
15th Annual Conference of Applied Mathematics, Univ. of Central Oklahoma,
Electronic Journal of Differential Equations, Conference 02, 1999, pp. 75–85.
ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu
ftp ejde.math.swt.edu (login: ftp)

Implementing parallel elliptic solver

on a Beowulf cluster ∗

Marcin Paprzycki, Svetozara Petrova, & Julian Sanchez

Abstract

In a recent paper [5] a parallel direct solver for the linear systems
arising from elliptic partial differential equations has been proposed. The
aim of this note is to present the initial evaluation of the performance
characteristics of this algorithm on Beowulf-type cluster. In this context
the performance of PVM and MPI based implementations is compared.

1 Introduction

Recently a new parallel algorithm for the solution of separable second order
elliptic PDE’s on rectangular domains has been presented by Petrova [5]. The
method is based on the sequential algorithm proposed by Vassilevski [7, 8].
The algorithm consists of odd-even block elimination combined with discrete
separation of variables. It was established that the proposed solver has good
numerical properties for both 2D and 3D problems [5, 7, 8, 9]. The parallel algo-
rithm by Petrova was implemented using PVM to facilitate parallelism and the
initial performance evaluation has been reported in [2] (for a brief descriptions of
PVM and MPI programming environments, see below). The performance study
has run into technical problems. For obvious reasons, one should use parallel
computers to solve large problems. On the computers we had access to (Silicon
Graphics machines at NCSA in Urbana), this meant that using the batch-queues
was required (there is an imposed limit on the size and time allowed for inter-
active jobs). We have found that for some reason the PVM environment, when
invoked from the NQS (NCSA batch job submission system), was relatively un-
stable (approximately two of every three jobs hang up when the PVM daemons
died). In the mean time, while running MPI-based jobs (in the same environ-
ment) we have not encountered such problems (see also [4]). We have therefore
re-implemented the algorithm using the MPI environment to facilitate paral-
lelism and experimented with it on a Beowulf cluster. Due to the fact that we

∗1991 Mathematics Subject Classifications: 65F10, 65N20, 65N30.
Key words and phrases: elliptic solvers, separation of variables, parallel computing,
problems with sparse right-hand side.
c©1999 Southwest Texas State University and University of North Texas.
Published November 29, 1999.
The second author was partially supported by the Alexander von Humboldt Foundation and
the Bulgarian Ministry for Education, Science and Technology under Grant MM–98#801.

75



76 Implementing parallel elliptic solver

had two versions of the code we were able to run both of them for problems of
the same size and compare their performance. The aim of this note is to report
on the results of our experiments.
Parallel Virtual Machine (PVM) is a programming environment (developed

at Oak Ridge National Laboratory) which allows a heterogeneous collection of
workstations and/or supercomputers to function as a single high-performance
parallel machine. PVM was designed to link computing resources and provide
users with a parallel platform for running their computing applications, irrespec-
tive of the number of different computers they use and where the computers are
located. It was created primarily as an interactive-type tool, where a console
is started on one of the machines and the interactions with other computers
are handled from this console. Over the last two years its role has been slowly
descreasing. In the meantime, the popularity of the Message Passing Interface
(MPI) is increasing. MPI is a message passing library facilitating parallel pro-
gramming (primarily for codes written in C and Fortran). It was designed in
Argonne National Laboratory and released in 1994. In contrast to PVM, MPI
is just a specification of a library without an attempt to build an interactive
parallel environment. Both PVM and MPI became standards and are supported
by most vendors of parallel computers.
We proceed as follows. In Section 2 the method of discrete separation of

variables is presented. Section 3 contains a brief summary of the Fast Algorithm
for Separation of Variables (FASV) (for more details of both phases of the
algorithm, see [5, 7]). In Section 4 we discuss a number of issues related to the
parallel implementation and execution. Finally, Section 5 presents the results of
experiments performed on a Beowulf cluster. We conclude with the description
of future research.

2 Discrete separtion of variables

Consider a separable second order elliptic equation of the form

−
d∑
s=1

∂

∂xs
as(xs)

∂u

∂xs
= f(x), x ∈ Ω, d = 2 or 3

u|∂Ω = 0.

For the purpose of this paper we assume that Ω is a rectangle (d = 2), but the
method described below can be generalized to 3D problems. Using, for example,
a finite difference method to discretize the equation, we obtain the linear system
of equations

Ax = f, (2.1)

where
A = Im ⊗ T +B ⊗ In.

Here In is the identity n× n matrix and ⊗ is the Kronecker product. Matrices
T = (tij)

n
i,j=1 and B = (bkl)

m
k,l=1 are tridiagonal s.p.d. arising from the finite



Marcin Paprzycki, Svetozara Petrova, & Julian Sanchez 77

difference approximation of the one-dimensional operators− ∂
∂xs
as(xs)

∂
∂xs
(.), for

s = 1, 2, respectively. Vector x and the right-hand side f of (2.1) are composed
using the lexicographic ordering on horizontal lines.
To describe the method of separation of variables we will use vectors x′

and f ′ reordered using vertical lexicographic ordering. Consider the following
eigenvalue problem

Bq
k
= λkqk, (2.2)

where
{
λk, qk

}m
k=1
are the eigenpairs of Bm×m. The matrix B is assumed s.p.d.

and hence the eigenvalues λk > 0 and the eigenvectors satisfy q
T
k
q
r
= δkr (δkr

is the Kronecker symbol) for k, r = 1, 2, . . . ,m. Using the basis {q
k
}mk=1 the

vectors x′i and f
′
i
can be expanded as follows:

x′i =

m∑
k=1

ηkiqk, f ′
i
=

m∑
k=1

βkiqk, i = 1, 2, . . . , n, (2.3)

where the Fourier coefficients of f ′
i
are computed by

βki = q
T

k
f ′
i
. (2.4)

Consider the column vectors η
k
= (ηki)

n
i=1 and βk = (βki)

n
i=1 , k = 1, 2, . . . ,m.

Substituting expressions (2.3) in (2.1) results in the following system of equa-
tions for the discrete Fourier coefficients η

k
of x′i, i = 1, 2, . . . , n

(λkI + T )ηk = βk, k = 1, 2, . . . ,m. (2.5)

Equations (2.5) represent m systems of linear equations with n × n matrices.
They can be solved independently of each other. The algorithm for the separa-
tion of variables (SV) has thus the following form:

Algorithm SV

(1) determine the eigenpairs
{
λk, qk

}m
k=1
of the tridiagonal matrix B from

(2.2);
(2) compute the Fourier coefficients βki of f

′
i
using (2.4);

(3) solvem n×n tridiagonal systems of equations of the form (2.5) to determine
{ηki} – the Fourier coefficients of x′i, i = 1, 2, . . . , n;
(4) recover the solution of our original system (2.1) on the basis of the Fourier
coefficients {ηki} of x′i. There are two possibilities:

vertical recovering: x′i =

m∑
k=1

ηkiqk, i = 1, 2 . . . , n

horizontal recovering: xj =

m∑
k=1

qjkηk, j = 1, 2 . . . ,m. (2.6)



78 Implementing parallel elliptic solver

Let us now assume that the system of the form (2.1) has a sparse right-
hand side (SHRS) (for more details of origins of such problems see for instance
Banegas [1], Proskurowski [6] and Kuznetsov [3]). More precisely, assume that
the right-hand side f has only d� m nonzero block components

fT =
[
0, . . . , f

j1
, 0, . . . , f

jd
, 0, . . . , 0

]T
, where f

js
∈ Rn, s = 1, 2 . . . , d.

Then, for the reordered right-hand side, each vector f ′
i
(i = 1, 2, . . . , n) has only

d nonzero scalar components fijs , s = 1, 2 . . . , d, i.e.

f ′T
i
= [0, . . . , fij1 , 0, . . . , fijd , 0, . . . , 0]

T
, i = 1, 2, . . . , n.

Assume that only r � m block components of the solution are needed. Denote
by xj′1 , xj′2 , . . . , xj′r the sought vectors. To find the solution of such a problem
with a sparse right-hand side we apply the Algorithm SV as follows:

Algorithm SRHS

(1) compute the Fourier coefficients βki of f
′
i
from (2.4),

βki = q
T

k
f ′
i
=

d∑
s=1

qkjsfijs , k = 1, 2, . . . ,m, i = 1, 2, . . . , n;

(2) solve systems of the form (2.5);
(3) recover the solution per lines using (2.6). We need only xj =

∑m
k=1 qjkηk,

for j = j′1, j
′
2, . . . , j

′
r.

3 Fast algorithm for separation of variables

Consider now the algorithm FASV proposed by Vassilevski [7, 8] for solving
problems of type (2.1). For simplicity we assume thatm = 2l−1. The algorithm
consists of two steps – forward and backward recurrence. For the forward step
we need matrix A in the following block form:

A =




A(k,1) A12 0
A21 T + b2k2kIn A23

A32 A(k,2) A34
. . .

. . .
. . .

0 A2l−k+1−1,2l−k+1−2 A(k,2
l−k)


 , (3.1)

where
A(k,s) = I2k−1 ⊗ T +B

(s)
k ⊗ In, s = 1, 2, . . . , 2

l−k,

i.e. each matrix A(k,s), 1 ≤ k ≤ l, 1 ≤ s ≤ 2l−k has 2k − 1 blocks of order n.

Above B
(s)
k of order 2k − 1 is the principal submatrix of B and hence, it is

also a tridiagonal s.p.d. matrix of the form B
(s)
k = (bij), i, j = 1, . . . sk +2

k− 1,
where sk = (s− 1)2k.



Marcin Paprzycki, Svetozara Petrova, & Julian Sanchez 79

(1) Forward step of FASV

For k = 1, 2, . . . , l − 1 solve the problem:

A(k,s)x(k,s) = f (k,s), s = 1, 2, . . . , 2l−k, (3.2)

where

x(k,s) =




x
(k)
sk+1

x
(k)
sk+2

...

x
(k)

sk+2k−1




and f (k,s) will be defined below.

After solving these problems and setting x
(k)

s2k
= 0 for s = 1, 2, . . . , 2l−k − 1

we denote by x(k) and f (k) the following vectors

x(k) =




x(k,1)

0
x(k,2)

0
...

x(k,2
l−k)




}2k − 1 blocks
}1 block

}2k − 1 blocks

}1 block

}2k − 1 blocks

and f (k) =




f (k,1)

f
2k

f (k,2)

...

f (k,2
l−k)



. (3.3)

Let the residual vector be the right-hand side for the next k + 1st step

f (k+1) = f (k) −Ax(k) =




f (k+1,1)

f
2k+1

f (k+1,2)

...

f (k+1,2
l−k−1)



, (3.4)

where

f (k+1,s
′) =




0

f (k+1)
s′.2k+1

0



}2k − 1 blocks
}1 block

}2k − 1 blocks
, s′ = 1, 2, . . . , 2l−k−1.

From (3.4) and s = (2s′ − 1) we have

f (k+1)
s′.2k+1

= f (k)
s.2k
−A2s,2s−1 x

(k,s) −A2s,2s+1 x
(k,s+1)

= f (k)
s.2k
− bs.2k,s.2k−1 x

(k,s)

2k−1 − bs.2k,s.2k+1 x
(k,s+1)
1 . (3.5)



80 Implementing parallel elliptic solver

The new right-hand side f (k+1,s
′) has only one nonzero block component

and hence, by induction, the right-hand sides f (k,s) have the following sparsity
pattern

f (k,s) =



0

∗

0



}2k−1 − 1 blocks

}1 block

}2k−1 − 1 blocks

, s = 1, 2, . . . , 2l−k.

Therefore, the problems (3.2) have a sparse right-hand side. The matrices A(k,s)

allow a separation of variables as submatrices of A and hence, Algorithm SV
from Section 2 can be applied with d = 1 (the number of nonzero block com-
ponents of the right-hand side), and r = 3 (the number of the sought block

components of the solution: x
(k,s)
1 , x

(k,s)

2k−1
and x

(k,s)

2k−1).

(2) Backward step of FASV

For k = l, l − 1, . . . , 1, our purpose is to determine x(2s−1)2k−1 for s =

1, 2, . . . , 2l−k. First, when k = l, we solve

Ax(l) = f (l), (3.6)

where A(l,s) ≡ A, x(l) = x(l,1) and f (l) = f (l,1). The right-hand side f (l) is
found at the last step of the forward recurrence and from (3.5) it has a sparse
right-hand side. The problem (3.6) is solved incompletely finding only one block

component x
(l)

2l−1
.

We have also x2l−1 = x
(l)

2l−1
which corresponds to the midblock component

of the solution x of (2.1). The remaining block components of x are recovered
by induction as follows:

Starting with k = l we have x2l−1 = x
(l)

2l−1
. Assume that for some given

k, 1 ≤ k ≤ l − 1, we have found the vectors xs.2k for s = 1, 2, . . . , 2
l−k − 1 in

the previous steps k + 1, . . . , l.

Then at the kth step we can find xs.2k−1 for s = 1, 2, . . . , 2
l−k+1 − 1. More

precisely, by construction we have f (k
′+1) = f (k

′)−Ax(k
′) and after summation

of both sides of these equalities for k′ = k, k + 1, . . . , l, we get

f (k) = A

(
l∑

k′=k

x(k
′)

)
. (3.7)

Let

y =

l∑
k′=k

x(k
′) (3.8)



Marcin Paprzycki, Svetozara Petrova, & Julian Sanchez 81

and using A from (3.1) we have the following equivalent form for (3.7)




A(k,1) A12 0
A21 T + b2k2kIn A23

A32 A(k,2) A34
. . .

. . .
. . .

0 A2l−k+1−1,2l−k+1−2 A(k,2
l−k)







y(k,1)

y
2k

y(k,2)

...

y(k,2
l−k)




=




f (k,1)

f
2k

f (k,2)

...

f (k,2
l−k)




where each block y(k,s), s = 1, 2, . . . , 2l−k has 2k − 1 blocks of order n. From

this system we obtain the following equation for y(k,s) :

A2s−1,2s−2y(s−1).2k +A
(k,s)y(k,s) +A2s−1,2sys.2k = f

(k,s). (3.9)

Hence, when sk = (s− 1)2k:

A(k,s)y(k,s) = f (k,s) −A2s−1,2s−2ysk
−A2s−1,2sys.2k . (3.10)

Using (3.8) we have y
sk
= xsk and ys.2k = xs.2k . Recall that from the

induction described above, the vectors xsk = x(s−1).2k and xs.2k are already
found. Thus, from (3.10) we get the following system

A(k,s)y(k,s) =




−bsk+1,skxsk
0

f (k,s)
2k−1

0
−bs.2k−1,s.2kxs.2k



}1 st block

}2k−1 th block

}2k − 1 st block

. (3.11)

The nonzero block components of the right-hand side of (3.11) can be found
using the solution computed at the k + 1st step. It is a problem with a sparse
right-hand side and only one (r = 1) block component of the solution, namely

y
(k,s)

2k−1
is needed. By (3.8) one finds

y
(k,s)

2k−1
= y

(2s−1).2k−1
=

l∑
k′=k

x
(k′)

(2s−1).2k−1 = x(2s−1).2k−1 .

Therefore, at the kth step from the backward recurrence (k = l, l−1, . . . , 1)
we can determine x(2s−1)2k−1 , s = 1, 2, . . . , 2

l−k.



82 Implementing parallel elliptic solver

4 Parallel implementation

When a 2D problem is solved the rectangular domain is decomposed into hor-
izontal strips. We then assign a processor to each strip. In each forward step
of FASV a number of solves with matrices A(k,s) are involved. These are prob-
lems with sparse right hand sides and to find the components of the solution
algorithm SRHS is applied. In general, the forward sweep of FASV requires
O(log(m)) steps. The backward sweep of FASV is a reverse of the forward step
and results in the solution of the original system (2.1).

In [5] it was shown that the total arithmetical complexity of the algorithm
is (28n2−9n2/(l−1))(l−3− logP+2P )/P and the speed-up S = (l−1)P/(l−
3 − logP + 2P ). Therefore, in the two limiting cases, for large l the optimal
speed-up P is obtained, while for a fixed l and a large P the speed-up is limited
by l/2.

As mentioned above, we have used two versions of the code. The only
difference between them was that in one the PVM environment was used to
facilitate interprocessor communication, while the other was based on the MPI
library. While re-implementing the code we have fixed the way that the time was
measured. In the original code an average of processor times was reported. We
have decided that this may be slightly misleading as it hides possible workload
imbalances. In the new version of the code we measured the time spent by each
individual processor. Since the workload differs from processor to processor, in
each run we recorded the longest time (all remaining processors have to wait
for the slowest one to complete its job before the problem is solved). After
performing several runs, we kept and reported the shortest time (of the longest
times). We used the function mclock() to measure time in the PVM version
while in the MPI version we used the MPI Wtime() function.

Our experiments have been performed on a Beowulf cluster. The Beowulf
cluster architecture was designed in 1994 by Thomas Sterling and Donald Beck
at the center of Excellence in Space Data and Information Sciences (CESDIS).
The purpose of the design was to combine together COTS (commodity off the
shelf) base systems in a network and emulate a costly high performance super-
computer.

The Beowulf cluster at the University of Southern Mississippi consists of 16
PC’s connected with a Fast Ethernet switch. Each PC is a 233 MHz Pentium
II with 256 Mbytes of RAM. The proposed algorithm has been implemented
in Fortran (77). We used the Portland Group compiler and invoked maximum
compiler optimization (−O2 −tp p6 −Mvect −Munroll = n : 16). Most runs
have been done on an empty machine.

5 Experimental results

To study the performance of the codes we have used a standard model problem.
We have solved the Poisson equation on the unit square with Dirichlet boundary
conditions. The mesh size was fixed at h = 1/(m+1), where m = 2l. In Table 1



Marcin Paprzycki, Svetozara Petrova, & Julian Sanchez 83

P L = 9 L = 10 L = 11
MPI PVM MPI PVM MPI PVM

1 1.16 1.30 6.32 6.71 32.19 34.42
2 0.69 0.75 3.50 3.91 17.50 19.20
3 0.52 0.58 2.54 2.78 13.39 13.50
4 0.42 0.46 2.01 2.30 9.68 10.92
5 0.40 0.40 1.81 1.95 8.63 9.23
6 0.38 0.41 1.68 1.91 7.77 8.84
7 0.36 0.33 1.53 1.72 6.94 7.88
8 0.32 0.32 1.36 1.54 6.15 7.00
9 0.34 0.30 1.35 1.43 6.02 6.05
10 0.35 0.32 1.32 1.48 5.78 5.53
11 0.34 0.30 1.28 1.38 5.48 5.77

Table 1: Times comparison

we present the times obtained for both PVM and MPI codes for l = 9, 10, 11 and
for P = 1, 2, . . . , 11 processors (unfortunately, due to the technical difficulties 5
nodes were down for hardware maintenance). Problem of size l = 11 was the
largest that we were able to run on a single processor system (it required more
than 90Mbytes of memory).

It can be observed that for the larger problems the MPI based code slightly
outperformed the PVM based implementation. This result is consistent with our
expectations. One needs to remember that MPI is a newer development than
PVM and performance was more of a goal in its creation (in case of PVM the
main goal was rather ability of interactively creating a heterogeneous parallel
computer system). Additionally, the Beowulf implementation of MPI, which
uses the LAM communication fabrics, supports sending and receiving messages
directly from one process to another, overriding the communication daemons.
LAM is a parallel processing environment and development system for a network
of independent computers created and maintained by the Ohio Supercomputer
Center. It features the MPI programming standard, supported by extensive
monitoring and debugging tools.

In Table 2 we compare the speed-up values of both implementations for
the largest problem size. In addition we present the theoretical speed-up value
calculated using the speed-up formula above.

Interestingly, both MPI and PVM speedup values are far superior to the
theoretical ones. This shows a slight weakness of the theoretical arithmetical
complexity analysis which typically takes into consideration only the size of
the problem (sometimes supplemented by a rudimentary data communication
analysis). In the experimental environment, one deals with machines with hier-
archical memory structure and its management as well as networks and network
protocols which influence the performance of the program. For instance, as we
increase the number of processors for a given fixed problem size the amount of



84 Implementing parallel elliptic solver

P L = 11
MPI PVM THEORY

1 1.00 1.00 1.00
2 1.84 1.79 1.67
3 2.40 2.55 2.14
4 3.33 3.15 2.50
5 3.73 3.73 2.78
6 4.14 3.89 3.00
7 4.64 4.37 3.18
8 5.23 4.92 3.33
9 5.35 5.69 3.46
10 5.57 6.22 3.57
11 5.87 5.96 3.67

Table 2: Speedup comparison

memory used per-processor decreases (since the problem is divided into smaller
pieces) and it is much easier to manage the data movement in the hierarchi-
cal environment making the multiprocessor runs faster than the predicted ones.
This can be viewed also from the reverse side. For very large problems the mem-
ory management becomes rather complicated. It is well known that most of the
existing cache management algorithms are far from optimal. This increases the
single processor execution time and thus increases the obtainable speed-up.

In this context we can also observe that in many cases the PVM based code
shows slightly faster speed-up values than MPI. The reason for that behavior
is that speed-up formula involves the time spent by a single processor run.
Inspecting the values in Table 1 we can see that the single processor PVM
version is slower than the MPI version. Thus any speedup value will have a
greater numerator and therefore a greater value.

6 Concluding remarks

In this note we have presented the experimental results illustrating the parallel
performance characteristics of the fast direct elliptic solver on a Beowulf clus-
ter. The algorithm and both its implementations turned out to be relatively
efficient. We have also found that, for large problems, memory management
capacity is an important factor influencing performance. In the near future we
plan to, first, investigate the code to see if there is a possibility of any addi-
tional optimization of the way that the code is currently implemented. Second,
we plan to complete the performance study across a number of modern paral-
lel programming architectures. We will also look into extending the proposed
approach to parallel three dimensional solvers.



Marcin Paprzycki, Svetozara Petrova, & Julian Sanchez 85

References

[1] A. Banegas, Fast Poisson solvers for problems with sparsity, Math.Comp.,
32(1978), 441-446.

[2] H. Hope, M. Paprzycki and S. Petrova, Parallel Performance of a Direct
Elliptic Solver, in: M. Griebel et. al. (eds.), Large Scale Scientific Com-
putations of Engineering and Environmental Problems, Vieweg, Wisbaden,
(1998), 310-318

[3] Y. Kuznetsov, Block relaxation methods in subspaces, their optimization
and application, Soviet.J.Numer.Anal. and Math. Modelling, 4(1989), 433-
452.

[4] I. Lirkov, S. Margenov and M. Paprzycki, Benchmarking performance of
parallel computers using a 2D elliptic solver, Proceedings of the 4th Interna-
tional Conference on Numerical Methods and Applications, Sofia, Bulgaria,
August, 1998, to appear.

[5] S. Petrova, Parallel implementation of fast elliptic solver, Parallel Comput-
ing, 23(1997), 1113-1128.

[6] W. Proskurowski, Numerical solution of Helmholtz equation by implicit
capacitance matrix method, ACM Trans. Math. Software, 5(1979), 36-49.

[7] P. Vassilevski, Fast algorithm for solving a linear algebraic problem with
separation of variables, Comptes Rendus de l’Academie Bulgare des Sci-
ences, 37(1984), No.3, 305-308.

[8] P. Vassilevski, Fast algorithm for solving discrete Poisson equation in a
rectangle, Comptes Rendus de l’Academie Bulgare des Sciences, 38(1985),
No.10, 1311-1314.

[9] P. Vassilevski and S. Petrova, A note on construction of precondition-
ers in solving 3D elliptic problems by substructuring, Comptes Rendus de
l’Academie Bulgare des Sciences, 41(1988), No.7, 33-36.

Marcin Paprzycki (e-mail: marcin.paprzycki@usm.edu)
Julian Sanchez (e-mail: julian.sanchez@ieee.org)
Department of Computer Science and Statistics
University of Southern Mississippi
Hattiesburg, MS 39406, USA

Svetozara Petrova
Central Laboratory of Parallel Processing
Bulgarian Academy of Sciences, Acad. G.Bonchev Str.
Block 25A, 1113 Sofia, Bulgaria
e-mail: zara@cantor.bas.bg


