\input amstex \documentstyle{amsppt} \loadmsbm \pageno=61 \magnification=\magstephalf \hcorrection{1cm} \vcorrection{-6mm} \nologo \TagsOnRight \NoBlackBoxes \headline={\ifnum\pageno=61 \hfill\else% {\tenrm\ifodd\pageno\rightheadline \else \leftheadline\fi}\fi} \def\rightheadline{\hfil $n$-dimensional Laplace transforms \hfil\folio} \def\leftheadline{\folio\hfil R. S. Dahiya \& Jafar Saberi-Nadjafi \hfil} \def\pretitle{\vbox{\eightrm\noindent\baselineskip 9pt % 15th Annual Conference of Applied Mathematics, Univ. of Central Oklahoma, \hfill\break Electronic Journal of Differential Equations, Conference~02, 1999, pp. 61--74. \hfill\break ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \hfill\break ftp ejde.math.swt.edu or ejde.math.unt.edu (login: ftp)\bigskip} } \topmatter \title Theorems on $n$-dimensional Laplace transforms and their applications \endtitle \thanks {\it 1991 Mathematics Subject Classifications:} 44A30.\hfil\break\indent {\it Key words and phrases:} multi-dimensional Laplace transforms. \hfil\break\indent \copyright 1999 Southwest Texas State University and University of North Texas. \hfil\break\indent Published November 24, 1999. \endthanks \author R. S. Dahiya \& Jafar Saberi-Nadjafi \endauthor \address R. S. Dahiya \hfill\break Department of Mathematics \hfill\break Iowa State University \hfill\break Ames, IA 50011, USA \endaddress \email dahiya\@iastate.edu \endemail \address Jaffar Saberi-Nadjafi \hfill\break Department of Mathematics,\hfill\break Ferdowsi, University of Mashhad \hfill\break Mashhad, Iran \endaddress \abstract In the present paper we prove certain theorems involving the classical Laplace transform of $n$-variables. The theorems are then shown to yield a nice algorithm for evaluating $n$-dimensional Laplace transform pairs. In the second part, boundary value problems are solved by using the double Laplace transformation. \endabstract \endtopmatter \document \head 1. Introduction and Notation\endhead The generalization of the well-known Laplace transform\newline $L[f(t); s]=\int^{\infty}_0 e^{-st}f(t)dt$ to $n$-dimensional is given by $$ L_n[f(\bar t); \bar s]=\int^{\infty}_0\int^{\infty}_0\dots\int^{\infty}_0 \exp(-\bar s\cdot\bar t)f(\bar t) P_n(d\bar t) $$ where $\bar t=(t_1,t_2,\dots, t_n),\ \bar s=(s_1,s_2,\dots, s_n),\ \bar s\cdot\bar t=\sum\limits^n_{i=1}s_it_i$ and $P_n(d\bar t)=\prod\limits^n_{k=1}dt_k$. In addition to the notations introduced above, we will use the following throughout this article. Let $\overline{t^v}=(t^v_1,t^v_2,\dots, t^v_n)$ for any real exponent $v$ and let $p_k(\overline t)$ be the $k$-th symmetric polynomial in the components $t_k$ of $\overline t$. Then \roster \item"{(i)}" $p_1(\overline{t^v})=t^v_1+t^v_2+\dots+t^v_n$ \item"{(ii)}" $p_n(\overline{t^v})=t^v_1\cdot t^v_2\dots t^v_n$.\endroster \head{2.\ Main Results}\endhead \proclaim{Theorem 2.1} Suppose that $f(x)$ and $f(x^2)$ are functions of class $\Omega$. Let \roster \item"{(i)}" $\Cal L\{f(x); s\}=\phi(s)$, \item"{(ii)}" $\Cal L\{x^{-\frac 32}\phi\left(\frac 1x\right); s\}=\xi(s)$, \item"{(iii)}" $\Cal L\{x^{-\frac 12}\xi\left(\frac 1{x^2}\right); s\}=\zeta(s)$, and \item"{(iv)}" $\Cal L\{f(x^2); s\}=G(s)$,\endroster where $x^{-\frac 32}\phi\left(\frac 1x\right)$ and $x^{-\frac 12}\xi \left(\frac 1{x^2}\right)$ are also functions of class $\Omega, x^{-\frac 32} \exp\left(-sx-\frac ux\right)f(u)$ and $u^{-\frac 12}x^{-\frac 32}\exp\left(-sx-\frac{2u^{\frac 12}}x\right)f(u)$ belong to $L_1\left[\left(0,\infty)\times (0,\infty\right)\right]$. \flushpar Then $$ \Cal L_n\left\{\frac 1{p_n\left(\overline{x^{\frac 12}}\right)}G[2p_1( \overline{x^{-1}})];\overline s\right\}=\frac{\pi^{\frac{n-2}2}}2\cdot \frac{p_1\left(\overline{s^{\frac 12}}\right)}{p_n \left(\overline{s^{\frac 12}}\right)}\zeta\left[\left(P_1 \left(\overline{s^{\frac 12}}\right)\right)^2\right],\tag 2.1 $$ where $\Cal Re\left[p_1\left(\overline{s^{\frac 12}}\right)\right]>d$, a constant, provided the integrals involved exist for $n=2,3,\dots, N$. The existence conditions for two-dimensions are given in Ditkin and Prudnikov \cite{11; p.4} and similar conditions hold for $N$-dimensions, we refer to Brychkov et al. \cite{2; Ch.2}.\endproclaim \demo{Proof} Using (i) and (ii), we obtain $$ \xi(s)=\int^{\infty}_0\left[\int^{\infty}_0x^{-\frac 32}\exp \left(-sx-\frac ux\right)f(u)du\right]dx.\tag 2.2 $$ Next we wish to interchange the order of the integral on the right side of (2.2). The integrand $x^{-\frac 32}\exp\left(-sx-\frac ux\right)f(u)$ belongs to $L_1[(0,\infty)\times (0,\infty)]$, that, by Fubini's Theorem, interchanging the order of the integral on the right of (2.2) is permissible. \flushpar Therefore, $$ \xi(s)=\int^{\infty}_0 f(u)\left[\int^{\infty}_0 x^{-\frac 32}\exp \left[-sx-\frac ux\right] dx\right]du\tag 2.3 $$ We then use a well-known result in Robert and Kaufman \cite{15} on the right side of (2.3) to obtain $$ \xi(s)=\pi^{\frac 12}\int^{\infty}_0 u^{-\frac 12}\exp\left(-2u^{ \frac 12}s^{\frac 12}\right)f(u)du.\tag 2.4 $$ Using (2.4) and (iii), it follows that $$ \zeta (s)=\pi^{\frac 12}\int^{\infty}_0\left[\int^{\infty}_0 x^{-\frac 12} u^{-\frac 12}\exp\left(-sx-\frac{2u{\frac 12}}x\right)f(u)du\right]dx.,\ \text{ where }\ \Cal Re\ s>\lambda_1.\tag 2.5 $$ Since $x^{-\frac 12}u^{-\frac 12}\exp\left(-sx-\frac{2u^{\frac 12}}x\right)$ belongs to $L_1[(0,\infty)\times (0,\infty)]$; therefore, according to Fubini's Theorem, (2.5) can be rewritten as $$ \zeta(s)=\pi^{\frac 12}\int^{\infty}_0u^{-\frac 12}f(u)\left[\int^{\infty}_0 x^{-\frac 12}\exp\left(-sx-\frac{\left(2^{\frac 32}u^{\frac 14}\right)^2}{4x} \right)dx\right]du,\ \text{ where }\ \Cal Re\ s>\lambda_1. $$ From the tables of Roberts and Kaufman \cite{15}, we obtain $$ s^{\frac 12}\zeta(s)=\pi\int^{\infty}_0u^{-\frac 12}f(u)\exp\left(-2^{\frac 32} u^{\frac 14}s^{\frac 12}\right)du.\tag 2.6 $$ Next, we substitute $u=v^2$ in (2.6) to obtain $$ s^{\frac 12}\zeta(s)=2\pi\int^{\infty}_0\exp\left(-2^{\frac 32}s^{\frac 12} v^{\frac 12}\right)f(v^2)dv.\tag 2.7 $$ Replacing $s$ by $\left[p_1\left(\overline{s^{\frac 12}}\right)\right]^2$, multiplying both sides of (2.7) by $p_n\left(\overline{s^{\frac 12}}\right)$, we obtain $$ p_1\left(\overline{s^{\frac 12}}\right)p_n\left(\overline{s^{\frac 12}}\right) \zeta\left[p_1\left(\overline{s^{\frac 12}}\right)\right] =2\pi \int^{\infty}_0p_n\left(\overline{s^{\frac 12}}\right)\exp\left[-2^{\frac 32} p_1\left(\overline{s^{\frac 12}}\right) v^{\frac 12}\right]f(v^2)dv\tag 2.8 $$ Now we use the operational relation given in Ditkin and Prudnikov \cite{11} $$ s^{\frac 12}_i\exp\left(-as_i^{\frac 12}\right)\Doteq (\pi x_i)^{-\frac 12} \exp\left(-\frac{a^2}{4x_i}\right)\text{ for } i=1,2,\dots, n\tag 2.9 $$ Equation (2.8) reads as follows $$ p_n\left(\overline{s^{\frac 12}}\right)p_1\left(\overline{s^{\frac 12}} \right)\zeta\left[\left(p_1\left(\overline{s^{\frac 12}}\right)\right)^2\right] \overset n\to{\underset n\to =}\frac 2{\pi^{\frac{n-2}2}p_n \left(\overline{x^{\frac 12}}\right)}\int^{\infty}_0\exp\left(-2 vp_1 \left(\overline{x^{-1}}\right)\right)f(v^2)dv\tag 2.10 $$ Applying (iv) in (2.10), we arrive at $$ p_n\left(\overline{s^{\frac 12}}\right)p_1\left(\overline{s^{\frac 12}}\right)\zeta\left[\left(p_1\left(\overline{s^{\frac 12}}\right)\right)^2\right] \overset n\to{\underset n\to=}\frac 2{\pi^{\frac{n-2}2}p_n\left(\overline{x^{\frac 12}}\right)}\ G\left[2p_1\left(\overline{x^{-1}}\right)\right]. $$ Therefore, $$ \Cal L_n\left\{\frac 1{p_n\left(\overline{x^{\frac 12}}\right)}\ G\left[2p_1\left(\overline{x^{\frac 12}}\right)\right]; \overline s\right\}=\frac{\pi^{\frac{n-2}2}}2\cdot\frac{p_1\left(\overline{s^{\frac 12}}\right)}{p_n\left(\overline{s^{\frac 12}}\right)}\zeta\left[\left(p_1\left(\overline{s^{\frac 12}}\right)\right)^2\right], $$ where $n=2,3,\dots, N$.\enddemo To show the applicability of Theorem 2.1, we will construct certain functions with $n$ variables and calculate their Laplace transformation. \example{Example 2.1} Assume that $f(x)=x^{\frac{\tau-1}4}$. Then $$\align \phi(s)&=\frac{\Gamma\left(\frac{\tau+3}4\right)}{s^{\frac{\tau+3}4}},\Cal Re\ s>0,\ \Cal Re\ v>-3;\\ \xi(s) &=\frac{\Gamma\left(\frac{\tau+3}4\right)\Gamma\left(\frac{\tau+1}4\right)}{s^{\frac{\tau+1}4}},\ \Cal Re\ \tau>-1,\Cal Re\ s>0,\ \text{and}\\ \zeta(s)&=\frac{\Gamma\left(\frac{\tau+3}4\right)\Gamma\left(\frac{\tau+1}4\right)\Gamma\left(\frac{\tau}2+1\right)} {s^{\frac{\tau}2+1}},\ \Cal Re\ s>0,\ \Cal Re\ \tau >-1.\\ G(s) &=\frac{\Gamma\left(\frac{\tau +1}2\right)}{s^{\frac{\tau+1}2}},\ \Cal Re\ \tau >-1.\endalign $$ Therefore, $$ \Cal L_n\left\{\frac 1{p_n\left(\overline{x^{\frac 12}}\right)\left[p_1\left(\overline{x^{-1}}\right)\right]^{\frac{\tau+2}2}};\ \overline s\right\}=\pi^{\frac{n-1}2}\Gamma\left(\frac{\tau}2+\frac 32\right)\cdot\frac 1{p_n\left(\overline{s^{\frac 12}}\right)\left[p_1\left(\overline{s^{\frac 12}}\right)\right]^{\tau+2}}\tag 2.11 $$ where $\Cal Re\ \tau >-1,\ \Cal Re\left[p_1\left(\overline{s^{\frac 12}}\right)\right]>0$, and $n=2,3,\dots, N$. \endexample \example{Example 2.2} Suppose that $f(x)=I_0(ax^{\frac 12})$. Then $$\align \phi(s) &=\frac 1s\exp \left(\frac{a^2}{4s}\right),\ \Cal Re\ s>0,\\ \xi(s) &=\frac{\pi^{\frac 12}}{\left(s-\frac{a^2}4\right)^{\frac 12}},\ \Cal Re\ s>\Cal Re\ \frac{a^2}4,\\ \zeta(s) &=\frac{4\pi}{a^{\frac 52}}\left\{\frac{4\pi}{\left[\Gamma\left(\frac 14\right)\right]^2}{}_1F_2\left[\matrix \frac 34\phantom{M};\\ \vspace{2\jot}\frac 12,\frac 54;\endmatrix \frac{s^2}{a^2}\right]-\frac{\left[\Gamma\left(\frac 14\right)\right]^2s}{6\pi}{}_1F_2\left[\matrix \frac 34\phantom{M};\\ \vspace{2\jot} \frac 32,\frac 74;\endmatrix \frac{s^2}{a^2}\right]\right\}.\\ G(s) &=\frac 1{(s^2-a^2)^{\frac 12}},\ \Cal Re\ s>|\Cal Re\ a|.\endalign $$ So that $$\aligned &\Cal L_n\left\{\frac 1{p_n(x^{\frac 12})}\cdot\frac 1{\left[4p^2_1\left(\overline{x^{-1}}\right)-a^2\right]^{\frac 12}}; \overline s\right\}\\ =\frac{2\pi^{\frac n2}p_1\left(\overline{s^{\frac 12}}\right)}{a^{\frac 52}p_n\left(\overline{s^{\frac 12}}\right)}&\left\{\frac{4\pi}{\left(\Gamma\left(\frac 14\right)\right]^2}{}_1F_2\left[\matrix \frac 34\phantom{M};\\ \vspace{2\jot} \frac 12,\frac 54;\endmatrix \frac{p_1^2\left(\overline{s^{\frac 12}}\right)}{a^2}\right]-\frac{\left[\Gamma\left(\frac 14\right)\right]^2 p^2_1\left(\overline{s^{\frac 12}}\right)}{6\pi}\right.\\ &\qquad \left.{}_1F_2\left[\matrix\frac 54\phantom{M};\\ \vspace{2\jot} \frac 32,\frac 74;\endmatrix \frac{p^2_1\left(\overline{s^{\frac 12}}\right)}{a^2}\right]; \overline s\right\},\endaligned\tag 2.12 $$ where $\Cal Re\left[p_1\left(\overline{s^{\frac 12}}\right)\right]>|\Cal Re\ a|$. \endexample \example{Example 2.3} Consider $f(x)={}_pF_q\left[\matrix (a)_p;\\ \vspace{2\jot} (b)_q;\endmatrix cx\right]$. Then\newline \phantom{Example 2.3. Consider M}$\phi(s)=\frac 1s{}_{p+1}F_q\left[\matrix (a)_p;\\ \vspace{2\jot} (b)_q;\endmatrix cx\right]$,\newline where $p\le q,\ \Cal Re\ s>|\Cal Re\ c|$. $$ \xi(s)=\frac{\pi^{\frac 12}}{s^{\frac 12}}{}_{p+2}F_q\left[\matrix (a)_p,1,\frac 12;\\ \vspace{2\jot} (b)_q\phantom{MM};\endmatrix \frac cs\right], $$ where $p\le q-1, \Cal Re\ \tau >0$ if $p+1\Cal Re\ c$ if $p+1=q$, $$ \zeta(s)=\frac{\pi}{2s^{\frac 32}}{}_{p+4}F_q\left[\matrix (a)_p,1,\frac 12,\frac 34,\frac 54 ;\\ \vspace{2\jot} (b)_q\phantom{MM};\endmatrix\frac{4c}{s^2}\right], $$ where $p\le q-3; \Cal Re\ s>0$ if $p\le q-4$; and $\Cal Re(s+2c^{\frac 12}\cos\pi r)>0$\newline $(r=0,1)$ if $p=q-3$.\newline Hence $$\align &\Cal L_n\left\{\frac 1{p_n\left(\overline{x^{\frac 12}}\right)\left[p_1\left(\overline{x^{-1}}\right)\right]}{}_{p+2}F_q\left[\matrix (a)_p,1,\frac 12;\\ \vspace{2\jot} (b)_q\phantom{MM};\endmatrix \frac c{p^2_1\left(\overline{x^{-1}}\right)}\right];s\right\}\\ &\phantom{M}=\frac{\pi^{\frac n2}}{2p_n\left(\overline{s^{\frac 12}}\right)p^2_1\left(\overline{s^{\frac 12}}\right)}{}_{p+4}F_q\left[\matrix (a)_p,1,\frac 12,\frac 34,\frac 54;\\ \vspace{2\jot} (b)_q\phantom{MMMm};\endmatrix \frac{4c}{p^4_1\left(\overline{s^{\frac 12}}\right)}\right],\tag 2.13\endalign $$ where $p\le q-3, \Cal Re\left[p_1\left(\overline{s^{\frac 12}}\right)\right]>0$ if $p\le q-4$; and $\Cal Re \left[p_1\left(\overline{s^{\frac 12}}\right)+2c^{\frac 12}\cos \pi r\right]$\newline $>0 (r=0,1)$ if $p=q-3$. \endexample \example{Example 2.4} Assume that $f(x)=x^{\frac 12}J_0(ax^{\frac 12})$. Then $$\align &\phi(s)=\frac{\pi^{\frac 12}}{2s^{\frac 32}}{}_1F_1\left[\matrix \frac 32;\\ \vspace{2\jot} 1;\endmatrix -\frac{a^2}{4s}\right], \Cal Re\ s>0,\\ &\xi(s)=\frac{\pi^{\frac 12}}2{}_2F_1\left[\matrix \frac 32,1;\\ \vspace{2\jot} 1\phantom{M};\endmatrix -\frac{a^2}{4s}\right],\Cal Re\ s>-\Cal Re-\frac{a^2}4,\\ &\zeta(s)=\frac 1{\pi^{\frac 12}s^{\frac 12}}\bold G^{1,4}_{4,2} \left(\frac {a^2}{s^2}\bigg\vert\matrix \frac 14, \frac 34,0,-\frac 12\\ \vspace{2\jot} 0,0\endmatrix\right),\endalign $$ where $\Cal Re\ s>0,|\arg\ a|<2\pi$. $$ G(s)=\frac{\pi^{\frac 12}}2{}_2F_1\left[\matrix \frac 32,1;\\ \vspace{2\jot} 1\phantom{M};\endmatrix -\frac{a^2}{4s}\right], \Cal Re\ s>\Cal Re-\frac {a^2}4. $$ Hence $$\align &\Cal L_n\left\{\frac{p_1\left(\overline{x^{-1}}\right)}{p_n\left(\overline{x^{\frac 12}}\right)\left[4p^2_1\left(\overline{x^{-1}}\right)+a^2\right]^{\frac 32}}, \overline s\right\}\\ = &\frac{\pi^{\frac{n-3}2}p_1\left(\overline{s^{\frac 12}}\right)}{p_n\left(\overline{s^{\frac 12}}\right)}\bold G^{1,4}_{4,2}\left(\frac{a^2}{p^4_1\left(\overline{s^{\frac 12}}\right)}\bigg\vert \matrix\frac 12,\frac 34,0,-\frac 12\\ \vspace{2\jot} 0,0\phantom{MM}\endmatrix\right),\tag 2.14\endalign $$ where $\Cal Re \left[p_1\left(\overline{s^{\frac 12}}\right)\right]>0,|\arg\ a|<2\pi$ and $\bold G^{1,4}_{4,2}$ is a Meijer's $G$-function.\endexample \example{Example 2.5 (Two-Dimensions)} Upon substituting $n=2$ in Examples 2.1, 2.2, 2.3, and 2.5 we arrive at the following results, respectively $$ \Cal L_2\left\{\frac{(xy)^{\frac{\tau}2}}{(x+y)^{\frac{\tau+1}2}}; s_1, s_2\right\}=\pi^{\frac 12}\Gamma\left(\frac{\tau}2+1\right)\cdot\frac 1{(s_1s_2)^{\frac 12}\left(s^{\frac 12}_1+s^{\frac 12}_2\right)^{\tau+1}}\tag 2.15 $$ where $\Cal Re\ \tau >-1,\ \Cal Re\left[s^{\frac 12}_1+s^{\frac 12}_2\right]>0$. $$\aligned &\qquad\qquad\qquad\Cal L_2\left\{\frac{(xy)^{\frac 12}}{[4(x+y)^2-(axy)^2]^{\frac 12}}; s_1, s_2\right\}\\ &=\frac{2\pi\left(s^{\frac 12}_1+s^{\frac 12}_2\right)}{a^{\frac 52}(s_1 s_2)^{\frac 12}}\left\{\frac{4\pi}{\left[\Gamma\left(\frac 14\right)\right]^2}{}_1F_2\left[\matrix \frac 34\phantom{M};\\ \vspace{2\jot} \frac 12,\frac 54;\endmatrix\ \frac{\left(s^{\frac 12}_1+s^{\frac 12}_2\right)^2}{a^2}\right]\right.\\ &\qquad\qquad\left.-\frac{\left[\Gamma\left(\frac 14\right)\right]^2\left(s^{\frac 12}_1+s^{\frac 12}_2\right)^2}{6\pi}{}_1F_2\left[\matrix \frac 54\phantom{M};\\ \vspace{2\jot} \frac 32,\frac 74;\endmatrix\ \frac{\left(s^{\frac 12}_1+s^{\frac 12}_2\right)^2}{a^2}\right]\right\}\endaligned\tag 2.16 $$ where $\Cal Re\left[s^{\frac 12}_1+s^{\frac 12}_2\right]>0, |\arg\ a|<2\pi$. $$\aligned &\qquad \Cal L_2\left\{\frac{(xy)^{\frac 12}}{x+y}{}_{p+2}F_q\left[\matrix (a)_p,1,\frac 12;\\ \vspace{2\jot} (b)_q\phantom{MM};\endmatrix\ \frac{c(xy)^2}{(x+y)^2}\right]; s_1, s_2\right\}\\ =&\frac{\pi}{2(s_1s_2)^{\frac 12}\left(s^{\frac 12}_1+s^{\frac 12}_2\right)^2}{}_{p+4}F_q\left[\matrix (a)_p,\frac 12,\frac 34,\frac 54;\\ \vspace{2\jot} (b)_q\phantom{MM};\endmatrix\ \frac{4c}{\left(s^{\frac 12}_1+s^{\frac 12}_2\right)^4}\right],\endaligned\tag 2.17 $$ where $p\le q-3,\ \Cal Re\left[s^{\frac 12}_1+s^{\frac 12}_2\right]>0$ if $p\le q-4$; and $\Cal Re\left[\left(s^{\frac 12}_1+s^{\frac 12}_2\right)+2c^{\frac 12}\cos\pi r\right]$\newline $>0(r=0,1)$ if $p=q-3$. $$ \Cal L_2\left\{\frac{(xy)^{\frac 32}(x+y)}{\left[4(x+y)^2+(axy)^2\right]^{\frac 32}}; s_1, s_2\right\}=\frac{s^{\frac 12}_1+s^{\frac 12}_2}{(\pi s_1s_2)^{\frac 12}}\bold G^{1,4}_{4,2}\left(\frac{a^2}{\left(s^{\frac 12}_1+s^{\frac 12}_2\right)^4}\bigg\vert\matrix \frac 12,\frac 32,0,-\frac 12\\ \vspace{2\jot} 0,0\phantom{MMM}\endmatrix\right),\tag 2.18 $$ where $\Cal R\left[s^{\frac 12}_1+s^{\frac 12}_2\right]>|\Cal Re\ a|$ and $\bold G^{1,4}_{4,2}$ is a Meijer's $G$-function. \endexample \remark{Remark 2.1} If we let $\tau=0$ in Relation (2.15), and then using Relation (1) in \cite{24}. We deduced that $$ \Cal L_2\left\{(x+y)^{\frac 12}; s_1,s_2\right\}=\frac{\pi^{\frac 12}\left(s_1+s_2+s_1^{\frac 12}s^{\frac 12}_2\right)}{2(s_1s_2)^{\frac 32}\left(s_1^{\frac 12}+s^{\frac 12}_2\right)}\tag 2.19 $$\endremark \proclaim{Theorem 2.2} Assume that $f$ belongs to class $\Omega$ and $\phi$ be the one-dimensional Laplace transformation of $f$. Let\roster \item"{(i)}" $\Cal L\left\{x^{-\frac 12}\phi\left(\frac 1x\right); s\right\}=\gamma(s)$, \item"{(ii)}" $-\frac d{ds}\left\{s^{-v}\gamma\left(\frac 1{s^2}\right)\right\}=\zeta(s)$, \item"{(iii)}" $\Cal L\left\{xf(x);s\right\}=H(s)$,\endroster and suppose that $x^{-\frac 12}\phi\left(\frac 1x\right)$ belongs to $\Omega$ and $\frac d{ds} \left\{s^{-v}\gamma\left(\frac 1{s^2}\right)\right\}$ exists for $\Cal Re\ s>c_1$ where $c_1$ is a constant. Then $$\aligned &\Cal L_n\left\{\frac{(v-1)\phi\left[p_1\left(\overline{x^{-1}}\right)\right]-2p_1\left(\overline{x^{-1}}\right)H\left[p_1\left(\overline{x^{-1}}\right)\right]}{p_n\left(\overline{x^{\frac 12}}\right)}; \overline s\right\}=\\ &\qquad\qquad\frac {\pi^{\frac{n-1}2}}{p_n\left(\overline{s^{\frac 12}}\right)\left[p_1\left(\overline{s^{\frac 12}}\right)\right]^v}\zeta\left[\left(p_1\left(\overline{s^{\frac 12}}\right)\right)^{-1}\right],\endaligned\tag 2.20 $$ where $\Cal Re\left[p_1\left(\overline{s^{\frac 12}}\right)\right]>d$, a constant $n=2,3,\dots,N$. It is asssumed that the integral on the left exists. \endproclaim \demo{Proof} A similar method to Theorem 2.2 can be used to prove this theorem. The outline of the proof is as follows. Making use of our hpothesis and (i) yields $$ \gamma(s)=\pi^{\frac 12}\int^{\infty}_0\left[\int^{\infty}_0x^{-\frac 12}\exp\left(-sx-\frac ux\right)f(u)du\right]dx,\text{ where }\Cal Re\ s>c_1.\tag 2.21 $$ Using Fubini's Theorem to interchange the order of the integral on the right side of (2.21) and applying a result in Roberts and Kaufman \cite{15} we obtain $$ \gamma(s)=\pi^{\frac 12}\int^{\infty}_0f(u)s^{-\frac 12}\exp\left(-2u^{\frac 12}s^{\frac 12}\right)du.\tag 2.22 $$ Taking into account the condition (ii) we see that the equation (2.22) implies that $$\align &s^v\zeta(s)=\pi^{\frac 12}(v-1)\int^{\infty}_0f(u)\exp\left(-\frac{2u^{\frac 12}}s\right)du-2\pi^{\frac 12}s^{-1}\int^{\infty}_0u^{\frac 12}f(u)\\ &\qquad\qquad\exp\left(\frac{-2u^{\frac 12}}s\right)du,\text{ where } \Cal Re\ s>c_1.\tag 2.23\endalign $$ Now. replacing $s$ by $\left[p_1\left(\overline{s^{\frac 12}}\right)\right]^{-1}$ and then multiplying each side of (2.23) by $p_n\left(\overline{s^{\frac 12}}\right)$ and then making use of operational relations (2.9) and (2.24) $$ s_i\exp\left(-as_i^{\frac 12}\right)\Doteq \frac a2\pi^{-\frac 12}x_i^{-\frac 32}\exp\left(-\frac{a^2}{4x_i}\right)\text{ for } i=1,2,\dots, n,\tag 2.24 $$ equation (2.23) reads $$\align &p_n\left(\overline{s^{\frac 12}}\right)\left[p_1\left(\overline{s^{\frac 12}}\right)\right]^{-v}\zeta\left[\left(p_1\left(\overline{s^{\frac 12}}\right)\right)^{-1}\right]\overset n\to{\underset n\to =}\frac 1{\pi^{\frac{n-1}2}p_n\left(\overline{x^{\frac 12}}\right)}\left[(v-1)\int^{\infty}_0f(u)\right.\\ &\exp\left[-up_1\left(\overline{x^{-1}}\right)\right]dx -2p_1\left(\overline{x^{-1}}\right)\int^{\infty}_0uf(u)\exp\left[-up_1\left(\overline{x^{-1}}\right)\right]du.\tag 2.25\endalign $$ Equation (2.25) with (iii) and the definition of the one-dimensional Laplace transform, leads to $$\align &p_n\left(\overline{s^{\frac 12}}\right)\left[p_1\left(\overline{s^{\frac 12}}\right)\right]^{-v}\zeta\left[\left(p_1\left(\overline{s^{\frac 12}}\right)\right)^{-1}\right]\\ &\qquad\qquad \overset n\to{\underset n\to =}\frac 1{\pi^{\frac{n-1}2}p_n\left(\overline{x^{\frac 12}}\right)}\left\{(v-1)\phi\left[p_1\left(\overline{x^{-1}}\right)\right]-2p_1\left(\overline{x^{-1}}\right)H\left[p_1\left(\overline{x^{-1}}\right)\right]\right\}.\endalign $$ Therefore, $$\align &\Cal L_n\left\{\frac{(v-1)\phi\left[p_1\left(\overline{x^{-1}}\right)\right]-2p_1\left(\overline{x^{-1}}\right)H\left[p_1\left(\overline{x^{-1}}\right)\right]}{p_n\left(\overline{x^{\frac 12}}\right)}; \overline s\right\}\\ &\qquad\qquad\qquad =\frac{\pi^{\frac{n-1}2}}{p_n\left(\overline{s^{\frac 12}}\right)\left[p_n\left(\overline{s^{\frac 12}}\right)\right]^v}\zeta\left[\left(p_1\left(\overline{s^{\frac 12}}\right)\right)^{-1}\right],\endalign $$ where $\Cal Re\left[p_1\left(\overline{s^{\frac 12}}\right)\right]>d$ for some constant $d, n=2,3,\dots, N$.\enddemo \example{Example 2.6} Let $f(x)=J_0\left(2x^{\frac 12}\right)$. Then $$\align &\phi(s)=\frac 1s\exp\left(-\frac 1s\right),\ \Cal Re\ s>0,\\ &\gamma(s)=\frac{\pi^{\frac 12}}{2(s+1)^{\frac 32}},\Cal Re\ s>-1.\endalign $$ Thus $$ \zeta(s)=\frac{\pi^{\frac 12}(vs^2+v-3)}{2s^{v-2}(1+s^2)^{\frac 52}},\ \Cal Re\ s>-1. $$ Therefore $$\align &\Cal L_n\left\{\frac 1{p_1\left(\overline{x^{-1}}\right)p_n\left(\overline{x^{\frac 12}}\right)}\exp\left(-\frac 1{p_1\left(\overline{x^{-1}}\right)}\right)\left\{ (v-1)-2_1F_1\left[\matrix -1;\\ \phantom{-}1;\endmatrix\ \frac 1{p_1\left(\overline{x^{-1}}\right)}\right]\right\};\overline s\right\}\\ \vspace{2\jot} &=\frac{\pi^{\frac n2}p_1\left(\overline{s^{\frac 12}}\right)\left[v+(v-3)p^2_1\left(\overline{s^{\frac 12}}\right)\right]}{2p_n\left(\overline{s^{\frac 12}}\right)\left[1+p^2_1\left(\overline{s^{\frac 12}}\right)\right]^{\frac 52}},\ \text{where } \Cal Re\left[p_1\left(\overline{s^{\frac 12}}\right)\right]>-1.\tag 2.26\endalign $$ \endexample \remark{Remark 2.2} If we let $n=2$ and $v=1$ or $v=3$, from the equation (2.26) we deduce the following results, respectively $$\align (i)\quad &\Cal L_2\left\{\frac{(xy)^{\frac 12}}{(x+y)} \exp\left(-\frac{xy}{x+y}\right){}_1F_1\left[\matrix -1;\\ \phantom{-}1;\endmatrix\frac{xy}{x+y}\right]; s_1, s_2\right\}=\phantom{MMMMMMMMM}\\ \qquad &\frac{\pi\left(s^{\frac 12}_1+s^{\frac 12}_2\right)\left[2\left(s^{\frac 12}_1+s^{\frac 12}_2\right)^2-1\right]}{4(s_1s_2)^{\frac 12}\left[1+\left(s^{\frac 12}_1+s^{\frac 12}_2\right)^2\right]^{\frac 52}},\tag 2.26{$'$}\endalign $$ where $\Cal Re \left[s^{\frac 12}_1+s^{\frac 12}_2\right]>-1$. $$\align (ii)\quad &\Cal L_2\left\{\frac{(xy)^{\frac 12}}{(x+y)}\exp\left(-\frac{xy}{x+y}\right)\left\{1-{}_1F_1\left[\matrix -1;\\ \phantom{-}1;\endmatrix\ \frac{xy}{x+y}\right]\right\}; s_1, s_2\right\}=\phantom{MMMMM}\\ \qquad &\frac{3\pi\left(s^{\frac 12}_1+s^{\frac 12}_2\right)}{2(s_1s_2)^{\frac 12}\left[1+\left(s^{\frac 12}_1+s^{\frac 12}_2\right)^2\right]^{\frac 52}},\tag 2.26{$''$}\endalign $$ where $\Cal Re \left[s^{\frac 12}_1+s^{\frac 12}_2\right]>1$. \flushpar Notice, with the help of (2.26$'$) from (2.26$''$) we arrive at the following result $$ \Cal L_2\left\{\frac{(xy)^{\frac 12}}{(x+y)}\exp\left(-\frac{xy}{x+y}\right); s_1, s_2\right\}=\frac{\pi}2\frac{\left(s^{\frac 12}_1+s^{\frac 12}_2\right)}{(s_1s_2)^{\frac 12}\left[1+\left(s^{\frac 12}_1+s^{\frac 12}_2\right)^2\right]^{\frac 23}}.\tag 2.26{$'''$} $$ This is the same as the result (2.109) in Ditkin and Prudnokov \cite{11; p. 140}. Furthermore, with the help of (2.26$'''$) and the operational relation (47) in Voelker and Doetsch \cite{24; p. 159}, we derive the following new results. $$\align &\Cal L_2\left\{\left(\frac yx\right)^{\frac 12}\cdot \frac 1{x+y}\exp\left(-\frac{xy}{x+y}\right); s_1, s_2\right\}=\frac{\pi}{s^{\frac 12}_2\left[1+\left(s^{\frac 12}_1+s^{\frac 12}_2\right)^2\right]^{\frac 12}},\phantom{MMMM}\\ &\Cal Re\left[s^{\frac 12}_1+s^{\frac 12}_2\right]>1.\tag 2.26{$^{iv}$}\\ &\Cal L_2\left\{\left(\frac xy\right)^{\frac 12}\cdot\frac 1{x+y}\exp\left(-\frac{xy}{x+y}\right); s_1, s_2\right\}=\frac{\pi}{s^{\frac 12}_1\left[1+\left(s^{\frac 12}_1+s^{\frac 12}_2\right)^2\right]^{\frac 12}},\tag 2.26{$^v$}\endalign $$ where $\Cal Re\left[s^{\frac 12}_1+s^{\frac 12}_2\right]>1$.\endremark \example{Example 2.7} Assuming $x^{-\frac 12}\cos 2x^{\frac 12}$, we obtain $$\align \phi(x) &=\left(\frac{\pi}s\right)^{\frac 12}\exp\left(-\frac 1x\right),\ \Cal Re\ s>0.\\ \gamma(s) &=\frac{\pi}{s+1},\ \Cal Re\ s>-1.\\ \zeta(s) &=\left(vs^2+v-2\right)\frac{\pi^{\frac 12}s^{-v+1}}{(s^2+1)^2},\ \Cal Re\ s>-1.\\ H(s) &= \frac{\pi^{\frac 12}}{s^{\frac 52}}\left(\frac s2-1\right)\exp\left(-\frac 1s\right),\ \Cal Re(s)>0.\endalign $$ Therefore, $$\align &\Cal L_n\left\{\frac{(v-1)p_1\left(\overline{x^{-1}}\right)-\left(p_1\left(\overline{x^{-1}}\right)-2\right)\exp\left(-\frac 1{p_1\left((\overline{x^{-1}}\right)}\right)}{\left[p_1\left(\overline{x^{-1}}\right)\right]^{\frac 32}p_n\left(\overline{x^{-1}}\right)};\overline s\right\}\\ &\ =\frac{\pi^{\frac{n-1}2}p_1\left(\overline{s^{\frac 12}}\right)}{p_n\left(\overline{s^{\frac 12}}\right)\left[1+p^2_1\left(\overline{s^{\frac 12}}\right)\right]^2}\left\{(v-2)p^2_1\left(\overline{s^{\frac 12}}\right)+v\right\}, \Cal Re\left[p_1\left(\overline{s^{\frac 12}}\right)\right]>0.\tag 2.27\endalign $$ \endexample \remark{Remark 2.3} If we let $n=2$ and $v=1$ in (2.27) by using the following well-known formula $$\align &\Cal L_2\left\{\frac{xy}{(x+y)^{\frac 32}}\exp\left(-\frac{xy}{x+y}\right); s_1, s_2\right\}=\frac{\pi^{\frac 12}\left(s^{\frac 12}_1+s^{\frac 12}_2\right)}{(s_1s_2)^{\frac 12}\left[1+\left(s_1^{\frac 12}+s^{\frac 12}_2\right)^2\right]^2},\\ &\qquad \Cal Re\left[s^{\frac 12}_1+s^{\frac 12}_2\right]>0.\endalign $$ we derive that $$\aligned &\Cal L_2\left\{\frac 1{(x+y)^{\frac 12}}\exp\left(-\frac{xy}{x+y}\right); s_1, s_2\right\}=\frac{\pi^{\frac 12}\left(s^{\frac 12}_1+s^{\frac 12}_2\right)}{(s_1s_2)^{\frac 12}\left[1+\left(s^{\frac 12}_1+s^{\frac 12}_2\right)^2\right]},\\ &\Cal Re\left[s^{\frac 12}_1+s^{\frac 12}_2\right]>0.\endaligned\tag 2.27{$'$} $$ \endremark \vskip .3in \head{3.\ Non-Homogeneous Second Order Partial Differential Equations of Parabolic type}\endhead In this section we solved a few partial differential equations of the type $$ u_{xx}+2u_{xy}+u_{yy}+u=f(x,y), 00.\tag 3.7 $$ The inversion of (3.7) will provide us with the solution of (3.1) and (3.2). So that, the inverse transform of (3.7) can be obtained using formula (133) in \cite{24} $$ u(x,y)=\int^x_0(x+y-2\xi)^{\frac 12}\sin\xi d\xi\tag 3.8 $$ By a simple change of variable $x+y-2\xi=2t^2$ in (3.8), we obtain $$ u(x,y)=2^{+\frac 32}\int^{\left(\frac{y-x}2\right)^{\frac 12}}_{\left(\frac{x+y}2\right)^{\frac 12}}t^2\sin\left(t^2-\frac{x+y}2\right)dt\ \text{ if }\ y>x. $$ Expanding the sine and making some simplification, we deduce that $$\aligned &u(x,y)=2^{+\frac 32}\left[\cos\left(\frac{x+y}2\right)\int^{\left(\frac{y-x}2\right)^{\frac 12}}_{\left(\frac{x+y}2\right)^{\frac 12}}t^2\sin t^2dt-\sin\left(\frac{x+y}2\right)\right.\\ &\left.\int^{\left(\frac{x-y}2\right)^{\frac 12}}_{\left(\frac{x+y}2\right)^{\frac 12}}t^2\cos t^2dt\right]\endaligned\tag 3.9 $$ Calculating the integrals involved in (3.9), we arrive at $$\align &u(x,y)=\frac 14\left\{\matrix \left(\frac{x+y}2\right)^{\frac 12}-\left(\frac{y-x}2\right)^{\frac 12}\cos x+\pi^{\frac 12}\cos\left(\frac{x+y}2\right)\left[C\left(\frac{y-x}2\right)-D\left(\frac{x+y}2\right)\right]\\ \vspace{2\jot} \phantom{MMMMMMMMM}+\pi^{\frac 12}\sin\left(\frac{x+y}2\right)\left[S\left(\frac{y-x}2\right)-S\left(\frac{x+y}2\right)\right]\endmatrix\right\}\\ &\qquad \text{ if }y>x,\endalign $$ where $C(\cdot)$ and $S(\cdot)$ are Fresnel integrals. Similarly, to obtain the transform equations for parts (b) and (c). We replace Relation (2.19) in Example (2.5) for part (b) and (2.15) in the same example with Formula 181 in Brychkov et al. \cite{2; p.300} for part (c) to arrive at $$ U(s_1,s_2)=\frac{\pi^{\frac 12}\Gamma\left(\frac{\tau}2+1\right)}{\left[(s_1+s_2)^2+1\right](s_1s_2)^{\frac {\tau}2}\left(s^{\frac 12}_1+s^{\frac 12}_2\right)^{\tau+1}}\tag 3.10 $$ $$ U(s_1,s_2)=\frac{\pi\Gamma(\tau+1)}{2^{\tau}\Gamma\left(\frac{\tau+3}2\right)\left[(s_1+s_2)^2+1\right]\left(s^{\frac 12}_1+s^{\frac 12}_2\right)^{\tau+1}},\tag 3.11 $$ where $\Cal Re\left[s^{\frac 12}_1+s^{\frac 12}_2\right]>0$. Thus, we obtain the following solutions, respectively $$\align &u(x,y)=\frac 1{2^{\tau+1}}\int^{y-x}_{x+y}t^{-\frac{\tau+1}2} \left[t^2-(x-y)^2\right]^{\frac{\tau}2}\sin\left(\frac{t-(x+y)}2\right)dt\\ &\qquad \text{if}\ y>x\Cal Re\ v>-1.\tag 3.12\\ &u(x,y)=\frac 1{2^{\tau+1}}\int^{y-x}_{x+y}t^{-\frac{\tau+3}2}\left[t^2-(x-y)^2\right]^{\frac{\tau}2}\sin\left(\frac{t-(x+y)}2\right)dt\\ &\qquad \text{if}\ y>x,\Cal Re\ v>-1.\tag 3.13\endalign $$ \endexample \remark{Remark 2.4} Substituting $\tau=0$ in parts (b) and (c), lead to $$\align &u_{xx}+2u_{xy}+u_{yy}+u=\frac 1{(x+y)^{\frac 12}}\tag 3.14\\ &u_{xx}+2u_{xy}+u_{yy}+u=\frac 1{(x+y)^{\frac 32}}\tag 3.15\endalign $$ Next, using (3.14) and (3.15), we arrive at the following explicit solutions for the equations (3.14) and (3.15) respectively $$\align &u(x,y)=\left(\frac{\pi}2\right)^{\frac 12}\left\{\cos\left(\frac{x+y}2\right)\left[S\left(\frac{y-x}2\right)-S\left(\frac{x+y}2\right)\right]-\right.\\ &\qquad\left. \sin\left(\frac{x+y}2\right)\left[C\left(\frac{y-x}2\right)-C\left(\frac{x+y}2\right)\right]\right\}\ \text{if}\ y>x.\endalign $$ $$\align &u(x,y)=\frac 1{(x+y)^{\frac 12}}\cos(x+y)-\frac 1{(y-x)^{\frac 12}}\cos y-\pi^{\frac 12}\left\{\cos\left(\frac{x+y}2\right)\left[S\left(\frac{y-x}2\right) \right.\right.\\ &\qquad \left.\left. -S\left(\frac{x+y}2\right)\right]-\sin\left(\frac{x+y}2\right)\left[C\left(\frac{y-x}2\right)-C\left(\frac{x+y}2\right)\right]\right\}\ \text{if}\ y>x.\endalign $$ \endremark \example{Example 3.2} Solve the following Parabolic differential equation described by $$ u_{xx}+2u_{xy}+u_{yy}+u=\frac 1{(x+y)^{\frac 12}}\exp\left(-\frac{xy}{x+y}\right),\ 00$. Using formula (133) in \cite{24} the inverse transform of (3.18) leads to the following integral representation. $$ u(x,y)=\int^{y-x}_{x+y}t^{-\frac 12}\exp\left[\frac{t^2-(x+y)^2}{4t}\right]\sin\left(\frac{t-(x+y)}2\right)dt\ \text{if}\ y>x. $$ \endexample \head{References}\endhead \ref\no 1\by Buschman, R.G.\paper Heat transfer between a fluid and a plate: Multidimensional Laplace transformation methods\jour Internat. J. Math. \& Math. Sci.\vol 6\issue 3\yr 1983\pages 589--596\endref \ref\no 2\by Brychkov, Y.A., Glaeske, H.J., Prudnikov, A.P. and Tuan, V.K.\book Multidimensional Integral Transformations\publ Goddon and Breach\publaddr Philadelphia\yr 1992\endref \ref\no 3\by Churchill, R.V.\book Operational Mathematics, {\rm 3rd ed.}\publ McGraw-Hill Book Company\publaddr New York\yr 1972\endref \ref\no 4\by Dahiya, R.S.\paper Certain Theorems on $n$-dimensional Operational Calculus\jour Compositio Mathematica, Amsterdam (Holland)\vol 18 {\rm Fasc, 1,2,}\yr 1967\pages 17--24\endref \ref\no 5\by Dahiya, R.S.\paper Computation of $n$-dimensional Laplace Transforms\jour Journal of Computational and Applied Mathematics\vol 3\issue 3\yr 1977\pages 185--188\endref \ref\no 6\by Dahiya, R.S.\paper Calculation of Two-dimensional Laplace Transforms pairs-I\jour Simon Stevin, A Quarterly Journal of Pure and Applied Mathematics\vol 56\yr 1981\pages 97--108\endref \ref\no 7\by Dahiya, R.S.\paper Calculation of Two-dimensional Laplace Transforms pairs-II\jour Simon Stevin, A Quarterly Journal of Pure and Applied Mathematics (Belgium)\vol 57\yr 1983\pages 163--172\endref \ref\no 8\by Dahiya, R.S.\paper Laplace Transform pairs of $n$-dimensions\jour Internat. J. Math. and Math. SCI\vol 8\yr 1985\pages 449--454\endref \ref\no 9\by Dahiya, R.S. and Debnath, J.C.\paper Theorems on Multidimensional Laplace Transform for Solution of Boundary Value Problems\jour Computers Math. Applications\vol 18\issue 12\yr 1989\pages 1033--1056\endref \ref\no 10\by Dahiya, R.S. and Vinayagamoorthy, M.\paper Laplace Transform pairs of $n$-Dimensions and Heat Conduction Problem\jour Math. Computer Modeling\vol 13\issue 10\yr 1990\pages 35--50\endref \ref\no 11\by Ditkin, V.A. and Prudnikov, A.P.\book Operational Calculus In Two Variables and Its Applications\publ Pergamon Press\publaddr New York\yr 1962\endref \ref\no 12\by Estrin, T.A. and Higgins, T.J.\paper The Solution of Boundary Value Problems by Multiple Laplace Transformations\jour Journal of the Franklin Institute\vol 252\issue 2\yr 1951\pages 153--167\endref \ref\no 13\by Jaeger, J.C.\paper The Solution of Boundary Value Problems by a Double Laplace Transforms\jour Bull. Amer. Math. Soc.\vol 46\yr 1940\pages 687--693\endref \ref\no 14\by Magnus, W. and Oberhettinger\book Formulas and Theorems for Special Functions of Mathematical Physics\publ Springer-Verlag\publaddr New York, Inc\yr 1966\endref \ref\no 15\by Roberts, G.E. and Kaufman\book Tables of Laplace Transforms\publ W.B. Saunders Company\publaddr Philadelphia and London\yr 1966\endref \ref\no 16\by Pipes, L.S.\paper The Operational Calculus, (I), (II), (III)\jour Journal of Applied Physics\vol 10\yr 1939\pages 172--180, 258--264 and 301--311\endref \ref\no 17\by Royden, H.L.\book Real Analysis, 3rd Ed.\publ Macmillan Publishing Company\publaddr New York\yr 1988\endref \ref\no 18\by Saberi-Nadjafi, J.\paper Theorems On $N$-dimensional Inverse Laplace Transformations\jour Proc. of the Eighth Annual Conference On Applied Mathematics, Oklahoma\yr 1992\page 317--330\endref \ref\no 19\by Saberi-Nadjafi, J. and Dahiya, R.S.\paper Certain Theorems On $N$-dimensional Laplace Transformations and Their Applications\jour Proc. of Eighth Annual Conference On Applied Mathematics, Oklahoma\yr 1992\pages 245--258\endref \ref\no 20\by Saberi-Nadjafi, J. and Dahiya, R.S.\paper Theorems on $N$-dimensional Laplace transformations for the solution of Wave equations\finalinfo (submitted for publication)\endref \ref\no 21\by Saberi-Nadjafi, J.\paper Laplace transform pairs of $N$-dimensionsl\jour Appl. Math. Lett.\finalinfo (to appear)\endref \ref\no 22\by Sneddon, I.N.\book The Use of Integral Transforms\publ McGraw-Hill Book Company\publaddr New York\yr 1972\endref \ref\no 23\by Stromberg, K.R.\book Introduction to Classical Real Analysis\publ Wadsworth International Group\publaddr Belmount, California\yr 1981\endref \ref\no 24\by Voelker, D. Und Doetsch, G.\book Die Zweidimensionale Laplace Transformation \publ Verlag Birku\"auser Basel\yr 1950\endref \enddocument