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Mathematical model for the basilar membrane as

a two dimensional plate ∗

H. Y. Alkahby, M. A. Mahrous, & B. Mamo

Abstract

In this paper we present two mathematical models for the basilar mem-
brane. In the first model the membrane is represented as an annular
region. In the second model the basilar membrane is treated as a rectan-
gular region. Comparison of the two models allows us to study the effect
of the curvature of the basilar membrane on the range of the frequencies of
hearing. The differential equation of both models is a fourth order partial
differential equation derived from the classical plate theory. Boundary
conditions are defined as a region with four sides. The conditions are
different on each side and together form an interesting physiological com-
bination, relative to standard engineering problems. Eigenvalues of the
differential equations of the two models are obtained numerically. A com-
parison of the eigenvalues of the two models clearly shows that the range
of the hearing frequencies of the first model is larger than that of the
second model. The results indicate strongly that the curvature of the
basilar membrane plays an important role in the hearing process. Cur-
vature and measurement of curvature should be allowed in future models
and experiments of the inner ear.

1 Introduction

Before the mathematical models of the basilar membrane are presented, it is
necessary to briefly describe the components of the inner ear. This gives a
better understanding of the role of the basilar membrane’s curvature in the
hearing process. The inner ear is the location in the auditory system where
mechanical and electrophysiological mechanisms are combined. The cochlea of
the inner ear is a small bony structure with a small coiled tube in its interior.
The walls of this tube are composed of special hard bone (the hardest in the
body).

∗1991 Mathematics Subject Classifications: 92C05, 92610, 35G15, 34B10.
Key words and phrases: Basilar membrane, eigenvalue, hearing frequencies.
c©2000 Southwest Texas State University and University of North Texas.
Published January 21, 2000.

115



116 Mathematical model for the basilar membrane

Figure 1: Schematic diagram of the cross section of the cochlear duct. Perylimph
space (a), scala vestibuli (b), modiolus (c), cochlear nerve (d), scala tympani
(e), basilar memebrane (f), hair celss (g), supporting cell (h), organ of Corti (i),
cochlear duct (j), endolymph (within membrane) (k), tectotial membrane (l),
vestibular (Reissner’s) membrane (m)

In a cross section of the coiled tube (Fig. 1), there are three distinct cham-
bers, namely, the scala vestibuli, the scala media and the scala tympani. The
scala media is bounded by the Reissner’s membrane and the basilar membrane.
Vibrations of the oval window are transferred to the perilymph in the scala
vestibuli, which transfers them to the basilar membrane, triggering the electri-
cal impulses in the orgin of Corti, where the terminals of the acoustic nerve
reside. The organ of Corti rests on top of the basilar membrane. Therefore,
the bsilar membrane is considered to be of primary importance in the stimula-
tion of the hair cells and the transmission of signals to the brain. The basilar
membrane is a three-dimensional structure. It forms the helical spiral ramp.
The edges, described as being from the base to the apex, from a diminishing
spiral with radii of curvature becoming increasingly shorter. Interestingly, the
basilar membrane is coiled, with no exception, in any species. The length of
the basilar membrane varies from a short as 7 mm in laboratory mice, 20 mm
in cats, 32 - 35 mm in humans and sheep to 60 mm in elephants (see [2] for
references and Fig.2). The number of coils or “turns” ranges from 2 to 4.25
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spiral turns. The number of coils in man is 2.25, 3 coils in cats and dogs, and 4
coils in the guinea-pig. The width of the basilar membrane (in man) is 0.1 mm
at the basal end and increases to 0.5 mm at the apical end. From the size and
location of the basilar membrane, direct experimental procedures are almost
impossible. Nevertheless, Bekesy [1] pioneered an important experimental work
on the inner ear for which he received a Nobel Laureat in 1961.
Presently, there are several theories of hearing and all assume a place prin-

ciple; that is, different frequencies are triggered at different locations on the
membrane. In general, this principle assumes that hearing frequency is a func-
tion of the mechanical properties of the basilar membrane and also a functioin
of the location on the basilar membrane. In the most recent experiments, with
the aid of advanced technological tools, better information is available about the
basilar membrane [5]. Yet, data for an important parameter “curvature at the
edges” is still missing. The work of Bekesy [2] supports a place principle where
the basilar membrane is more sensitive to successively low frequencies progres-
sively toward the apical end and to successively higher frequencies toward the
basal end. It is pointed out that “the place principle predicts that apical or
mid-apical regions of the cochlea are the first to mature and that basal regions
are last, and just the opposite results are consistently found [4].” Thus, a more
reliable place principle is needed.
From the above discussion, it is clear that the curvature of the edges of the

basilar membrane must play some role in the hearing mechanism, in addition
to the accepted evolution’s explanation as a space saving feature. Notice that
curvature information embodies information about the height of the cochlea,
its base diameter, the number of coils and the diameter of each coil, and also
the diminishing rate of the spiral. Thus, any attempt to model the mechanism
of the basilar membrane in the hearing process must allow for curvature. In
this paper two models are presented to illustrate the effect of the curvature on
the vibration response of the membrane. In the following sections we present
results that do, indeed, indicate that the curvature of the basilar membrane is
an important property that cannot be ignored.
In the first model, the basilar membrane is considered as an incomplete

annular region (see Fig. 3). The radii of the curvature of the inner and outer
circles of the annular region simulate the curvature of the edges of the basilar
membrane. The mathematical model is derived from the classical plate theory.
It is a linearized fourth order partial differential equation. Eigenvalues for this
differential equation are obtained numerically and they are dependent on the
radii of the curvature. We believe that the dependence of the eigenvalues on
the radii of the curvature has an important influence on the hearing process.
To emphasize the importance of this conclusion the above model is compared
with a second model. In the second model the membrane on a rectangular
region is considered. The rectangular and the annular models have the same
properties, and the same boundary conditions. We also have chosen the regions
that have equal areas. Two sets of eigenvalues, for both models, are compared.
Comparison clearly indicates the importance of the curvature and its effect on
hearing frequencies.
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Figure 2: Schematic diagram of uncoiled cochlea and basilar membrane. Round
window (a), Oval window connected to the stapes of the middle eat (b), Scala
vestibuli (c), Scal tympani (d), Basilar membrane (f), Helicotrema (apical end)
(g)
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Figure 3: Semiannular plate configuration

Finally, in this work the membrane is represented by two dimensional mod-
els, where most of the previous “membrane specific” models are one dimensions.
For example, [3] the basilar membrane was modeled as a one dimensional beam,
which implies that the vibrations are dependent only on the longitudinal di-
rection along the membrane. On the other extreme, the fibers of the basilar
membrane are examined in the radial direction [5].

2 Basic equations and boundary conditions

The basilar membrane is considered as a plate according to classical plate theory.
The equation of motion for the traverse displacement, u, is given as:

D∇4u+ 2c
∂u

∂t
+ ζh

∂2u

∂t2
= 0 , (1)
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where D is flexural rigidity and defined by

D =
Eh3

12(1− ν2)

h is plate thickness, E is Young’s modules of plate material, v is Poisson’s ratio
for plate material, ζ is density of plate material, c is damping coefficient, and
∇ is the gradient operator.

Thickness, density and flexural rigidity are considered constant. The basilar
membrane is assumed to be a region with the following four sides:

“S1” corresponding to the basal end of the membrane,

“S2” corresponding to the apical end of the membrane (at the helicotrema),

“S3” corresponding to the outer wall of the cochlea, and

“S4” corresponding to the inner wall (see Fig. 3).

Since the side “S1” is clamped we have:

u|t=0 = 0 ,
∂u

∂n
, (2)

where n is the normal direction to S1.

The basilar membrane is not attached to anything at the helicotrema, so the
condition on S2 is:

uss + vunn = 0 , (3)

usss − 2(1− v)usnn = 0 . (4)

The side “S3” is attached to the outside cochlear wall and simply supported.
On this side, usually called the Spiral Ligament (SL),the fibers present little
resistance to moment. The condition on S3 is:

uss + unn = 0 . (5)

At the primary osseous spiral lamina (SPL), which is represented by S4, the
filaments are held between an upper and lower bony layers and enter the support
with zero slope. Therefore, this side is clamped, and the condition on S4 is:

u|t=0 = 0 ,
∂u

∂n
= 0 . (6)

In this section the basilar membrane is modeled as an annular plate. Moreover,
a is the radius of the outer circle and b is the radius of the inner circle.
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3 Solution of the model as an annular region

In this section the basilar membrane is modeled as an annular plate. The radii
of curvature are constants. In spite of the absence of information about the real
curvature of the membrane edges, we still get results for the radial waves as
well as the longitudinal waves. Equation (1) is considered in polar coordinates
where

∇2 =
∂2

∂r2
+
1

r

∂

∂r
+
1

r2
∂2

∂θ2
. (7)

Let u =W (r, θ)f(t) in (1), and assume that

f(t) = exp(−ct/ωh) sin(iω) , (8)

and f(0) = 0, then equation (1) becomes

∇4W − k4W = 0 , (9)

where

ω2 =
ζhDk4 − c2

ζ2h2
, or

k4 =
ζ2h2ω2 + c2

ζhD
. (10)

The boundary conditions (2-6) are now as follows: On S1 : θ = 0 and

W (r, 0) = 0 ,
∂W

∂r
(r, 0) = 0 . (11)

On S2 : θ = π and

Wθθ(r, π) = 0 , Wrr(r, π) = 0 ,

Wθθθ(r, π) = 0 , Wθππ(r, π) = 0 . (12)

On S3 : r = a and
Wrr(a, θ) = 0 , Wθ(a, θ) = 0 . (13)

On S4 : r = b and
W (b, θ) = 0 , Wθ(b, θ) = 0 . (14)

The differential equation (9) has a solution of the following form:

W (r, θ) =

∞∑
m=1

gm(r) cosmθ +

∞∑
m=1

ḡm(r) sinmθ , (15)

where

gm(r) = AmJm(kr) +BmYm(kr) + CmIm(kr) +DmKm(kr) , (16)
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and
ḡm(r) = ĀmJm(kr) + B̄mYm(kr) + C̄mIm(kr) + D̄mKm(kr) . (17)

The coefficients Am, Bm, Cm,Ām, B̄m, C̄m, D̄m are constant to be evaluated
using the boundary conditions, and Jm, Ym, Im, Km– Bessel functions and
modified Bessel functions of the first and second kind. Using the boundary
conditions (11 - 14), and after some simplification, we obtain the following
frequency determinant T . A nontrivial solution is obtained with T = 0.

T =

∣∣∣∣∣∣∣∣

Jm(λ1) Ym(λ1) Im(λ1) Km(λ1)
T21 T22 T23 T24
Jm(λ2) Ym(λ2) Im(λ2) Km(λ2)
Jm+1(λ2) Ym+1(λ2) −Im+1(λ2) Km+1(λ2)

∣∣∣∣∣∣∣∣
(18)

where

T21 = (1− v)Jm+1(λ1)− 2λ1Jm(λ1) ,

T22 = (1− v)Ym+1(λ1)− 2λ1Ym(λ1) ,

T23 = −(1− v)Im+1(λ1) ,

T24 = (1− v)Km+1(λ1) ,

λ1 = ka, λ2 = kb . (19)

Moreover, a is the radius of the outer circle, b is the radius of the inner circle
and k is defined in (10).

4 Solution of the model as a rectangular plate

The above model of the basilar membrane as an annular plate is closer to the
real model than a rectangular plate model. Our interest in a rectangular plate
in this section is to compare the eigenvalues from both models for plates with
the same characteristics and essentially the same area. The literature is wealthy
in results for rectangular plates but results for the specific boundary condition
we selected for the basilar membrane are scarce. Therefore two solutions that
lead to some estimates of eigenvalues are given here.
The boundary conditions are as follows:
On S1 : x = 0 and

W (0, y) =Wx(0, y) = 0 . (20)

On S2 : x = a and

Wxx(a, y) + (2− v)Wyyx(a, y) = 0 ,

Wxx(a, ) + vWyy(a, y) = 0 . (21)

On S3 : y = 0 and
W (x, 0) =Wyy(x, 0) = 0 . (22)

On S4 : y = b and
Wyy(x, b) + vWxx(x, b) = 0 . (23)
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The operator ∇2 has the standard form:

∇2 =
∂2

∂x2
+
∂2

∂y2
.

Let

W =
∞∑
m=1

[ 4∑
n=1

(Amn sin cy + Bmn cos cy

Cmn sinh dy + Dmn cosh dy)Fn(x)
]

(24)

where Amn, Bmn, Cmn, Dmn are constants and

F1(x) = sinax, F2(x) = cos ax, F3(x) = sinh ax.F4(x) = coshax , (25)

where

c =
√
k2 − a2 , d =

√
k2 + a2 . (26)

Using the boundary conditions (20-23) we obtain

tan cb =
c

d
tandb , and tan aa = tan aa . (27)

Table 1. Eigenvalues for annular plate and rectangular
plate models

a/b Harmonics Annular Plate Rectangular Plate
λ1 λ2 λ1 λ2

0.8 1 15.5611 12.4489
0.8 2 31.5640 25.2512
0.8 3 47.0748 37.6598
0.8 4 62.906 50.3252
0.8 5 78.5104 62.8083
0.8 6 94.2975 75.438
0.8 7 109.9347 87.9478
0.8 8 125.7010 100.5608
0.8 9 141.3555 13.0844
0.8 10 157.1095 125.6876
0.8 11 172.7740 138.2190
0.9 1 31.1005 27.990
0.9 2 62.8981 56.6083
0.9 3 94.143 84.7280
0.9 4 125.697 13.1270
0.9 5 175.017 41.3153
0.95 1 62.4469 59.3245 44.8387 42.5968
0.95 2 125.695 119.4100 93.8786 89.1847
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5 Computations and conclusions

The eigenvalues of both models are computed numerically. It is shown that if the
curvature of the basilar membrane is taken into account the range of the hearing
frequencies is significantly wider. On the other hand, for the rectangular model,
the hearing frequencies appeared to be significant only when the rectangular
region tends to a secured region. This, of course, contradicts the real shape of
the basilar membrane. As a result, any experimental or theoretical work should
take the curvature of the basilar membrane into account.
Finally, these numerical computations for the eigenvalues were obtained on

a VAX-8600 system with IMSL standard mathematical routines.
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