\documentclass[twoside]{article} \usepackage{amssymb} % used for R in Real numbers \pagestyle{myheadings} \markboth{\hfil A one dimensional Hammerstein problem \hfil}% {\hfil Jun Hua \& James L. Moseley\hfil} \begin{document} \setcounter{page}{47} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent {\sc 15th Annual Conference of Applied Mathematics, Univ. of Central Oklahoma}, \newline Electronic Journal of Differential Equations, Conference~02, 1999, pp. 47--60. \newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \vspace{\bigskipamount} \\ A one dimensional Hammerstein problem \thanks{ {\em 1991 Mathematics Subject Classifications:} 35P30. \hfil\break\indent {\em Key words and phrases:} Hammerstein problem, Nonlinear eigenvalue problem. \hfil\break\indent \copyright 1999 Southwest Texas State University and University of North Texas. \hfil\break\indent Published November 24, 1999.} } \date{} \author{Jun Hua \& James L. Moseley} \maketitle \begin{abstract} Nonlinear equations of the form $L[u]=\lambda g(u)$ where $L$ is a linear operator on a function space and $g$ maps $u$ to the composition function $g\circ u$ arise in the theory of spontaneous combustion. If $L$ is invertible, such an equation can be written as a Hammerstein equation, $u=B[u]$ where $B[u]=\lambda L^{-1}[g(u)]$. To investigate the importance of the growth rate of $g$ and the sign and magnitude of $\lambda $ on the number of solutions of such problems, in this paper we consider the one-dimensional problem $L(x)=\lambda g(x)$ where $L(x)=ax$. \end{abstract} \newtheorem{theorem}{Theorem}[section] \newtheorem{corollary}[theorem]{Corollary} \renewcommand{\theequation}{\arabic{section}.\arabic{equation}} \section{Introduction} We wish to investigate the number of solutions (and their computation) to problems of the form \begin{equation} L[u]=\lambda g(u) \label{1.1} \end{equation} where $L:V\to W$ is a linear operator and $V$ and $W$ are function spaces whose domains are the same set, say $D$, and whose codomains are the real numbers ${\mathbb R}$. If $u\in V$ and $x\in D$, then the value of the function $g(u)$ at $x$ is $g(u(x))$ where $g:{\mathbb R}\to {\mathbb R}$. Thus we use the symbol $g$ for a real valued function of a real variable as well as for the (nonlinear Nemytskii) operator from $V$ to $W$ that this function defines by the composition $g\circ u$. An example is \begin{eqnarray} -\Delta u =\lambda e^u && \vec{x}=[x,y,z]^{T}\in \Omega \subseteq {\mathbb R}^3 \label{1.2} \\ u(\vec{x})=0 && \vec{x}\in \partial \Omega \nonumber \end{eqnarray} Here $L$ is the negative of the Laplacian operator in three spatial dimensions with homogeneous Dirichlet boundary conditions, $\vec{x}$ is a point in ${\mathbb R}^3$, $\Omega $ is an open connected region in ${\mathbb R}^3$, $\partial \Omega $ is its boundary, $V=\{u\in V_{1}:u(\vec{x% })=0$ $\forall $ $\vec{x}\in \partial \Omega \}$ where $V_{1}=C^{2}(\Omega ,% {\mathbb R})\cap C(\bar{\Omega},{\mathbb R})$, and $W=C(\bar{\Omega},{\mathbb R}% )$. \ Hence $D=\bar{\Omega}$. Such problems arise in the theory of combustion (Deberness \cite{d1}, Moseley \cite{m1, m2, m3, m4}). For this problem in ${\mathbb R}^{2}$, it is known that for $\lambda <0 $, there exists a unique solution. However, for $\lambda >0$ and large, there is no solution. But for $\lambda >0$ and small, there are at least two solutions. If $\lambda =0$, the solution set is the null space of $L$ and since $L$ is invertible the problem has only the trivial solution $u=0$. If $g(u)=u$, (\ref{1.1}) is a spectral problem for $L$. Hence (\ref{1.1}) is sometimes referred to as a nonlinear eigenvalue problem. If $L$ is invertible, then (\ref{1.1}) can be written as the Hammerstein equation \begin{equation} u-\lambda L^{-1}[g(u)]=0. \label{1.3} \end{equation} A solution of (\ref{1.3}) is a fixed point of the combined operator $B=\lambda (L^{-1}\circ g)$. The level of difficulty of problems of type (\ref{1.1}) or (\ref{1.3}) varies greatly depending on the number of elements in $D$, the value of $n$, and the operator $L$. We list several categories, starting with the easiest. \begin{enumerate} \item One dimensional problems (i.e., $D$ contains only one element). \item Multidimensional problems (i.e., $D$ is finite, but contains two or more elements). \item Infinite dimensional problems with $D\subseteq {\mathbb R}$ $(n=1)$ and $L$ a first, second, or higher order differential operator. \item Infinite dimensional problems with $D$ $\subseteq {\mathbb R}^{n}$ , $n=2,3,4,\dots$ and $L$ a first, second, or higher order partial differential operator. \end{enumerate} \noindent Since $L$ is linear, we at most have linear coupling and often this coupling is weak. The coupling of $L^{-1}$ may be stronger than the coupling of $L$ and is a reason to examine (\ref{1.1}) directly even when $L$ is invertible. To investigate the fundamental importance of the growth rate of $g$ and the sign and magnitude of $\lambda $ on the number of solutions to problems of this type, in this paper we consider the one dimensional nonlinear eigenvalue problem \begin{equation} ax=\lambda g(x). \label{1.4} \end{equation} Here $L: {\mathbb R\to R}$ is $L(x)=ax$, $g:{\mathbb R }\to {\mathbb R}$ is a continuous function and $a$ and $\lambda $ are parameters. (If $a\neq 0$, $L$ is invertible.) To this end, we first consider two types of behavior for a continuous function $f: {\mathbb R} \to {\mathbb R}$ (i.e., $f\in C({\mathbb R},{\mathbb R})=\{f:{\mathbb R} \to {\mathbb R}:f$ is continuous $\forall x\in $ ${\mathbb R}\}$). If $L$ is invertible $(a\neq 0)$, we take $f(x)=x-kg(x)$ where $k=\lambda /a.$ Although less restrictive conditions on $f$ can be obtained, for convenience we assume that $f$ has a continuous second derivative for all $x$ in ${\mathbb R}$; that is, $f\in C^{2}({\mathbb R, R})=\{f:{\mathbb R \to R} :f''(x)$ exists and is continuous $\forall x\in {\mathbb R} $\}. We are interested in sufficient conditions on $f$ that will determine the number of solutions of the equation \begin{equation} f(x)=0. \label{1.5} \end{equation} The obvious advantage of considering the scalar equation (one dimensional problem) (\ref{1.4}) or (\ref{1.5}) over an abstract Hammerstein equation or a Hammerstein equation of the type (\ref{1.1}) where $D$ is finite or infinite dimensional is that much more (often everything) can be said for many functions $g(x)$ (and classes of functions). However, the techniques investigated here are quite different from the standard fixed point theorems (e.g., contraction mapping theorem and the Brouwer and Schauder fixed point theorems) and are expected reveal distinctive new results when extended to higher dimensions including methods for solving multidimensional problems. \section{Linear and quadratic properties} In addition to $f\in C^{2}({\mathbb R},{\mathbb R})$ we also assume some of the following: \begin{description} \item{H1} $\lim_{x\to\infty}f(x)=+\infty$ \item{H2} $\lim_{x\to\infty}f(x)=-\infty$ \item{H3} $\lim_{x\to-\infty}f(x)=-\infty$ \item{H4} $\lim_{x\to-\infty}(x)=+\infty$ \item{H5} $f'(x)>0$ \item{H6} $f'(x)<0$ \item{H7} $f''(x)>0$ \item{H8} $f''(x)<0$ \end{description} We consider properties that $f:{\mathbb R\to R}$ may have that are also possessed by the linear function $F(x)=ax+b$ $(a\neq 0)$: \paragraph{Definition} If $f(x)$ satisfies H1 and H3, we say that it is \textbf{mainly increasing}. If it satisfies H1, H3 and H5, we say that it is \textbf{consistently increasing}. On the other hand, if $f(x)$ satisfies H2 and H4, we say it is \textbf{mainly decreasing}. If it satisfies H2, H4, and H6, we say it is \textbf{consistently decreasing}. If $f(x)$ is mainly increasing or decreasing, then we say $f(x)$ is \textbf{mainly monotonic}. If $f(x)$ is consistently increasing or decreasing, then we say $f(x)$ is \textbf{% consistently monotonic}. \medskip For completeness we review a theorem that establishes the existence and uniqueness of solutions to (\ref{1.5}) if $f(x)$ is mainly or consistently monotonic. Like the Jordan Curve Theorem, it is geometrically obvious and an analytic proof can be given \cite{m7}. \begin{theorem} If a function $f$ is mainly monotonic, then for any $c$ in ${\mathbb R}$, there exists at least one $x$ in ${\mathbb R}$ such that $f(x)=c$. If the function is consistently monotonic, then for any $c$ in ${\mathbb R}$, there exists exactly one $x$ in ${\mathbb R}$ such that $f(x)=c$. \end{theorem} If $f(x)$ is consistently monotonic it is similar to the linear function $F(x)=ax+b$ $(a\neq 0)$ in that (\ref{1.5}), like $F(x)=0$, has exactly one solution. We say that $f(x)$ has the \textbf{linear property}. We also consider some properties that $f(x)$ may have that are also possessed by the quadratic function $G(x)=ax^{2}+bx+c$ $(a\neq 0).$ \paragraph{Definition} If $f(x)$ satisfies H1,H4 (H2,H3), we say $f(x)$\textbf{ opens upwards (downwards)}. If $f(x)$ satisfies H1, H4, H7 (H2, H3, H8), we say $f(x)$ is \textbf{completely concave up (down)}. \medskip Again for completeness, we review two theorems that establish when (\ref{1.5}) has exactly zero, one, or two solutions. \ Again they are geometrically obvious and can be proved analytically \cite{m7}. \begin{theorem} If $f$ opens upwards (downwards), then there exists at least one $x_{0}\in R$ such that $f(x_{0})=min f(x)\quad (f(x_{0})=\max f(x))$. \end{theorem} \begin{theorem} If $f$ opens upwards (downwards) and $m=f(x_{0})=\min$ $f(x)$ $(m=f(x_{0})=\max f(x))$, then \begin{enumerate} \item $cm)$ implies that there is no $x$ such that $f(x)=c$, \item $c=m$ implies that there is at least one $x$ such that $f(x)=c$, namely $x=x_{0}$, \item $c>m$ $(c0.$ (e.g. $g(x)=-e^x$ or $g(x)=-x^{2}$ and $k=2$) \item{PP3} $\lim_{x\to\infty}g(x)=M$, (e.g. $g(x)=$ Arctan $x$) \item{PP4} $\lim_{x\to\infty}g(x)=\infty $ and $k<0$. (e.g. $g(x)=e^{x}$ or $g(x)=x^{2}$ and $k=-1$) \item{PP5} $\lim_{x\to\infty}g(x)=\infty $ and $\lim_{x\to\infty}x/g(x)=\infty $. (e.g. $g(x)=x^{1/3}$) \item{PP6} $\lim_{x\to\infty}g(x)/x=M$, and $kM<1$. (e.g. $g(x)=3x+2$ and $k=-1$) \item{PP7} $\lim_{x\to\infty}g(x)=\infty $, $\lim_{x\to\infty}x/g(x)=M$, and $M>k.$ (e.g. $g(x)=3x+2$ and $k=-1$) \end{description} To obtain conditions such that $\lim_{x\to\infty}f(x)= -\infty $ we must completely counteract the effect of the linear term. \begin{description} \item{PN1} $\lim_{x\to\infty}g(x)=-\infty $, $\lim_{x\to\infty}x/g(x)=M$, and $M>k$. (e.g. $g(x)=-3x+2$ and $k=-2$) \item{PN2} $\lim_{x\to\infty}g(x)/x=M$, and $kM>1$. (e.g. $g(x)=2x+$ Arctan $x$ and $k=1$) \item{PN3} $\lim_{x\to\infty}g(x)=\infty $, $\lim_{x\to\infty}x/g(x)=M$ and $M0$. (e.g. $g(x)=e^{-x}$ or $g(x)=-x^{2}$ and $k=1$) \item{NN3} $\lim_{x\to-\infty}g(x)=M$ (e.g. $g(x)=e^{x}$ or $g(x)=$ Arctan $x$) \item{NN4} $\lim_{x\to-\infty}g(x)=-\infty $ and $k<0$. (e.g. $g(x)=-e^{-x}$ or $g(x)=-x^{2}$ and $k=-1$) \item{NN5} $\lim_{x\to-\infty}g(x)=-\infty $ and $\lim_{x\to-\infty}x/g(x)=\infty $. (e.g. $g(x)=x^{1/3}$) \item{NN6} $\lim_{x\to-\infty}g(x)/x=M$ and $kM<1$. (e.g. $g(x)=3x+2$ and $k=-2$) \item{NN7} $\lim_{x\to-\infty}g(x)=-\infty $, $\lim_{x\to-\infty}x/g(x)=M$, and $M>k$. (e.g. $g(x)=3x+2$ and $k=-1$) \end{description} \noindent Finally, we can establish that $\lim_{x\to -\infty }f(x)=\infty $ for the following conditions. \begin{description} \item{NP1} $\lim_{x\to-\infty}g(x)=-\infty $, $\lim_{x\to-\infty}x/g(x)=M$, and $M1$. (e.g. $g(x)=2x+$Arctan$(x)$ and $k=1$) \item{NP3} $\lim_{x\to-\infty}g(x)=\infty $, $\lim_{x\to-\infty}x/g(x)=M$ and $M>k$. (e.g. $g(x)=3x^{2}+4$ and $k=-1$) \end{description} \section{Linear property} \setcounter{equation}{0} For $f(x)$ given by (\ref{4.1}), we consider conditions such that$f(x)$ is mainly increasing (and mainly decreasing). We then add conditions so that $f(x)$ is consistently increasing (and consistently decreasing) so that it has the linear property. We begin by looking at conditions so that $f(x)$ is mainly increasing when $k>0$. Of those conditions such that $\lim_{x\to -\infty}f(x)=\infty $, only PP4 explicitly requires $k<0$ and must be eliminated. For PP1 we note \begin{theorem} If $\lim_{x\to\infty}g(x)=-\infty $ and $\lim_{x\to\infty}x/g(x)=M$, then $M\leq 0$. \end{theorem} \paragraph{Proof.} $\lim_{x\to\infty}g(x)=-\infty $, then there exists $M_{0}>0$ such that $\forall x>M_{0}$, $g(x)<0$. Hence $\forall x>M_{0}$, $x/g(x)<0$. Hence $\lim_{x\to\infty}x/g(x)=M\leq 0$. \bigskip Since we are assuming $k>0$, the requirement that $k>M$ in PP1 is superfluous. Also assuming $k>0$ allows us to combine PP2 and PP3 into one statement. For emphasis, we modify the new statement (PPKP2) as well as PP1 and PP7 (PPKP1 and PPKP5) to include the constraint $k>0$. \ The sign of $k$ has no impact on PP5 (PPKP3). The impact of $k>0$ on PP6 (PPKP4) is examined later. We do a similar reorganization for those cases for which $\lim_{x\to -\infty }f(x)=-\infty $. Hence we have the following sufficient conditions for the function $f(x)=x-kg(x)$ to be mainly increasing. \begin{theorem} Suppose $k>0$ and one of the following hypothesis holds: \begin{description} \item{PPKP1} $\lim_{x\to\infty}g(x)=-\infty $, $\lim_{x\to-\infty}x/g(x)=M$, and $k>0$ $(\geq M)$. (PP1) \item{PPKP2} $\lim_{x\to\infty}g(x)=-\infty $ or $M>0$ and $k>0$. (PP2 or PP3) \item{PPKP3} $\lim_{x\to\infty}g(x)=\infty $ and $\lim_{x\to\infty}x/g(x)=\infty $. (PP5) \item{PPKP4} $\lim_{x\to\infty}x/g(x)=M$ and $kM>1$. (PP6) \item{PPKP5} $\lim_{x\to\infty}g(x)=\infty $, $\lim_{x\to\infty}x/g(x)=M$ and $M>k>0$. (PP7). \end{description} \noindent Suppose further that one of the following hypothesis holds \begin{description} \item{NNKP1} $\lim_{x\to-\infty}g(x)=\infty$, $\lim_{x\to-\infty}x/g(x)=M$, and $k>0$ ($k\geq M$). (NN1) \item{NNKP2} $\lim_{x\to-\infty}g(x)=\infty $ or $M>0$ and $k>0$. (NN2 or NN3) \item{NNKP3} $\lim_{x\to-\infty}g(x)=-\infty $ and $\lim_{x\to-\infty}x/g(x)=\infty $. (NN5) \item{NNKP4} $\lim_{x\to-\infty}x/g(x)=M$ and $kM<1$. (NN6) \item{NNKP5} $\lim_{x\to -\infty}g(x)=\infty $, $\lim_{x\to-\infty}x/g(x)=M$, and $M>k>0$. (NN7) \end{description} \noindent Then $f$ given by (\ref{4.1}) is mainly increasing.\end{theorem} Note that by requiring $k>0$, PPKP1 is now contained in PPKP2 and can be eliminated. Similarly for NNKP1. To consider PPKP4 and PPKP5, we note that these depend on the growth rate of $g(x)$ as compared with $x$. If $\lim_{x\to\infty}g(x)/x=M$ and $M\neq 0$, then the growth rate of $g(x)$ is essentially linear. In this case the linear part of $g(x)$ can be moved to the other side of the equation and combined with $x$. Hence we really wish to consider only the case when $M=0$. But if $M=0$ and $k>0$, neither PPKP4 or PPKP5 is possible. We consider the details. Suppose $\lim_{x\to\infty}g(x)/x=M$, $M\neq 0$ and $\lim_{x\to-\infty}g(x)/x=N$, $N\neq 0$. We then consider \begin{equation} g_{1}(x)=\left\{ \begin{array}{ll} g(x)-Mx & x>0 \\ g(x)-Nx & x<0 \end{array} \right. \label{5.1} \end{equation} \begin{theorem} Suppose $\lim_{x\to\infty}g(x)/x=M$, $M\neq 0$ and $\lim_{x\to-\infty}g(x)/x=N$, $N\neq 0$. Let $g_{1}(x)$ be given by (\ref{5.1}). \\ Then $\lim_{x\to\infty}g_{1}(x)/x=0$, $\lim_{x\to -\infty}g_{1}(x)/x=0$, \\ $\lim_{x\to\infty}g_{1}(x)/g(x)=0$, and $\lim_{x\to-\infty}g_{1}(x)/g(x)=0$. \end{theorem} \paragraph{Proof.} $\lim_{x\to\infty}g_{1}(x)/x=\lim_{x\to\infty }(g(x)-Mx)/x =\lim_{x\to\infty}(g(x)/x-M)=M-M=0$. Similarly for $\lim_{x\to-\infty}g_{1}(x)/x =\lim_{x\to\infty}g_{1}(x)/g(x)=0$,\\ $\lim_{x\to\infty }(g(x)Mx)/g(x) =\lim_{x\to \infty }(1-M/(g(x)/x))=\lim_{x\to\infty}(1-M/M)=0$. Similarly for $\lim_{x\to-\infty}g_{1}(x)/g(x)$. \hfill$\diamondsuit$ \medskip Thus when $\lim_{x\to\infty}g(x)/x=M$, $M\neq 0$ and/or $\lim_{x\to-\infty}g(x)/x=N$, $N\neq 0$, we rewrite (\ref{3.1}) as $$x+k(g_{1}(x)-g(x))=kg_{1}(x).$$ Hence $f$ can be written as $f(x)=x+k(g_{1}(x)-g(x))-kg_{1}(x)=x(1+k(g_{1}(x)-g(x))/xkg_{1}(x)/x) =g_{1}(x)(x/g_{1}(x)+k))$. Conditions can now be obtained so that $f(x)$ approaches $\pm \infty $ as $x$ approaches $\pm \infty $ using $g_{1}(x)$ instead of $g(x)$. However, care must be taken since $x+k(g_{1}(x)-g(x))$ need not be linear, but is only guaranteed to be ``piecewise'' linear. Also $g_{1}(x)$ is continuous at $x=0$, but not differentiable unless $M=N$. This is only a minor inconvenience and well worth the elimination of a linear component in $g$ by moving it to the other side of the equation. This is a small price to pay to reap the benefits of the function on the right hand side having a truly nonlinear growth rate. We leave such issues to future work and from now on only allow $\lim_{x\to \infty}g(x)/x=M$ where $M=0$ or $M=\pm \infty $ and $\lim_{x\to -\infty }g(x)/x=N$ where $N=0$ or $N=\pm \infty $. We now modify Theorem 7 to consider only these possibilities. \begin{theorem} Suppose $k>0$ and one of the following hypothesis holds: \begin{description} \item{PPKPN1} $\lim_{x\to\infty}g(x)$ $=-\infty $ or $0$, (e.g., $g(x)=-e^x$ or $g(x)=-x^3$),\ \item{PPKPN2} $\lim_{x\to\infty}g(x)$ $=$ $\infty $ and $\lim_{x\to\infty}x/g(x)=\infty $. (e.g., $g(x)=x^{1/3}$). \end{description} \noindent Suppose further that one of the following hypothesis holds: \begin{description} \item{NNKPN1} $\lim_{x\to-\infty}g(x)=\infty $ or $0$, (e.g., $g(x)=-e^x$or $g(x)=-x^3$), \item{NNKPN2} $\lim_{x\to-\infty}$ $g(x)=-\infty $ and $\lim_{x\to-\infty}x/g(x)=\infty $, (e.g., $g(x)=x^{1/3}$). \end{description} \noindent Then the function $f$ given by (\ref{4.1}) is mainly increasing. \end{theorem} \noindent Similarly, we consider mainly increasing functions $f(x)$ when $k<0 $. \begin{theorem} Suppose $k<0$ and one of the following hypothesis holds: \begin{description} \item{PPKNN1} $\lim_{x\to\infty}g(x)=\infty $ or $0$, (e.g., $g(x)=e^x$ or $g(x)=x^3$), \item{PPKNN2} $\lim_{x\to\infty}g(x)=-\infty $ and $x/g(x)=-\infty $. (e.g., $g(x)=-x^{1/3}$). \end{description} \noindent Suppose further that one of the following hypothesis holds: \begin{description} \item{NNKNN1} $\lim_{x\to-\infty}$ $g(x)=-\infty $ or $\lim_{x\to-\infty}$ $g(x)=0$, (e.g., $g(x)=e^x$or $g(x)=x^3$). \item{NNKNN2} $\lim_{x\to-\infty}$ $g(x)=\infty $ and $\lim_{x\to-\infty}x/g(x)=-\infty $ (e.g., $g(x)=-x^{1/3}$). \end{description} Then the function $f$ given by (\ref{4.1}) is mainly increasing. \end{theorem} We now consider functions $f(x)$ that are mainly decreasing. Following the previous procedure, we retain only the cases where $\lim_{x\to\infty }g(x)/x=M$ where $M=0$ or $\pm \infty $ and $\lim_{x\to -\infty }g(x)/x=N$ where $N=0$ or $\pm \infty $. We first consider the case of $k>0$. This eliminates PN1 and PN2 as well as NP2 and NP3. \begin{theorem} Suppose $k>0$, if \begin{description} \item{PNKPN1} $\lim_{x\to\infty}g(x)=\infty $, $\lim_{x\to\infty}x/g(x)=0$ (e.g., $g(x)=\sinh x$) and \item{NPKPN1} $\lim_{x\to-\infty}g(x)=-\infty$, $\lim_{x\to-\infty}x/g(x)=0$, (e.g., $g(x)=\sinh x$) \end{description} \noindent then $f(x)$ is mainly decreasing. \end{theorem} Now, we consider the case $k<0$. \ \begin{theorem} Suppose $k<0$, if \begin{description} \item{PNKNN1} $\lim_{x\to\infty}g(x)=-\infty$, $\lim_{x\to\infty}x/g(x)=0$ (e.g., $g(x)=\sinh x$) and \item{NPKNN1} $\lim_{x\to-\infty}g(x)=\infty $, $\lim_{x\to-\infty}x/g(x)=0$, (e.g., $g(x)=-\sinh x$) \end{description} \noindent then $f(x)$ is mainly decreasing. \end{theorem} \begin{corollary} If $a\neq 0$, $\lambda \neq 0$ and $k>0$, PPKPN1 or 2, and NNKPN1 or 2 (mainly increasing) \newline or $k<0$, PPKNN1 or 2, and NNKNN1 or 2 (mainly increasing)\newline or $k>0$, PNKPN1, and NPKPN1 (mainly decreasing) \newline or $k>0$, PNKNN1, and NPKNN1 (mainly decreasing) \noindent so that $f(x)$ given by (\ref{4.1}) is mainly monotonic, then (\ref{3.1}) (and (\ref{1.3})) has at least one solution. \end{corollary} We now investigate sufficient conditions for $f(x)$ given by (\ref{4.1}) to be consistently monotonic. Since we require $f'(x)>0,$ we obtain conditions on $k$ and $g(x)$. \begin{theorem} If $a\neq 0$, $\lambda \neq 0$, $k=\lambda /a>0$, and PPKPN1 or 2, NNKPN1 or 2, and $g'(x)>1/k$(consistently increasing)\newline or PNKPN1, NPKPN1, and $g'(x)<1/k$ (consistently decreasing) \noindent then the function $f(x)$ given by (\ref{4.1}) is consistently monotonic. \end{theorem} \begin{theorem} If $a\neq 0$, $\lambda \neq 0$, $k=\lambda /a<0$, and PPKNN1 or 2 , NNKNN1 or 2, and $g'(x)>1/k$ (consistently increasing)\newline or PNKNN1 or 2, NPKNN1 and $g'(x)<1/k$ (consistently decreasing) \newline then the function $f(x)$ given by (\ref{4.1}) is consistently monotonic. \end{theorem} \begin{corollary} If $a\neq 0$, $\lambda \neq 0$ and \newline $k>0$, PPKPN1 or 2, NNKPN1 or 2, and $g'(x)>1/k$ (consistently increasing)\newline or $k<0$. PPKNN1 or 2, NNKNN1 or 2, and $g'(x)>1/k$ (consistently increasing)\newline or $k>0$, PNKPN1, NPKPN1, and $g'(x)<1/k$ (consistently decreasing)\newline or $k<0$, PNKNN1, NPKNN1, and $g'(x)<1/k$ (consistently decreasing)\newline so that the function $f(x)$ given by (\ref{4.1}) is consistently monotonic, then (\ref{3.1}) (and (\ref{1.3})) has exactly one solution. \end{corollary} \section{Quadratic property} \setcounter{equation}{0} We now wish to consider cases when $f$ opens upwards or opens downwards. As with the linear cases, we consider the sign of $k$ separately and only cases where the growth rate of $g(x)$ is not linear. We begin with the case where $f$ opens upwards and $k>0$. \begin{theorem} Suppose $k>0$ and one of the following hypothesis holds: \begin{description} \item{PPKPN1} $\lim_{x\to\infty}g(x)=-\infty $ or $0$, (e.g., $g(x)=-e^{-x})$. \item{PPKPN2} $\lim_{x\to\infty}g(x)=\infty $ and $\lim_{x\to\infty}x/g(x)=\infty $. (e.g., $g(x)=e^{-x}+x^{1/3}$). \end{description} \noindent Suppose further that the following hypothesis holds: \begin{description} \item{NPKPN1} $\lim_{x\to-\infty}g(x)=-\infty $ and $\lim_{x\to-\infty}x/g(x)=0$. (e.g., $g(x)=-e^{-x}$ or $g(x)=-e^{-x}+x^{1/3}$. \end{description} \noindent Then the function $f(x)$ given by (\ref{4.1}) opens upwards. \end{theorem} Now we consider the case where $f$ opens upwards and $k<0$. \begin{theorem} Suppose $k<0$ and one of the following hypothesis holds: \begin{description} \item{PPKNN1} $\lim_{x\to\infty}g(x)=\infty $ or $0$, (e.g., $g(x)=e^{-x}$) \newline or \item{PPKNN2} $\lim_{x\to\infty}g(x)=-\infty $ and $\lim_{x\to \infty}x/g(x)=-\infty $. (e.g., $g(x)=e^{-x}-x^{1/3}$ \end{description} \noindent Suppose further that the following hypothesis holds: \begin{description} \item{NPKNN1} $\lim_{x\to-\infty}g(x)=\infty $ and $\lim_{x\to-\infty}x/g(x)=0$. (e.g., $g(x)=e^{-x}$ or $g(x)=e^{-x}-x^{1/3}$). \end{description} \noindent Then the function $f(x)$ given by (\ref{4.1}) opens upwards. \end{theorem} Now we consider the case where $f$ opens downwards and $k>0$. \begin{theorem} Suppose $k>0$ and the following hypothesis holds: \begin{description} \item{PNKPN1} $\lim_{x\to\infty}g(x)=\infty $ and $\lim_{x\to\infty}x/g(x)=0$. (e.g., $g(x)=x^{2}$ or $g(x)=e^x+x^{1/3}$). \end{description} \noindent Suppose further that one of the following hypothesis holds: \begin{description} \item{NNKPN1} $\lim_{x\to-\infty}g(x)=\infty $ or $0$, (e.g., $g(x)=x^{2}$) \item{NNKPN2} $\lim_{x\to-\infty}g(x)=-\infty $ and $\lim_{x\to-\infty}x/g(x)=\infty $. (e.g., $g(x)=e^x+x^{1/3}$). \end{description} \noindent Then the function $f(x)$ given by (\ref{4.1}) opens downwards. \end{theorem} Now we consider the case that $k<0$. \begin{theorem} Suppose $k<0$ and the following hypothesis holds: \begin{description} \item{PNKNN1} $\lim_{x\to\infty}g(x)=-\infty $ and $\lim_{x\to\infty}x/g(x)=0$. (e.g., $g(x)=-x^{2}$ or $g(x)=-e^x-x^{1/3}$. \end{description} \noindent Suppose further that one of the following hypothesis holds: \begin{description} \item{NNKNN1} $\lim_{x\to-\infty}g(x)=-\infty $ or $0$, (e.g., $g(x)=-x^{2})$ \item{NNKNN2} $\lim_{x\to-\infty}g(x)=\infty $ and $\lim{x\to -\infty }x/g(x)=-\infty $. (e.g., $g(x)=-e^{-x}-x^{1/3}$). \end{description} \noindent Then the function $f(x)$ given by (\ref{4.1}) opens downwards. \end{theorem} We next state theorems when there exists no solution, at least one solution, and at least two solutions. \begin{theorem} Suppose $m=\min_{x\in{\mathbb R}}f(x)=f(x_{0})$ where $f'(x_{0})=0$ and \begin{description} \item $k>0$, PPKPN1 or 2, and NPKPN1, (e.g., $g(x)=-e^{-x}$)\newline or \item $k<0$, PPKNN1 or 2, and NPKNN1. (e.g., $g(x)=e^{-x}$). \end{description} Then $f$ given by (\ref{4.1}) opens upward. Hence \begin{description} \item{(C1)} $m>0$ implies (\ref{3.1}) (and (\ref{1.3})) has no solution, \item{(C2)} $m=0$ implies (\ref{3.1}) (and (\ref{1.3})) has at least one solution, namely $x=x_{0}$. \item{(C3)} $m<0$ implies (\ref{3.1}) (and (\ref{1.3})) has at least two solutions, say $x_{1}$ and $x_{2}$. Furthermore, we may assume $x_{1}0$, PNKPN1, and NNKPN1 or 2, (e.g., $g(x)=x^{2}$)\newline or \item $k<0$, PNKNN1, and NNKNN1 or 2. (e.g., $g(x)=-x^{2}$). \end{description} \noindent Then $f$ given by (\ref{4.1}) opens downward. Hence \begin{description} \item{(C1)} $m<0$ implies (\ref{3.1}) (and (\ref{1.3})) has no solution, \item{(C2)} $m=0$ implies (\ref{3.1}) (and (\ref{1.3})) has at least one solution, namely $x=x_{0}$. \item{(C3)} $m>0$ implies (\ref{3.1}) (and (\ref{1.3})) has at least two solutions, say $x_{1}$ and $x_{2}$. Furthermore, we may assume $x_{1}0$, PPKPN1 or 2, NPKPN1, and $\forall x\in {\mathbb R}$, $g''(x)>0$\newline or $k<0$, PPKNN1 or 2, NPKNN1 and $\forall x\in {\mathbb R}$, $g''(x)<0$. \noindent Then $f$ given by (\ref{4.1}) is completely concave up. Hence \begin{description} \item{(C1)} $m>0$ implies (\ref{3.1}) (and (\ref{1.3})) has no solution, \item{(C2)} $m=0$ implies (\ref{3.1}) (and (\ref{1.3})) has exactly one solution, namely $x=x_{0}$. \item{(C3)} $m<0$ implies (\ref{3.1}) (and (\ref{1.3})) has exactly two solutions, say $x_{1}$ and $x_{2}$. Furthermore, we may assume $x_{1}0$, PNKPN1, NNKPN1 or 2, and $\forall x\in {\mathbb R}$, $g''(x)<0$\newline or $k<0$, PNKNN1, NNKNN1 or 2, and $\forall x\in {\mathbb R}$, $g''(x)>0$. \noindent Then $f$ given by (\ref{4.1}) is completely concave down. Hence \begin{description} \item{(C1)} $m<0$ implies (\ref{3.1}) (and (\ref{1.3})) has no solution, \item{(C2)} $m=0$ implies (\ref{3.1}) (and (\ref{1.3})) has exactly one solution, namely $x=x_{0}$. \item{(C3)} $m>0$ implies (\ref{3.1}) (and (\ref{1.3})) has exactly two solutions, say $x_{1}$ and $x_{2}$. Furthermore, we may assume $x_{1}