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Uniqueness implies existence for discrete fourth

order Lidstone boundary-value problems ∗

Johnny Henderson & Alvina M. Johnson

Abstract

We study the fourth order difference equation

u(m+ 4) = f(m,u(m), u(m+ 1), u(m+ 2), u(m+ 3)) ,

where f : Z×R4 → R is continuous and the equation u5 = f(m,u1, u2, u3,
u4) can be solved for u1 as a continuous function of u2, u3, u4, u5 for each
m ∈ Z. It is shown that the uniqueness of solutions implies the existence
of solutions for Lidstone boundary-value problems on Z. To this end we
use shooting and topological methods.

1 Introduction

For notation, R denotes the real numbers, Z denotes the integers, N denotes the
natural numbers, and given a < b in Z, intervals are used to denote discrete sets
such as [a, b] = {a, a+1, . . . , b}, (a, b] = {a+1, . . . , b}, [a,+∞) = {a, a+1, . . .},
etc. This paper is devoted to establishing the existence of unique solutions of
the fourth order finite difference equation,

u(m+ 4) = f(m,u(m), u(m+ 1), u(m+ 2), u(m+ 3)), (1)

satisfying boundary conditions

u(m1) = u1,

∆2u(m2) = u2, (2)

∆2u(m3) = u3,

u(m4) = u4,

where mi ∈ Z and ui ∈ R for 1 ≤ i ≤ 4, and m1 ≤ m2 < m3 − 2 ≤ m4 − 4.
Such boundary-value problems are called Lidstone boundary-value problems

because of their analogy to Lidstone problems in the continuous case.
We assume throughout that the following condition holds:
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64 Uniqueness implies existence

(A) f(m,x1, x2, x3, x4) : Z× R4 → R is continuous and the equation,
x5 = f(m,x1, x2, x3, x4) can be solved for x1 as a continuous function of
x2, x3, x4, x5.

Remark 1.1 We note that (A) implies solutions of initial value problems for
(1) are unique and exist on all of Z.

The problems which will be considered will be classified as 2-point, 3-point,
and 4-point. Unique solutions are obtained by using a shooting method. It will
be clarified later as to what is meant by uniqueness of solutions.
Uniqueness of solutions implying their existence for boundary value prob-

lems for ordinary differential equations enjoys quite a history. Motivation for
considering a uniqueness result is that this result may imply the existence of
solutions of the boundary-value problem. In the case where n = 2, Lasota and
Luczyński [12] have shown that with respect to the ordinary differential equation

y(n) = f(x, y, y′, . . . , y(n−1)), (3)

if the following conditions are satisfied, then each right (1, 1)-focal point boundary-
value problem has a solution on I = {x ∈ R | a < x < b}:

(i) f(x, y1, y2, . . . , yn) is continuous on I × Rn.

(ii) Solutions of initial value problems for (3) are unique.

(iii) Solutions of initial value problems for (3) extend to I.

(iv) Each right (1, 1, . . . , 1)-focal point boundary value problem for (3) on I
has at most one solution.

In regard to k-point conjugate boundary-value problems, 2 ≤ k ≤ n, for (3)
on I, Hartman [2] and Klaasen [11] have proven with conditions (i) - (iii) and
the following conditions that each n-point conjugate boundary-value problem
for (3) has a solution on I:

(v) Each n-point conjugate boundary valued problem for (3) on I has a most
one solution.

(vi) If {yk(x)} is a sequence of solutions of (3) and K is a compact subinterval
of I such that {yk(x)} is uniformly bounded on K, then there exists a

subsequence {ykj (x)} such that {y
(i)
kj
(x)} converges uniformly on K, 0 ≤

i ≤ n− 1.

Hartman [3] has also proven that if equation (3) satisfies conditions (i)–(iii) and
(v), and if each n-point conjugate boundary-value problem for (3) has a solution
on I, then all k-point conjugate boundary-value problems, 2 ≤ k ≤ n, for (3)
have unique solutions. Henderson [7, 8] also proved uniqueness implies existence
for solutions of right focal boundary-value problems.
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For finite difference equations of arbitrary order, Henderson [5, 6, 9] showed
that uniqueness of solutions implies their existence for conjugate boundary-value
problems as well as for right focal boundary value problems. Then in a very
recent work, Davis and Henderson [1] obtained uniqueness implies existence
results for fourth order Lidstone boundary-value problems for ordinary differ-
ential equations. It is these later works which are the primary motivation for
this paper.
In Section 2, all preliminary results will be stated. These results include

the discrete Rolle’s theorem by Hartman [2], the Brouwer invariance of domain
theorem, two compactness conditions, and a continuous dependence on initial
values result. A definition of generalized zero is also stated.
In Section 3, the existence of the unique solution of the 2-point problem is

established. Shooting methods are used in conjunction with topological methods
involving the connectedness of the real line. In Section 4, each of the 3-point
problems will be considered. We make use of the solution of the 2-point problem
obtained in Section 3 and employ shooting methods again. In Section 5, the
existence of a solution of the 4-point problem will be established. The existence
of solutions of the 3-point problems will be used in obtaining the unique solution
of the 4-point problem. Again, shooting methods are used.

2 Preliminaries

In this section, we state a definition and auxiliary results which will be funda-
mental in the development of later sections. The definition extends the idea of
a zero of a function, and was introduced in Hartman’s [4] landmark paper.

Definition Suppose u : Z→ R. Then u has a generalized zero (g.z.) atm0 ∈ Z
if u(m0) = 0, or if there exists j ∈ N such that (−1)ju(m0 − j)u(m0) > 0, and
if j > 1,

u(m0 − j + 1) = · · · = u(m0 − 1) = 0 .

Hartman [4] also proved the following discrete Rolle’s Theorem.

Theorem 2.1 If u(m) has a g.z. at a and at b (a < b) in Z, then ∆u(m) =
u(m+ 1)− u(m) has a g.z. on [a, b).

In view of the above definition, we now state our fundamental uniqueness
assumption on boundary-value problems for (1).

(B) For any m1,m2,m3,m4 ∈ Z, if φ(m) and ψ(m) are solutions of (1) such
that φ(m) − ψ(m) has a g.z. at m1, ∆(φ(m) − ψ(m)) has a g.z. at m2,
∆2(φ(m) − ψ(m)) has a g.z. at m3, and ∆3(φ(m) − ψ(m)) has a g.z. at
m4, then φ(m) ≡ ψ(m) on Z.

Remark 2.2 If (B) holds, we say that (1) is disfocal on Z. It follows from
(B) and repeated applications of Theorem 2.1 that solutions of any conjugate,
right focal, or Lidstone boundary-value problems are unique when such solutions
exist.
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Many of our future results rely on continuous dependence arguments. The
next theorem from Hurewicz and Wallman [10] provides a powerful tool in those
arguments.

Theorem 2.3 (Brouwer Invariance of Domain) Suppose G ⊂ Rn is open
and φ : G → Rn is continuous and one-to-one. Then φ(G) ⊂ Rn is open and
φ : G→ φ(G) is an open mapping; that is, φ is a homeomorphism.

The next two theorems from Henderson [7] are also essential in the contin-
uous dependence arguments.

Theorem 2.4 Assume that with respect to (1), conditions (A) and (B) are
satisfied. Given a solution u(m) of (1) on Z, points s1 < s2 < s3 < s4 belonging
to Z, an interval [s1, b], where b ≥ s4, and ε > 0, there exists a solution v(m) of
(1) satisfying v(si) = yi, 1 ≤ i ≤ 4, and |v(m)− u(m)| < ε, for all m ∈ [s1, b].

Theorem 2.5 Assume that (A) and (B) are satisfied and suppose that given
m1 ∈ Z and for some m2, . . . ,m4 ∈ N, there exist unique solutions of (1)
satisfying

u(si) = yi, 1 ≤ i ≤ 4,

where s1 = m1, s2 = s1+m2, s3 = s2+m3, s4 = s3+m4. If there exist a sequence
{yk(m)} of solutions of (1) and an M > 0 such that |yk(si)| ≤ M , 1 ≤ i ≤ n,
for all k ∈ N, then there exists a subsequence {ykj(m)} that converges pointwise
on Z. In particular, for this subsequence, if limj ykj (si) = yi, 1 ≤ i ≤ 4, then
{ykj (m)} converges pointwise on Z to the solution of the conjugate boundary
value problem for (1) satisfying

y(si) = yi, 1 ≤ i ≤ 4.

In addition, from uniqueness of solutions of initial value problems for (1),
we also have continuous dependence of solutions on initial values. The proof of
the following is straightforward.

Theorem 2.6 (Continuous Dependence on Initial Values) Suppose f(m,
u1, u2, u3, u4) : Z × R4 → R is continuous. Let u(m;m0, u0, u1, u2, u3) be the
solution of (1) satisfying the initial conditions,

u(m0) = u0,

u(m0 + 1) = u1,

u(m0 + 2) = u2,

u(m0 + 3) = u3,

on Z where m0 ∈ Z, ui ∈ R for 0 ≤ i ≤ 3. Then given ε > 0, k ∈ N, there exists
a δ(ε,m0, k, u0, u1, u2, u3) > 0 such that if |ui − vi| < δ, 0 ≤ i ≤ 3, then

|u(m;m0, u0, u1, u2, u3)− u(m;m0, v0, v1, v2, v3) |< ε,

for every m ∈ [m0,m0 + k].
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3 Existence of Two-Point Problems

In this section, we consider the two-point problem for (1) satisfying

u(m1) = u1,∆
2u(m1) = u2,∆

2u(m2) = u3, u(m2) = u4, (4)

where m1 < m2 − 2.

Theorem 3.1 Suppose that with respect to (1), conditions (A) and (B) are
satisfied. Then given m1 < m2−2 in Z and given ui ∈ R, 1 ≤ i ≤ 4, there exists
a unique solution of (1), (4).

Proof Let m1 < m2 − 2 in Z and u1, u2, u3, u4 ∈ R be given. Let y(m) solve
(1) subject to the conjugate boundary conditions,

y(m1) = u1,

y(m2) = u4,

∆y(m2) = 0,

∆2y(m2) = u3.

By Remark 2.2, y(m) is unique. Define S ⊆ R by

S = {∆2v(m1)|v(m) is a solution of (1), and v(m1) = y(m1) = u1,
∆2v(m2) = ∆

2y(m2) = u3, v(m2) = y(m2) = u4}.

Note that S 6= φ, since ∆2y(m1) ∈ S.
We first show that S is an open subset of R. Fix any s ∈ S. By the definition

of S, there exists a solution ys(m) of (1) such that

ys(m1) = y(m1),

∆2ys(m1) = s,

∆2ys(m2) = ∆2y(m2),

y2(m2) = y(m2).

Let G = R4. Now fix t0 ∈ Z. Define φ : G→ R4 by

φ((c1, c2, c3, c4)) = (p(m1),∆
2p(m1),∆

2p(m2), p(m2))

where p(m) is the solution of the initial value problem for (1) satisfying

∆i−1p(t0) = ci, 1 ≤ i ≤ 4.

By Theorem 2.6, solutions are continuous with respect to initial conditions and
so φ is continuous. To see that φ is also one-to-one, suppose φ((c1, c2, c3, c4)) =
φ((d1, d2, d3, d4)). Then there are solutions p and q of (1) such that

φ((c1, c2, c3, c4)) = (p(m1),∆
2p(m1),∆

2p(m2), p(m2))

= (q(m1),∆
2q(m1),∆

2q(m2), q(m2))

= φ((d1, d2, d3, d4)),
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where ∆i−1p(t0) = ci 1 ≤ i ≤ 4, and ∆i−1q(t0) = di, 1 ≤ i ≤ 4. But by the
uniqueness of solutions of Lidstone boundary-value problems, p(m) = q(m) for
every m in Z. Then (c1, c2, c3, c4) = (d1, d2, d3, d4), and thus φ is one-to-one.
Hence, by Theorem 2.4, it follows that φ(G) ⊆ R4 is open, and φ : G → φ(G)
is a homeomorphism. Thus φ−1 is continuous on φ(G). So there exists δ0 > 0
such that for every δ, where 0 < |δ| < δ0, there is a solution yδ(m) of (1) which
satisfies

yδ(m1) = ys(m1)

∆2yδ(m1) = ∆2ys(m1) + δ = s+ δ

∆2yδ(m2) = ∆2ys(m2)

yδ(m2) = ys(m2).

This follows because φ(G) is open, φ−1 is continuous, and (ys(t0),∆ys(t0),
∆2y2(t0), ∆

3ys(t0)) ∈ G. Thus (s − δ0, s + δ0) ⊂ S. Thus S is an open subset
of R.
We next show that S is also a closed subset of R. Assume otherwise. Then we

have the existence of a limit point n0 ∈ S̄\S and a strictly monotone sequence
{nk}∞k=1 ⊂ S such that nk → n0. Assume without loss of generality that
nk ↑ n0. By the definition of S, for each k ≥ 1, there exists a solution yk(m) of
(1) such that

yk(m1) = y(m1) = u1

∆2yk(m1) = nk

∆2yk(m2) = ∆2y(m2) = u3

yk(m2) = y(m2) = u4.

By Theorem 2.1 and the disfocality of (1), it follows that for all k ≥ 1, we
have ∆2yk+1(m) > ∆

2yk(m) on (−∞,m2). Since yk(m1) = yk+1(m1) and
yk(m2) = yk+1(m2), we must have that yk(m) < yk+1(m) on (−∞,m2]\{m1},
for all k ≥ 1. We also claim that {yk(m)}∞k=1 is not bounded on any finite subset
of Z having at least four points. To see this, assume otherwise. If [c, d] ⊂ (a, b)
and M > 0 are such that |yk(m)| ≤M for all m ∈ [c, d] and for all k ≥ 1, then
by Theorem 2.5, there is a subsequence {ykj (m)}

∞
j=1 such that {ykj (m)}

∞
j=1

converges uniformly on each finite subset of Z. Also by Theorem 2.5, we have
that this subsequence converges uniformly on finite subsets of Z to the solution
z(m) of (1) where

z(m1) = u1

∆2z(m1) = n0

∆2z(m2) = u3

z(m2) = u4.

But this implies that n0 ∈ S which is a contradiction. So it must be that
{yk(m)}∞k=1 is not uniformly bounded on any finite subset of Z having at least
four points.
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Now, let w denote the unique solution of the conjugate boundary value
problem consisting of (1) with boundary conditions

w(m1) = yk(m1),

∆w(m1) = 0,

∆2w(m1) = n0,

w(m2) = yk(m2).

(We note that ∆2w(m1) > ∆
2yk(m1), for all k ≥ 1.) It follows that for every k ≥

1, w(m) > yk(m) atm = m1+1 orm = m1+2. Since {yk(m)}∞k=1 is unbounded
above on each finite subset of (−∞,m2)\{m1}, so also is {∆2yk(m)}∞k=1 at
points of (m1,m2). Then there exists integers α and β where m1 < α < β < m2
such that (w − yk)(m) has a g.z. at β and ∆

2(w − yk)(m) has a g.z. at α.
Moreover, it follows from ∆2w(m1) > ∆

2yk(m1) and Theorem 2.1 that there
exists γ ∈ [a, β) such that ∆(w − yk)(m) has a g.z. at γ. Also, there exists
a ρ ∈ [γ,m2) such that ∆2(w − yk)(m) has a g.z. at ρ. Thus, we have that
(w − yk)(m) has a g.z. at m1 and m2 and that ∆2(w − yk)(m) has a g.z. at
α and ρ. So it must be that w(m) = yk(m), for all m ∈ Z, by the uniqueness
of Lidstone boundary-value problems. But ∆2q(m1) = n0 > ∆

2yk(m1) for all
k ≥ 1. This is a contradiction. Hence S is a closed set.
Since S ⊆ R is both open and closed, we must have that S = R. Thus,

choosing u2 ∈ S, the corresponding solution is the desired unique solution of
(1), (4). ♦

4 Existence of Three-Point Problems

In this section, we establish the existence of solutions of the Three-point Lid-
stone boundary-value problems. There are two such problems for (1), those
satisfying either

u(m1) = u1,
∆2u(m1) = u2,
∆2u(m2) = u3,
u(m3) = u4,

(5)

where m1 < m2 − 2 < m3 − 4, or

u(m1) = u1,
∆2u(m2) = u2,
∆2u(m3) = u3,
u(m3) = u4.

(6)

where m1 < m2 < m3 − 2.
We will make the argument for solutions of only (1), (5).

Theorem 4.1 Suppose that with respect to (1), conditions (A) and (B) are
satisfied. Then, given m1 < m2 − 2 < m3 − 4 in Z and given u1, u2, u3, u4 ∈ R,
there exists a unique solution of (1), (5).
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Proof Let integers m1 < m2− 2 < m3− 4 be given, and let u1, u2, u3, u4 ∈ R.
Let y(m) be the solution of (1), (4) given by Theorem 3.1 which satisfies

y(m1) = u1,

∆2y(m1) = u2,

∆2y(m2) = u3,

y(m2) = 0.

Define a set S ⊆ R by

S = {v(m3) | v is a solution of (1), and v(m1) = y(m1) = u1,
∆2v(m1) = ∆

2y(m1) = u2, and ∆
2v(m2) = ∆

2y(m2) = u3}.

Note that S 6= φ, since y(m3) ∈ S. Along the lines of the argument in Theorem
3.1, it follows that S is also open.
We next show that S is also a closed subset of R. We assume otherwise. Then

there exist a limit point n0 ∈ S̄\S and a monotone sequence {nk}∞k=1 ⊂ S such
that nk → n0. Assume without loss of generality that {nk}∞k=1 is increasing.
By definition of S, for k ≥ 1, there exists a solution yk(m) of (1) such that

yk(m1) = y(m1)

∆2yk(m1) = ∆2y(m1)

∆2yk(m2) = ∆2y(m2)

yk(m3) = nk.

It then follows from Theorem 2.1 and the disfocality of (1) that for every k ≥ 1,
yk(m) < yk+1(m) on (m1,∞). Also, {yk(m)}∞k=1 is unbounded above on each
finite subinterval of [m2,∞)\{m3}. Let w denote the unique solution of the
conjugate boundary-value problem consisting of (1) with boundary conditions

w(m1) = yk(m1),

∆w(m1) = 0,

∆2w(m1) = ∆2yk(m1),

w(m3) = n0.

(Note that w(m3) > yk(m3), for all k ≥ 1.) Since {yk(m3−1)}∞k=1 and {yk(m3+
1)}∞k=1 are not bounded above, but yk(m3) < y(m3) for all k, there exists a k ≥ 1
such that (w− yk)(m) has a g.z. at m3 and a g.z. at m3+1. We also have that
∆(w − yk)(m) has a g.z. at m3. Thus, there exists a v ∈ [m1,m3) such that
∆(w − yk)(m) has a g.z. at v. So there must be an r ∈ [m1, v − 1] such that
∆2(w−yk)(m) has a g.z. at r. But w(m1) = yk(m1) and ∆2w(m1) = ∆2yk(m).
Thus, utilizing the points m1,m3 + 1, r, it follows by the uniqueness of 3-
point Lidstone boundary value problems that we must have w(m) = yk(m) for
all m ∈ Z. But w(m3) = n0 where n0 > yk(m3) for all k ≥ 1. This is a
contradiction. Thus S must be a closed subset of R.
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Since S ⊆ R is both open and closed, we must have that S = R. Thus
choosing u4 ∈ S, the corresponding solution is the desired unique solution of
(1), (5). ♦

Since the argument for solutions of (1), (6) is completely analogous, we state
the next theorem without proof.

Theorem 4.2 Suppose that with respect to (1) conditions (A) and (B) are sat-
isfied. Then, given m1 < m2 < m3 − 2 and given u1, u2, u3, u4 ∈ R, there exists
a unique solution of (1) satisfying (6).

5 Existence of Four-Point Problems

In this section, we establish the existence of solutions of the Four-point Lidstone
boundary-value problems. We will utilize the result from Theorem 4.1, to obtain
solutions of (1) satisfying

u(m1) = u1,
∆2u(m2) = u2,
∆2u(m3) = u3,
u(m4) = u4,

(7)

where m1 < m2 < m3 − 2 < m4 − 4.

Theorem 5.1 Suppose that with respect to (1) conditions (A) and (B) are
satisfied. Then for any integers m1 < m2 < m3 − 2 < m4 − 4 and any
u1, u2, u3, u4 ∈ R, there exists a unique solution of (1), (7).

Proof Let integersm1 < m2 < m3−2 < m4−4 be given and let u1, u2, u3, u4 ∈
R. Let y(m) be the solution of (1), (5) given by Theorem 4.1 which satisfies

y(m2) = 0

∆2y(m2) = u2

∆2y(m3) = u3

y(m4) = u4.

Define a set S ⊆ R by

S = {v(m1) | v is a solution of (1), and

∆2v(m2) = ∆2y(m2) = u2,∆
2v(m3) = ∆

2y(m3) = u3, v(m4) = y(m4) = u4}.

Notice that S 6= φ, since y(m1) ∈ S. Again S is an open subset of R.
We again show that S is also a closed subset of R. We assume otherwise.

Then there exists a limit point n0 ∈ S̄\S and a monotone sequence {nk}∞k=1 ⊂ S
such that nk → n0. Without loss of generality, assume {nk}∞k=1 is increasing.
By the definition of S, for k ≥ 1, there exists a solution yk(m) of (1) such that
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yk(m1) = nk

∆2yk(m2) = ∆2y(m2)

∆2yk(m3) = ∆2y(m3)

yk(m4) = y(m4).

It then follows from Theorem 2.1 and the disfocality of (1) that for all k ≥ 1,
yk(m) < yk+1(m) on (−∞,m4). Also, {yk(m)}∞k=1 is unbounded above on each
finite subset of (−∞,m2]\{m1}. Let w denote the unique solution of the 3-point
Lidstone boundary-value problem consisting of (1) with

w(m1) = n0

∆2w(m2) = ∆2y(m2) = u2

∆2w(m3) = ∆2y(m3) = u3

w(m3) = 0.

(Here w(m1) > yk(m1), for all k ≥ 1.) Since {yk(m1 − 1)}∞k=1 and {yk(m1 +
1)}∞k=1 are unbounded above, but yk(m1) < w(m1) for all k, there exists a
k ≥ 1 such that (w − yk)(m) has a g.z. at m1 and has a g.z. at m1 + 1.
Then ∆(w − yk)(m) has a g.z. at m1. Also, ∆

2(w − yk) has a g.z. at m2
and m3, so there exists an ω ∈ (m2,m3) such that ∆3(w − yk)(m) has a g.z.
at ω. Hence, utilizing the points m1,m2, and ω, it follows by the uniqueness
of focal boundary-value problems that w(m) = yk(m) for all m ∈ Z. But
w(m1) = n0 > yk(m1) for all k ≥ 1. This is a contradiction. Thus S must be a
closed subset of R.
Since S ⊆ R is both open and closed, we must have that S = R. Thus,

choosing u1 ∈ S, the corresponding solution is the desired unique solution of
(1), (7).
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