. On the otherhand, we
have for all x ∈ R3 that

m(x) = max

(
sup
x′∈R
{|ψj(x

′)|e−θ‖x−x
′‖}, sup

x′∈Rc
{|ψj(x

′)|e−θ‖x−x
′‖}

)
. (2.14)
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Our goal is to show that the maximum is obtained by the Rc-term. This will
immediately imply the result. To this end, we first note that from the definition
of m, for any x′′ ∈ R3, we have

m(x) = sup
x′
{|ψj(x

′)|e−θ‖x−x
′‖}

= sup
x′
{|ψj(x

′)|(sup
x′′

e−θ‖x
′−x′′‖e−θ‖x

′′−x‖)}

= sup
x′′
{m(x′′)e−θ‖x

′′−x‖}. (2.15)

We have used the identity

e−θ‖x−x
′‖ = sup

x′′
e−θ‖x−x

′′‖e−θ‖x
′′−x′‖, (2.16)

that is proved by the triangle inequality and the definition of the supremum.
Using (2.15), and the fact that |ψj(x)| < m(x), for x ∈ R, we compute,

sup
x′∈R
{|ψj(x

′)|e−θ‖x−x
′‖}

< sup
x′∈R
{m(x′)e−θ‖x−x

′‖}

≤ sup
x′∈R3

{m(x′)e−θ‖x−x
′‖}

= m(x). (2.17)

That is, the supremum over x′ ∈ R occurring in (2.14) is strictly less that m(x).
Hence, we have that

m(x) = sup
x′∈Rc

{|ψj(x
′)|e−θ‖x−x

′‖}. (2.18)

We can take R to be the exterior of a ball of radius R, for sufficiently large R,
due to the vanishing of hθ. It follows immediately from the continuity of the
eigenfunction ψj and (2.18) that

m(x) ≤ C(R, θ)e−θ‖x‖, (2.19)

for all x ∈ Rn, and for some constant depending on R > 0 and θ. Inequality
(2.11), that |ψj(x)| ≤ h(‖x‖)m(x), for all x ∈ R3, and the boundedness of h,
implies that there exists a constant C0 > 0 so that |ψj(x)| ≤ C0m(x). This,
together with (2.19), establishes the upper bound on the eigenfunction. �
As noted by Slaggie and Wichmann, the proof requires less restrictive con-

ditions on the potential V . The potential must satisfy conditions (2.2)–(2.4),
and, for each 0 < θ <

√
|Ej |, there must exist an Rθ > 0 so that hθ(‖x‖) < 1

for ‖x‖ > Rθ.
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3 The Froese-Herbst Method

We indicate the basic ideas of the Froese-Herbst method [5] for proving the
decay of eigenfunctions. The authors’ main motivation and results concern the
exponential decay of the eigenfunctions of N -body Schrödinger operators, and
the absence of positive eigenvalues for N -body Schrödinger operators. We will
only give the simplest version of the results here. The Froese-Herbst method
does not depend upon the explicit properties of the free Green’s function, as
in the Slaggie-Wichmann method. Consequently, the Froese-Herbst method
can be applied to more general classes of differential operators, such as Laplace-
Beltrami operators on noncompact manifolds, and to the study of eigenfunctions
corresponding to eigenvalues embedded in the essential spectrum.
The Froese-Herbst method is tied to the theory of positive commutators as

developed by E. Mourre [10]. We will briefly review the main points of this
theory below. The Froese-Herbst method yields L2-exponential bounds of the
form

eFψ ∈ L2(Rn), (3.1)

for some function F . Under more regularity assumptions on V , this L2-expo-
nential bound can be converted to a pointwise exponential bound, as explained
in section 1.
The Froese-Herbst method identifies the threshhold energies associated with

the Hamiltonian H as controlling the rate of decay of the eigenfunctions. This
means the following. Let Σ = inf σess(H) be the bottom of the essential spec-
trum. For many-body systems, this can be strictly negative. The bound state
energies of subsystems lie between Σ and 0. These energies are called thresholds
of the system. More generally, we define threshold energies as those energies at
which the Mourre estimate (3.7) fails to hold. For many two-body Schrödinger
operators, the only threshold energy is zero, which is also the bottom of the es-
sential spectrum. We mention that there may be an eigenvalue at zero energy,
or at any threshold. There is no general method for obtaining estimates on the
decay rate of the corresponding eigenfunctions. There are examples for which
the decay rate is only inverse polynomial, rather than exponential.
The general Froese-Herbst result states that any eigenfunction ψE ∈ L2(Rn),

with HψE = EψE , decays exponentially at a rate given by the square root of
the distance from the eigenvalue to a threshold above the eigenvalue. That is,
for some threshold energy τ > E, we have the bound,

e(
√
τ−E−ε) ‖x‖ψE(x) ∈ L

2(Rn), (3.2)

for any ε > 0. Note that when τ = 0, this is basically the Slaggie-Wichmann
result.
In the two-body case studied here, the potential V must satisfy the following

hypothesis. We write R0(z) for the resolvent of the Laplacian, R0(z) = (−∆−
z)−1.

Hypothesis 2. We assume that the potential V ∈ C1(Rn), and is relatively
−∆-bounded, with relative bound less than one. Furthermore, we assume that
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there exists a constant 0 < C0 <∞, so that V satisfies

‖R0(−1)(x · ∇V )R0(−1)‖ ≤ C0. (3.3)

We can relax the C1-condition and assume that condition (3.3) holds in the
sense of quadratic forms, cf. [6]. The main result of the Froese-Herbst in the
two-body case is the following theorem.

Theorem 3.1 Let H = −∆+V be a two-body Schrödinger operator with poten-
tial V satisfying Hypothesis 2. Suppose that for E < 0, is a bound state energy
with eigenfunction ψE ∈ L2(Rn), satisfying HψE = EψE. Then, we have for
any ε > 0,

e(
√
|E|−ε) ‖x‖ψE(x) ∈ L

2(Rn). (3.4)

If, in addition, we assume that x · ∇V is relatively Laplacian bounded with
relative bound less than 2, then H has no positive eigenvalues.

One of the main applications of the method of proof of this theorem (and its
counterpart in the N -body case) is to prove the nonexistence of positive eigen-
values of Schrödinger operators. The idea is to prove that any L2-eigenfunction
ψE , corresponding to a positive energy eigenvalue E, must decay faster than
any exponential. That is, for all θ > 0, we have

eθ‖x‖ψE(x) ∈ L
2(Rn). (3.5)

Since the decay of an eigenfunction is controlled by the distance to a threshold
larger than the eigenvalue, one must prove that an N -body Schrödinger oper-
ator has no positive thresholds. For the two-body case, we will show that the
Mourre estimate holds at all positive energies, so there are no positive thresh-
olds. Consequently, we see that the eigenfunction for a positive eigenvalue must
decay faster than any exponential. A variant of a unique continuation argument
then shows that such a function ψE = 0.
We now give an outline of the proof of the exponential decay part of the

Froese-Herbst Theorem. A complete textbook presentation is given in [6]. We
will work with the specific case of two-body operators. We begin with the
Mourre theory of positive commutators [10]. Let A = 1

2 (x · ∇ + ∇ · x) be the
skew-adjoint operator so that −iA is the self-adjoint generator of the dilation
group on L2(Rn). We assume that the potential V satisfies Hypothesis 2. A
simple computation shows that, formally, the commutator [H,A] ≡ HA−AH ,
is

[H,A] = 2H − 2V − 2x · ∇V = 2H +K. (3.6)

The operatorK is relatively-Laplacian compact. Let I = [I0, I1] ⊂ R be a finite,
closed interval, and let EH(I) be the spectral projection for H and the interval
I. Conjugating the commutator relation (3.6) by the spectral projectors EH(I),
we obtain the Mourre estimate,

EH(I)[H,A]EH(I) = 2EH(I)H + EH(I)KEH(I)

≥ 2I0EH(I) + EH(I)KEH(I). (3.7)
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This estimate implies a Virial Theorem of the following type. Suppose that
the Mourre estimate (3.7) holds in a neighborhood I with compact operator
K = 0. Then, the operator H cannot have an eigenvalue E ∈ I. Since, if
E ∈ I is an eigenvalue with an eigenfunction ψE , we have (neglecting domain
considerations),

〈ψE , [H,A]ψE〉 = 〈ψE , [H − E,A]ψE〉

= 0. (3.8)

On the otherhand, the Mourre estimate (3.7) with K = 0 implies

〈ψE , [H,A]ψE〉 ≥ 2I0 > 0. (3.9)

This inequality clearly contradicts (3.8). Consequently, the energy E cannot be
an eigenvalue for H .

This simple idea lies behind the proof of the Froese-Herbst Theorem. Sup-
pose E is an eigenvalue of H , and define 〈x〉 ≡ (1 + ‖x‖2)1/2. We define
τ ≡ sup {E + α2 | α > 0, and eα〈x〉ψE ∈ L2(Rn)}. If τ = α20 + E is not a
threshold of H , then there exist α1 ≥ 0 and γ > 0, with α1 < α0 < α1 + γ,
so that eα1〈x〉ψE ∈ L2(Rn), but e(α1+γ)〈x〉ψE is not in L

2(Rn). Because τ is
not a threshold of H , the Mourre estimate holds in a neighborhood of τ . In
particular, it holds in a neighborhood of E + α21, for some α1 sufficiently close
to α0, since the set of thresholds is closed. We will construct a sequence of
approximate eigenfunctions Ψs for H and the eigenvalue E + α

2
1 in the sense

that ‖(H −E −α21)Ψs‖ ≤ C0γ, and Ψs converges weakly to zero as s→ 0. The
Virial Theorem then implies that the matrix element of the [H,A] in the state
Ψs, which is approximately an eigenfunction with eigenvalue E + α

2
1, is very

small with respect to γ. On the other hand, the Mourre estimate holds in a
small neighborhood E+α21, and, since Ψs converges weakly to zero, the matrix
element 〈Ψs,KΨs〉 → 0. This implies that the matrix element of [H,A] in the
state Ψs is strictly positive. This gives a contradiction for small γ.

In the first step of the proof, we construct states with shifted energy. For
motivation, recall that a translation in momentum space has the effect of shifting
the classical energy. Let ψE be an L

2-eigenfunction of H , and assume that F is
a differentiable function such that ψF = e

FψE ∈ L2(Rn). We want to compute
the conjugated operator eFHe−F . To do this, we note that for any u ∈ C∞0 (R

n),
we have

eF (−i∇)e−Fu = (−i∇+ i∇F )u,

so that

−eF∆e−F = (−i∇+ i∇F )2 = −∆+ (∇ · ∇F +∇F · ∇)− |∇F |2.

It then follows that

HF ≡ e
FHe−F = H + (∇F · ∇+∇ · ∇F )− |∇F |2. (3.10)
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It follows, after a short calculation, that the expected value of the Hamiltonian
H in the state ψF is

〈ψF , HψF 〉 = 〈ψF , [E + |∇F |
2]ψF 〉, (3.11)

so the state ψF appears as a state with energy E + |∇F |2.
Next, we choose a family of functions Fs so that |∇Fs|2 ∼ α21, and so that the

sequence ψFs ≡ ψs converges weakly to zero. Let χs(t) be a smooth function of
compact support satisfying lims→0 χs(t) = t. We now define a weight Fs(x) ≡
α1 + γχs(〈x〉) having the property that lims→0 Fs(x) = α1 + γ. It then follows
that ψs = eFsψE ∈ L2(Rn), provided s > 0, but that ‖ψs‖ → ∞, as s → 0.
Furthermore, a calculation reveals that |∇Fs|2 ∼ α21, for small γ. We define
Ψs ≡ ψs ‖ψs‖−1, so that Ψs converges weakly to zero. It is not too difficult to
show that Ψs is the sequence of approximate eigenfunctions we desire, in the
sense that

‖(H − E − α21)Ψs‖ ∼ 0, (3.12)

for small γ. Finally, it follows from the Virial Theorem (3.8) that the matrix
element 〈Ψs, [H,A]Ψs〉 ∼ 0. On the otherhand, since the Mourre estimate holds
in a neighborhood of E+α21, by the assumption that E+α

2
0 is not a threshold,

and the sequence Ψs converges weakly to zero, we know that this matrix element
is bounded from below by a strictly positive constant. This gives a contradiction,
so that τ = E + α20 must be a threshold.
Some final comments are in order. The Froese-Herbst technique depends

upon the existence of a conjugate operator A for a given Hamiltonian H . It is
not always easy to construct a conjugate operator, but this has now been done
in a variety of situations. Secondly, if the energy E itself is a threshold, the
method gives no information about the rate of decay of a corresponding eigen-
function. Thirdly, the proof indicates that the rate of decay of the eigenfunction
is controlled by the square root of the distance to some threshold above E, simi-
lar to the Slaggie-Wichmann result. The proof, however, does not indicate that
it is always the nearest threshold above E that controls the exponential decay.

4 Nonisotropic Agmon Decay Estimates

The results that we have discussed so far are exponential decay estimates of the
form eFψ ∈ L2(Rn), with F a function of ‖x‖ alone. Hence, the resulting bounds
are spatially isotropic. For the case of a two-body potential, these are optimal
when the potential is spherically symmetric. In general, isotropic bounds do
not reflect the variation of the potential with direction. In the many-body case,
when the total potential is the sum of two-body potentials, the behavior of
V at infinity depends crucially on the direction. Hence, one is led to develop
nonisotropic bounds on the decay of the wave function that more closely reflect
the behavior of the potential in each direction. Such bounds and techniques are
also crucial for the estimation of the lifetime of quantum resonances in terms of
the potential barrier generating the resonance.
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A systematic study of the decay of eigenfunctions of second-order partial
differential operators, corresponding to eigenvalues below the bottom of the es-
sential spectrum, was performed by Agmon [1]. A key role is played by the
Agmon metric on Rn. This pseudo-Riemannian metric is constructed directly
from the potential and the energy, and thus reflects the variation of the poten-
tial with direction. The distance function corresponding to the Agmon metric
measures how the potential controls the decay. Explicitly solvable models in
one-dimension, and the WKB approximation give some clue as to the form of
this metric.

Definition 4.1 Let V be a bounded, real-valued function on Rn, and let E ∈ R.
For any x ∈ Rn, and ξ, η ∈ Tx(R

n) = Rn, the tangent space to Rn at x, we
define a (degenerate) inner product on Tx(R

n) by

〈ξ, η〉x ≡ (V (x) − E)+〈ξ, η〉E , (4.1)

where 〈·, ·〉E is the usual Euclidean inner product and f(x)+ ≡ max{f(x), 0}.
The corresponding pseudo-metric on Rn is called the Agmon metric induced by
the potential V at energy E.

It is important to note that the Agmon metric depends on both the potential
and the energy E. The Agmon metric on Rn is degenerate because there may
exist nonempty turning surfaces {x ∈ Rn | V (x) = E}, and classically forbid-
den regions {x ∈ Rn | V (x) < E}. These sets play an important role in the
theory. The turning surface marks the limits of classical motion for a particle
with energy E moving under the influence of the potential V , and such a par-
ticle cannot penetrate into the classically forbidden region. Consequently, it is
expected that the quantum mechanical wave function is small in the classically
forbidden region.
We use the structure given in Definition 4.1 to construct a distance func-

tion (or, metric) on Rn. Let γ : [0, 1] → Rn be a differentiable path in Rn.
The derivative γ̇(t) belongs to the tangent space at the point γ(t). For any
Riemannian metric g on a manifold Rn, the length of γ is given by the integral

L(γ) =

∫ 1
0

‖ γ̇(t) ‖γ(t) dt, (4.2)

where ‖ ξ ‖x= 〈ξ, ξ〉
1/2
x , for ξ ∈ Tx(R

n). In the Agmon structure (4.1), the
length of the curve γ (4.2) is:

LA(γ) =

∫ 1
0

(V (γ(t))− E)1/2+ ‖ γ̇(t) ‖E dt, (4.3)

where ‖ · ‖E denotes the usual Euclidean norm. A path γ is a geodesic if it

minimizes the energy functional E(γ) ≡ 1
2

∫ 1
0 ‖ γ̇(t) ‖

2
γ(t) dt.

Definition 4.2 Given a bounded, real-valued potential V and energy E, the
distance between x, y ∈ Rn in the Agmon metric is

ρE(x, y) ≡ inf
γ∈Px,y

LA(γ), (4.4)
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where Px,y ≡ {γ : [0, 1]→ Rn | γ(0) = x, γ(1) = y, γ ∈ AC[0, 1]}. Here, the set
AC[0, 1] is the space of all absolutely continuous functions on [0, 1].

The distance between x, y ∈ Rn with the Agmon metric is the length of the
shortest geodesic connecting x to y. The distance function ρE in (4.4) reduces
to the usual WKB factor for the 1-dimensional case,

ρE(x, y) =

∫ y
x

(V (s)− E)1/2+ ds. (4.5)

The Agmon metric has several nice properties: It satisfies the triangle inequality,
and is Lipschitz continuous. The main result of this section is that the Agmon
metric at energy E controls the decay of an eigenfunction at energy E, provided
E < inf σess(H).

Theorem 4.1 Let H = −∆ + V , with V real and continuous, be a closed
operator bounded below with σ(H) ⊂ R. Suppose E is an eigenvalue of H, and
that the support of the function (E − V (x))+ ≡ max (0, E − V (x)) is a compact
subset of Rn. Let ψ ∈ L2(Rn) be an eigenfunction of H such that Hψ = Eψ.
Then, for any ε > 0, there exists a constant Cε, with 0 < Cε <∞, such that∫

e2(1−ε)ρE(x)|ψ(x)|2dx ≤ Cε, (4.6)

where ρE(x) ≡ ρE(x, 0).

We note that if V satisfies (1.2) uniformly in the sense that |V (x)| < ε for
‖x‖ large enough, and if E < 0, then the support of the positive part of (E−V )
is compact.

Sketch of the Proof. We will sketch the proof here. A textbook treatment is
given in [9], and the general cases are treated in [1]. The main idea of the Agmon
approach is to use the strict positivity of (V − E), outside a compact set, in
order to bound the quadratic form 〈Φ, (H−E)Φ〉 from below, for suitably chosen
vectors Φ. Note that the set on which (V − E) > 0 is the classically forbidden
region. A classical particle with energy E cannot penetrate this region. One
expects that the corresponding quantum wave function is small in this region.
The vector Φ has the form Φ = ηeFφ, where F is a distance function built from
the Agmon metric, the function η localizes the eigenfunction to the classically
forbidden region, and we will take φ = eFψE after some initial calculations.
Because Φ is built from an eigenfunction forH , the quadratic form 〈Φ, (H−E)Φ〉
is bounded above by the norm of ψE , localized near the support of ∇η. Hence,
we arrive at an inequality roughly of the form,

‖ηeFψE‖
2 ≤ C1‖g(∇η)e

FψE‖
2, (4.7)

where g(∇η) represents some combination of ∇η. Since eF will be bounded on
the support of ∇η, this, in turn, implies the L2-exponential bound of ψE .
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We now illustrate how to implement this strategy. Let F = (1 − ε)ρE and
note that almost everywhere,

|∇F |2 ≤ (1− ε)2(V − E)+ ≤ (1− ε)(V − E)+. (4.8)

We first compute a lower bound for the quadratic form 〈Φ, (H − E)Φ〉, for
Φ = eF ηφ. We take η ∈ C2(Rn) to be a nonnegative function supported in the
region where (V − E) ≥ δ, and η = 1, except near the boundary of this region.
A key computation involves the gauge transformation, as in (3.10), given by
H → HF ≡ eFHe−F . We recall the result that

eFHe−F = H + (∇ · ∇F +∇F · ∇)− |∇F |2. (4.9)

Consequently, for any reasonable function φ, we compute a lower bound on the
quadratic form,

Re〈eF ηφ, (H − E)e−F ηφ〉

= Re〈ηφ, (H + (∇ · ∇F +∇F · ∇)− |∇F |2 − E)ηφ〉

≥ 〈ηφ, (V − E − |∇F |2)ηφ〉

≥ εδ‖ηφ‖2. (4.10)

We made use of the fact that Re〈φ, (∇g ·∇+∇·∇g)φ〉 = 0, for any real-valued
function g. We use this lower bound by setting φ = eFψE . After some standard
computations, the final formula is

Re〈e2F ηψE , (H − E)ηψE〉 ≥ δε‖e
FηψE‖

2. (4.11)

We now turn to the upper bound. We control the exponentially growing
term on the left in (4.12) by the compactness of the support of the gradient of
η. Using the fact that ψE is an eigenfunction, we have

(H − E)ηψE = [−∆, η]ψE

= (−∆η − 2∇η · ∇)ψE . (4.12)

Since ‖∇ψE‖ ≤ CE‖∇(H +M)−1‖, for some M large enough, we obtain an
upper bound of the form,

|〈e2F ηψE , (H − E)ηψE〉| ≤ CE

(
sup

x∈supp|∇η|
e2F (x)

)
. (4.13)

By arranging the diameter of the support of |∇η| small enough, we combine
(4.12) and (4.14) to obtain

‖e(1−ε)ρEηψE‖
2 ≤ C(E, η). (4.14)

A simple estimate on ‖e(1−ε)ρE (1−η)ψE‖2, using the compactness of the support
of (1− η), completes the proof of the result. �
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5 Resolvent Decay Estimates and the Combes-
Thomas Method

In this final section, we examine another manner of proving exponential decay
bounds on eigenfunctions based on the exponential decay of the resolvent at
energies outside of the spectrum of the Hamiltonian. The Slaggie-Wichmann
proof discussed in section 2 used the decay of the free Green’s function at en-
ergies below the bottom of the essential spectrum. We will first prove a result,
due to Combes and Thomas [4], on the exponential decay of the resolvent of
a self-adjoint Schrödinger operator, at energies outside of the spectrum, when
localized between two disjoint regions. We will then use this estimate to prove
the decay of eigenfunctions corrsponding to eigenvalues outside of the essen-
tial spectrum in certain cases. We conclude this section with an application to
the exponential decay of eigenfunctions of the Dirac operator corresponding to
eigenvalues in the spectral gap (−m,m).
We begin with a form of the Combes-Thomas method [4], due to Barbaroux,

Combes, and Hislop [2], which allows an improvement on the rate of decay of
the resolvent. Combes and Thomas, motivated by the work of O’Connor [11]
and dilation analyticity, emphasized the use of analytic methods in the study
of the decay of eigenfunctions. Their method is more flexible than the Slaggie-
Wichmann or O’Connor method in that it can be applied, for example, to
Schrödinger operators with nonlocal potentials, to N -body Schrödinger opera-
tors, and to other forms of differential operators. As a consequence, one obtains
exponential decay for eigenfunctions corresponding to isolated eigenvalues in
gaps of the essential spectrum, not just to those below the bottom of the essen-
tial spectrum.

The Combes-Thomas method also applies to N -body Schrödinger opera-
tors with dilation analytic two-body potentials. For such Schrödinger oper-
ators, the Combes-Thomas method allows one to prove the exponential de-
cay on nonthreshold eigenfunctions. The result is similar to that obtained
by the Froese-Herbst method. If ψE is an eigenfunction of H corresponding
to a nonthreshold eigenvalue E, then ea‖x‖ψE ∈ L2(Rn), for any a satisfying
a2 < 2 inf{|E − ReEα| + ImEα}. The infimum is taken over all thresholds of
the nonself-adjoint operator H(iπ/4), obtained from H by dilation analyticity.
Since we will not discuss dilation analytic operators here, we refer the reader
to [13]. As with the works mentioned above, Combes and Thomas are mainly
concerned with the N -body problem. We will discuss the method as applied to
two-body problems only.

A Simple Proof of Resolvent Decay Estimates

The idea of Combes and Thomas is to study the deformation of the Hamiltonian
by a unitary representation of an abelian Lie group, and then to analytically
continue in the group parameters. Typically, one uses the group of dilations in
coordinate space, or boost transformations in momentum space. As an example,
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let the Hamiltonian H = −∆ + V be self-adjoint. It follows as in previous
sections, that for a constant vector λ ∈ Rn, we have

H(λ) ≡ eix·λHe−ix·λ = H + 2iλ · ∇+ |λ|2. (5.1)

Provided that the operator ∇ is relatively H-bounded, the operator H(λ) ex-
tends to an analytic family of type A on Cn.
We next study the resolvent of this analytic type A family of operators. Let

us suppose that E ∈ ρ(H), the resolvent set of H . Then, the operator (H −E)
is boundedly invertible, and we can write,

(H(λ)− E) = (1 + 2iλ · ∇(H − E)−1 + |λ|2(H − E)−1)(H − E). (5.2)

Let us choose λ so that

‖2iλ · ∇(H − E)−1‖ < 1/2. (5.3)

We define a constant CV,E ≡ ‖∇(H − E)−1‖, that we assume is finite. We
require that |λ| satisfies

|λ| <
1

4CV,E
. (5.4)

Let us write B ≡ i∇(H −E)−1. Assuming the condition (5.4) for the moment,
and returning to (5.2), we see that

(H(λ)− E) = (1 + 2λB)(1 + (1 + 2λB)−1|λ|2(H − E)−1)(H − E). (5.5)

Once again, in order to invert the second factor, we demand |λ| also satisfies

‖(1 + 2λB)−1|λ|2(H − E)−1‖ < 1/2. (5.6)

Since H is self-adjoint, we have ‖(H − E)−1‖ ≤ {dist(σ(H), E)}−1. Let us
define η by η ≡ dist(σ(H), E). To satisfy the bound (5.6), we require

|λ| ≤

√
η

2
. (5.7)

Consequently, the inverse of (H(λ) − E) satisfies the bound ,

‖(H(λ)− E)−1‖

≤ ‖(H − E)−1‖ ‖(1 +B)−1‖ ‖(1 + |λ|2(1 +B)−1(H − E)−1‖

≤ 4 {dist (σ(H), E)}−1, (5.8)

for λ ∈ Cn with

|λ| ≤ min

(
1

4CV,E
,

√
η

2

)
. (5.9)

Let ν denote the minimum of the right side of (5.9). Thus, we have proved that
for all λ ∈ Cn with |λ| < ν, the dilated operator (H(λ) − E) is invertible, and
we have the bound

‖eiλ·x(H − E)−1e−iλ·x‖ ≤
4

η
. (5.10)
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This bound is the key to proving exponential decay of the resolvent. For any
u ∈ Rn, let χu be a function with compact support near u ∈ Rn. We consider
a fixed vector y ∈ Rn, and the origin. First, for any fixed, nonzero unit vector
ê ∈ Rn, we set λ = κê ∈ Rn and find,

χy(H − E)
−1χ0 = e−iκê·xχy(e

iκê·x(H − E)−1e−iκê·x)eiκê·xχ0

= e−iκê·xχy(H(κê)− E)
−1eiκê·xχ0. (5.11)

Second, we analytically continue the last term in (5.11) to κ = −iν. This
is possible because of the type A analyticity proved above, and because the
localization functions have compact support. We obtain from (5.10)–(5.11),

‖χy(H − E)
−1χ0‖ ≤ ‖χye

−νê·x(H(−iν)− E)−1eνê·xχ0‖

≤
C0

η
e−νê·y. (5.12)

Taking ê = y‖y‖−1, it follows that

‖χy(H − E)
−1χ0‖ ≤

C1

η
e−ν‖y‖. (5.13)

This is our first resolvent decay estimate. Notice that the estimate holds for
any energy that is separated from the spectrum of H . The exponential rate of
decay ν is given in (5.9). It is the minimum of C2η and C3

√
η. We will see that

this can be improved.
We note an improvement of the above technique when the eigenvalue E

satisfies E < Σ ≡ inf σess(H). In this case, the operator (H −E) is positive in
the sense that for all φ ∈ D(H),

〈φ, (H − E)φ〉 ≥ (Σ− E)‖φ‖2. (5.14)

We are back in the case considered by Agmon. We see that in this case the
Combes-Thomas method is the same as an isotropic Agmon estimate with an
exponential factor

√
Σ− E.

The Combes-Thomas Method

We now present an optimal version of the Combes-Thomas method [2] improving
the presentation in section 5.1. The basic technical result is the following.

Lemma 5.1 Let A and B be two self-adjoint operators such that
d± ≡ dist(σ(A) ∩ R±, 0) > 0, and ‖B‖ ≤ 1. Then,

(i) For β ∈ R such that |β| < 1
2

√
d+d−, one has 0 ∈ ρ(A+ iβB),

(ii) For β ∈ R as in (i),∥∥(A+ iβB)−1∥∥ ≤ 2 sup(d−1+ , d−1− ).



P. D. Hislop 283

Proof. Let P± be the spectral projectors for A corresponding to the sets σ(A)∩
R±, respectively and define u± ≡ P±u. By the Schwarz inequality one has

‖u‖ ‖(A+ iβB)u‖ ≥ Re 〈(u+ − u−), (A+ iβB)(u+ + u−)〉
≥ d+‖u+‖2 + d−‖u−‖2 − 2βIm 〈u+, Bu−〉
≥ 1

2 (d+‖u+‖
2 + d−‖u−‖2),

(5.15)

where we again used the Schwarz inequality to estimate the inner product. It
follows that

‖(A+ iβB)u‖ ≥
1

2
min (d+, d−)‖u‖,

and since this is independent of the sign of β, the lemma follows. �
Proposition 5.2 Let H̃ be a semibounded self-adjoint operator with a spectral
gap G ≡ (E−, E+) ⊂ ρ(H̃). Let W be a symmetric operator such that D(W ) ⊃

D((H̃ + C0)
1
2 ) and ‖(H̃ + C0)−

1
2W (H̃ + C0)

− 12 ‖ < 1, for some C0 such that

H̃ + C0 > 1. For any E ∈ G, let ∆± ≡ dist (E±, E). Then, we have

(i) The energy E ∈ ρ(H̃ + iβW ) for all real β satisfying

|β| <
1

2

{
∆+∆−

(E+ + C0)(E− + C0)

} 1
2

;

(ii) for any real β and energy E as in (i),

‖(H̃ + iβW − E)−1‖ ≤ 2 sup

(
E+ + C0
∆+

,
E− + C0
∆−

)
.

Proof. Let E ∈ G and C0 be as above. Define a self-adjoint operator A ≡
(H̃ + C0)

−1(H̃ − E) and B ≡ (H̃ + C0)−
1
2W (H̃ + C0)

− 12 . By hypothesis, the
operator B is self-adjoint and satisfies ‖B‖ < 1. Note that 0 ∈ ρ(A) and

d± ≡ dist (σ(A) ∩ R
±, 0) = ∆±(E± + C0)

−1 > 0 (5.16)

Applying Lemma 5.2 to these operators A and B, we see that for β as in (i),
0 ∈ ρ(A+ iβB) and that

‖(A+ iβB)−1‖ ≤ 2 sup

(
E+ + C0
∆+

,
E− + C0
∆−

)
.

Let P± be as in the proof of Lemma 5.2. For any w ∈ D(H̃),

‖(H̃ + iβW − E)w‖ = ‖(H̃ + C0)
1
2 (A+ iβB)(H̃ + C0)

1
2w‖

≥ ‖(A+ iβB)(H̃ + C0)
1
2w‖ ,

since (H̃ + C0) ≥ 1. In order to estimate the lower bound, we now repeat

estimate (5.20) taking u ≡ (H̃ + C0)
1
2w. This gives

‖(H̃ + iβW − E)w‖ ≥ 1
2‖(H̃ + C0)

1
2u‖−1

(
d+‖P+(H̃ + C0)

1
2w‖2

+(d−‖P−(H̃ + C0)
1
2w‖2

)
≥ 1

2min (d+, d−)‖(H̃ + C0)
1
2w‖ .

(5.17)
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Since ‖(H̃+C0)
1
2w‖ ≥ ‖w‖ and d± are defined in (5.21), result (ii) follows from

(5.22) and Lemma 5.2. �
We now apply these results first to the exponential decay of the localized

resolvent, and second, to the decay of eigenfunctions. We let ρ(x) ≡
√
1 + ‖x‖2

be the regularized distance function. We assume that the unperturbed operator
H0 has the form H0 = HA + V0, where HA ≡ (−i∇− A)2, and V0 is relatively
HA bounded. The electric potential V0 and the vector potential A are assumed
to be sufficiently well-behaved so that H0 is essentially self-adjoint on C

∞
0 (R

n).
We also assume that the spectrum of H0 is semibounded from below. Most
importantly, we suppose that the spectrum has an open spectral gap in the
sense that there exist constants −∞ ≤ −C0 ≤ B− < B+ ≤ ∞ so that

σ(H0) ⊂ [−C0, B−] ∪ [B+,∞). (5.18)

Of course, this gap might be the half line (−∞,Σ0), where Σ0 = inf σ(H0). For
a less trivial example, we can take H0 = −∆ + Vper , where Vper is a periodic
potential.
Finally, we assume that the perturbation potential V satisfies the following

hypothesis.

Hypothesis 3. The potential V is relatively H0-compact with relative bound less
than one. For each ε > 0, the potential V admits a decomposition V = Vc + Vε,
where Vc has compact support and ‖Vε‖ < ε.

Since the essential spectrum of H0 is stable under relatively compact per-
turbations, the effect of the potential V is to create isolated eigenvalues for
H = H0 + V in the spectral gap G = (B−, B+). We are interested in the decay
of the corresponding eigenfunctions. We first prove that the resolvent of H0
at energies E ∈ G decays exponentially when locialized between two disjoint
regions.

Theorem 5.3 Let the unperturbed operator H0 satisfy the conditions above.
Then, the dilated operator H(α) ≡ eiαρHe−iαρ, α ∈ R, admits an analytic
continuation as a type A family on the strip S(α0), for any α0 > 0. For any
E ∈ G = (B−, B+), define ∆± ≡ dist (B±, E). Then there exist finite constants
C1, C2 > 0, depending only on H0 and E, such that

(i) for any real β satisfying |β| < min (α0, C1
√
∆+∆−,

√
∆+/2), the energy

E ∈ ρ(H0(iβ));

(ii) for any real β as in (i),

‖(H0(iβ)− E)
−1‖ ≤ C2 max(∆

−1
+ ,∆−1− ) ; (5.19)

(iii) let χu be a function of compact support localized near u ∈ Rn, then for
β ∈ R as in (i),

‖χy(H0 − E)
−1χ0‖ ≤ C3e

βρ(y). (5.20)
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Proof. By a calculation similar to that done in section 5.1, we have, for α ∈ R,

H0(α) = eiαρH0e
−iαρ

= H0 + α
2|∇ρ|2 + αW, (5.21)

where W = −(∇ρ · (−i∇ − A) + (−i∇ − A) · ∇ρ) is symmetric. Note that
‖∇ρ‖∞ = 1 and ‖∆ρ‖∞ = 1. Under the assumption that V0 is relatively HA-
bounded, it suffices to show that for some z ∈ ρ(HA), the operator

{α2|∇ρ|2 +W}(HA − z)
−1, (5.22)

is bounded with norm less than one. Let us take z = −iη, for η > 0 and
sufficiently large. It is then easy to show that the operator in (5.22) is bounded
above by C0η

−1/2, for some constant C0 depending on |α|. Since this bound can
be made as small as desired for any fixed α0, it folows that H0(α) is an analytic
type A family on any strip S(α0).
Next, we take α = iβ, β real and |β| < α0, so from (5.21), we have

H0(iβ) = H0 − β
2|∇ρ|2 + iβW. (5.23)

We apply Proposition 5.2 to this operator taking H̃ ≡ H0 − β2|∇ρ|2. This

operator has a spectral gap which contains (B̃−, B̃+), where B̃− = B− and

B̃+ = B+ − β2. In order that ∆̃+ ≡ dist (B̃+, E) > (∆+/2), we require

|β| <
√
∆+/2. (Note that ∆̃− = ∆−). It follows from Proposition 5.2 that

E ∈ ρ(H0(iβ)) for |β| < min
{
α0, C1

√
∆+∆− ,

√
∆+/2

}
, and that (ii) holds.

Result(iii) follows from (ii) as in section 5.1. �
We now consider the perturbation of H0 by V . Assuming Hypothesis 3

on V , the operator H ≡ H0 + V is self adjoint on the same domain as H0.
The perturbation may introduce isolated eigenvalues of finite multiplicity in the
spectral gap G. We apply the resolvent bound (5.20) to prove the exponential
decay of the corresponding eigenfunctions.

Theorem 5.4We assume that H0 satisfies the hypotheses given above, and that
the potential V satisfies Hypothesis 3. Suppose that H = H0 + V has an eigen-
value E ∈ G, the gap in the spectrum of H0, with an eigenfunction ψE. We as-
sume that ‖ψE‖ = 1. For any α ∈ R, with α < ν ≡ min (C1

√
∆+∆−,

√
∆+/2),

we have
eαρψE ∈ L

2(Rn). (5.24)

Proof. Let us first suppose that V has compact support and that suppV ⊂ K,
for some compactK ⊂ Rn. We write R0(E) ≡ (H0−E)−1. From the eigenvalue
equation, we write, for λ ∈ R,

eiλρψE = −(eiλρR0(E)e
−iλρ) (eiλρV ψE)

= (H0(λ) − E)
−1 (eiλρV ψE). (5.25)
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Because of the type A analyticity of H0(λ), and the compactness of the support
of V , each term on the right in (5.25) admits an analytic continuation onto any
the strip S(α0). We set λ = −iα, for α ∈ R with |α| < ν. Taking the norm of
of both sides of the equation, and using the bound in (ii) of Proposition 5.3, we
find that there exists a constant CE,V > 0 so that

‖eαρψE‖ ≤ CE,V . (5.26)

When the support of V is not compact, we consider the operator H0 + Vε,
instead of H0. This operator also extends to an analytic type A family on
the same strip as H0 since Vε is a bounded operator. We choose ε < η ≡
dist(E, σ(H0)), so that H0 + Vε has a spectral gap around E of size at least ε.
It follows that (H0+Vε−E) is invertible, and its inverse can be computed from
the equation

(H0 + Vε − E) = (1 + Vε(H0 − E)
−1)(H0 − E), (5.27)

since ‖VεR0(E)‖ < 1/2. The eigenvalue equation is now written as

ψE = −(H0 + Vε − e)
−1VcψE . (5.28)

The exponential decay bound now follows from Proposition 5.2 applied to H0+
Vε, and the argument given above. �

Application: Eigenfunction Decay for the Dirac Operator

As an application of the method of Combes-Thomas, we prove the decay of
eigenfunctions corresponding to discrete, isolated eigenvalues of the Dirac op-
erator. The free Dirac operator for a particle of mass m > 0 is constructed as
follows. The Dirac matrices γµ, with µ = 0, 1, 2, 3 are four 4× 4 matrices that
form a representation of the canonical anticommutation relations,

γµγν + γνγµ = 2δµν , (5.29)

where δµν is the Kronicker delta function. We write γ = (γ1, γ2, γ3) for the
three-vector, and β = γ0. The free Dirac Hamiltonian is

H0 = −iγ · ∇+ βmc, (5.30)

where c > 0 is the speed of light. We set c = 1. The unperturbed operator H0
is a first-order, matrix-valued linear operator. It is self-adjoint on its natural
domain in the Hilbert space H = L2(R3,C4). A simple calculation, based on
the relations (5.29), shows that H20 = −∆+m

2. It follows that the spectrum
of H0 consists of two branches: σ(H0) = (−∞,−m] ∪ [m,∞). The interval
G = (−m,m) is a gap in the spectrum of the free Dirac operator.
We now consider local perturbations V of H0. Let us suppose that V > 0

and that V has compact support. Let I4 denote the 4 × 4 identity matrix.
An application of the Birman-Schwinger principle shows that Hλ = H0 + λV ·
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I4 has an eigenvalue in the gap G provided λ is suitably chosen. In general,
relativelyH0-compact perturbations V will create eigenvalues in the spectral gap
of H0. We are interested in the isotropic exponential decay of the corresponding
eigenfunctions.
The simplified argument presented at the beginning of section 5 applies

direcly to this situation. Let α ∈ R and take ρ(x) ≡
√
1 + ‖x‖2, as above.

We define d±(E) = dist(E,±m). We apply a standard boost transformation to
H0 = −iγ · ∇+ βm to obtain

H0(α) ≡ eiαρH0e
−iαρ

= −iγ · (∇− iα∇ρ) + βm

= H0 − αγ · ∇ρ. (5.31)

We now apply Lemma 5.1 with A = H0 and B = ∇ρ · γ. Since |∇ρ| ≤ 1, we
have ‖B‖ ≤ 1. Hence, with α = iη, for η ∈ R, we require

|η| ≤ (1/2)
√
d+(E)d−(E). (5.32)

Under this condition, we obtain

‖(H0(iη)− E)
−1‖ ≤ 2 max

(
1

d+(E)
,
1

d−(E)

)
. (5.33)

We now proceed as in Theorem 5.4. First, we suppose that the potential V
has compact support, and that H = H0+V has an eigenvalue E ∈ G. We write
the eigenvalue equation as

ψ = −R0(E)V ψ. (5.34)

By analytic continuation from α ∈ R to α = −iη, with η ∈ R and satisfying the
bound (5.32), we have

‖eηρψ‖ ≤ ‖H0(−iη)− E)
−1‖ ‖eηρV ‖ ≤ CE,V , (5.35)

proving the L2-exponential decay of the eigenfunction for any η ∈ R satisfying
(5.32). When V does not have compact support, but vanishes uniformly at
infinity, we use the same argument as in the proof of Theorem 5.4. The same
exponential decay results hold in the presence of a magnetic field for which
H0 = γ · (−i∇ − A) + βm, for reasonable magnetic vector potentials A. (A
similar result was recently obtained by Breit and Cornean [3]).
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