Electronic Journal of Differential Equations, Conference 01 (1998), pp. 119, 127. Title: A Global Solution Curve for a Class of Semilinear Equations Authors: Philip Korman (Univ. of Cincinnati, Cincinnati, Ohio, USA) Abstract: We use bifurcation theory to give a simple proof of existence and uniqueness of a positive solution for the problem $$ \Delta u - \lambda u+u^p = 0 \quad \mbox{for } |x| < 1, \quad u = 0 \quad \mbox{on } |x| = 1, $$ where $x \in {\mathbb R}^n$, for any integer $n \geq 1$, and real $1