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Abstract

Let S be a subset of the units in Zn. Let Γ be a circulant graph of order n
(a Cayley graph of Zn) such that if ij ∈ E(Γ), then i − j (mod n) ∈ S. Toida
conjectured that if Γ′ is another circulant graph of order n, then Γ and Γ′ are
isomorphic if and only if they are isomorphic by a group automorphism of Zn. In
this paper, we prove that Toida’s conjecture is true. We further prove that Toida’s
conjecture implies Zibin’s conjecture, a generalization of Toida’s conjecture.

In 1967, Ádám conjectured [1] that two Cayley graphs of Zn are isomorphic if and
only if they are isomorphic by a group automorphism of Zn. Although this conjecture was
disproved by Elspas and Turner three years later [7], the problem and its generalizations
have subsequently aroused considerable interest. Much of this interest has been focused
on the Cayley Isomorphism Problem, which asks for necessary and sufficient conditions
for two Cayley graphs on the same group to be isomorphic. Particular attention has been
paid to determining which groups G have the property that two Cayley graphs of G are
isomorphic if and only if they are isomorphic by a group automorphism of G. Such a
group is called a CI-group (CI stands for Cayley Isomorphism). One major angle from
which the Cayley Isomorphism problem was considered was the question of which cyclic
groups are in fact CI-groups. The problem raised by Ádám’s conjecture has now been
completely solved by Muzychuk [15] and [16]. He proves that a cyclic group of order n is
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a CI-group if and only if n = k, 2k or 4k where k is odd and square-free. The proof uses
Schur rings and is very technical. Many special cases were obtained independently along
the way to this result.

In 1977, Toida published a conjecture refining the conjecture that had been proposed
by Ádám in 1967 and disproved in 1970. Toida’s conjecture [20] suggests that if ~X =
~X(Zn; S) and if S is a subset of Z∗

n, then ~X is a CI-digraph. Although this conjecture
has aroused some interest, until recently it had only been proven in the special case
where n is a prime power. This proof was given by Klin and Pöschel [11], [12] and
Golfand, Najmark and Pöschel [8]. In this paper, we will prove Toida’s Conjecture. We
remark that Muzychuk, Klin and Pöschel [10] have also independently proven Toida’s
Conjecture. We will prove that Toida’s Conjecture implies Zibin’s Conjecture [23], a
conjecture which includes Toida’s Conjecture as a special case (which of course, will imply
that Zibin’s Conjecture is true), although we make no claim to independently verifying
Zibin’s Conjecture. We first considered Zibin’s Conjecture when asked to revise this
paper in light of the previously mentioned paper by Muzychuk, Klin, and Pöschel [10],
where Zibin’s Conjecture was first proven, although our proof of Toida’s Conjecture is
independent of the work in [10]. Also, Muzychuk, Klin, and Pöschel’s result uses the
method of Schur rings, and does not use the Classification of the Finite Simple Groups.
The proof presented here makes use of a result that does depend on the Classification of
the Finite Simple Groups. We would recommend that those readers interested in a survey
of the Cayley Isomorphism Problem see [13]. This work appears as one chapter in the
Ph.D. thesis of Joy Morris [14].

1 Background Definitions and Theory

The notation used in this paper is something of a hodge-podge from a variety of sources,
based sometimes on personal preferences and sometimes on the need for consistency with
earlier works. For any graph theory language that is not defined within this paper, the
reader is directed to [4]. In the case of language or notation relating to permutation groups,
the reader is directed to Wielandt’s authoritative work on permutation group theory [22],
although not all of the notation used by Wielandt is the same as that employed in this
paper. For terminology and notation from abstract group theory that is not explained
within this paper, the reader is referred to [9] or [19].

1.1 Graph Theory

Many results for directed graphs have immediate analogues for graphs, as can be seen by
substituting for a graph the directed graph obtained by replacing each edge of the graph
with an arc in each direction between the two end vertices of the edge. Consequently,
although the results of this paper are proven to be true for all digraphs, the same proofs
serve to prove the results for all graphs.

Although for the sake of simplicity we assume in this paper that directed graphs are
simple, this assumption is not actually required in any of the proofs that follow. We do
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allow the digraphs to contain digons.

Definition 1.1 The wreath product of two digraphs ~X and ~Y , denoted by ~X o ~Y , is
given as follows. The vertices of the new digraph are all pairs (x, y) where x is a vertex

of ~X and y is a vertex of ~Y . The arcs of ~X o ~Y are given by the pairs

{((x1, y1), (x1, y2)) : (y1, y2) is an arc of ~Y },
together with

{((x1, y1), (x2, y2)) : (x1, x2) is an arc of ~X}.
In other words, there is a copy of the digraph ~Y for every vertex of ~X, and arcs exist
from one copy of ~Y to another if and only if there is an arc in the same direction between
the corresponding vertices of ~X. If any arcs exist from one copy of ~Y to another, then all
arcs exist from that copy of ~Y to the other.

The concept of wreath product of digraphs will be considered in the fully general-
ized context of digraphs whose arcs have colours associated with them. In the context
of digraphs whose arcs are not coloured, simply ignore all references to colour in this
discussion.

Definition 1.2 The digraph ~X is said to be reducible with respect to o if there exists
some digraph ~Y , such that ~X is isomorphic to ~Y o Ek for some k > 1. If a digraph is not
reducible with respect to o, then it is said to be irreducible with respect to o.

1.2 Permutation Group Theory

Notation 1.3 Let V ′ be any orbit of G. Then the restriction of the action of g ∈ G to
the set V ′ is denoted by g|V ′ .

This ignores what the action of g may be within other orbits of G. For example, g|V ′ = 1
indicates that for every element v′ ∈ V ′, g(v′) = v′, but tells us nothing about how g′ may
act elsewhere.

Sometimes the action of a permutation group G will break down nicely according to
its action on certain subsets of the set V . Certainly, this happens when G is intransitive,
with the orbits of G being the subsets. However, it can also occur in other situations.

Definition 1.4 The subset B ⊆ V is a G-block if for every g ∈ G, either g(B) = B, or
g(B) ∩ B = ∅.
In some cases, the group G is clear from the context and we simply refer to B as a block.
It is a simple matter to realize that if B is a G-block, then for any g ∈ G, g(B) will also
be a G-block. Also, intersections of G-blocks are themselves G-blocks.

Definition 1.5 Let G be a transitive permutation group, and let B be a G-block. Then,
as noted above, {g(B) : g ∈ G} is a set of blocks that (since G is transitive) partition the
set V . We call this set the complete block system of G generated by the block B.
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Some of the basic language of blocks will be required in this paper. Notice that any
singleton in V , and the entire set V , are always G-blocks. These are called trivial blocks.

Definition 1.6 The transitive permutation group G is said to be primitive if G does
not admit nontrivial blocks. If G is transitive but not primitive, then G is said to be
imprimitive.

Using [22, Proposition 7.1], the following theorem is straightforward to prove. The
proof is left to the reader.

Theorem 1.7 Every complete block system of Zn consists of the orbits of some subgroup
of Zn.

Definition 1.8 The stabilizer subgroup in G of the set V ′ is the subgroup of G con-
sisting of all g ∈ G such that g fixes V ′ point-wise. This is denoted by StabG(V ′), or
sometimes, particularly if V ′ = {v} contains only one element, simply by GV ′, or Gv.

In some cases, we allow the set V ′ to be a set of subsets of V (where V is the set upon
which G acts) rather than a set of elements of V . In this case, the requirement is that
every element of StabG(V ′) fix every set in V ′ set-wise. For example, if B is a complete
block system of G, then StabG(B) is the subgroup of G that consists of all elements of G
that fix every block in B set-wise.

Definition 1.9 Let U and V be sets, H and K groups of permutations of U and V
respectively. The wreath product H o K is the group of all permutations f of U × V
for which there exist h ∈ H and an element ku of K for each u ∈ U such that

f((u, v)) = (h(u), kh(u)(v))

for all (u, v) ∈ U × V .

Theorem 1.10 Let x be an n-cycle in Sn and n = mk. The centralizer in Sn of 〈xm〉 is
isomorphic to Sm o Zk.

The proof of this theorem is straightforward, and is left to the reader. Proofs of this
and other results whose proofs are omitted in this paper may be found in [14].

Notation 1.11 Let G be a transitive permutation group admitting a complete block
system B of m blocks of size k. For g ∈ G, define g/B in the permutation group Sm by
g/B(i) = j if and only if g(Bi) = Bj, Bi, Bj ∈ B.

The following classical result of Burnside is quite useful.

Theorem 1.12 ([5], Theorem 3.5B) A transitive permutation group of prime degree
p is either doubly transitive and nonsolvable or has a regular normal Sylow p-subgroup.

The following result is a combination of Theorems 1.8 and 4.9 of [17]. We remark that
this result was proven using the Classification of the Finite Simple Groups.
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Theorem 1.13 ([17]) Let 〈x〉 and 〈y〉 be regular cyclic subgroups of degree n. Let n =
pa1

1 . . . par
r be the prime power decomposition of n, with m =

∑r
i=1 ai. Then there exists

δ ∈ 〈x, y〉 such that 〈x, δ−1yδ〉 is solvable. Furthermore, 〈x, δ−1yδ〉 admits complete block
systems B0, . . . ,Bm+1 such that if Bi ∈ Bi, then there exists Bi+1 ∈ Bi+1 such that
Bi ⊂ Bi+1 and |Bi+1|/|Bi| is prime for every 0 ≤ i ≤ m + 1.

The following result will prove useful and is not difficult to prove. Again, its proof is
left to the reader.

Lemma 1.14 Let G ≤ Sn such that 〈x〉 ≤ G. Assume that G admits a complete block
system B of m blocks of size k formed by the orbits of 〈xm〉. Furthermore, assume that
StabG(B)|B admits a complete block system of r blocks of size s formed by the orbits of
〈xmr〉|B for some B ∈ B (rs = k). Then G admits a complete block system C of mr
blocks of size s formed by the orbits of 〈xmr〉.

Definition 1.15 The digraph ~X is a unit circulant if it is a circulant digraph of order
n whose connection set is a subset of Z∗

n.

1.3 Algebraic Graph Theory

Definition 1.16 Let S be a subset of a group G. The Cayley digraph ~X = ~X(G; S)
is the directed graph given as follows. The vertices of X are the elements of the group G.
If g, h ∈ G, there is an arc from the vertex g to the vertex h if and only if g−1h ∈ S. In
other words, for every vertex g ∈ G and element s ∈ S, there is an arc from g to gs.

Notice that if the identity element 1 ∈ G is in S, then the Cayley digraph will have
a directed loop at every vertex, while if 1 6∈ S, the digraph will have no loops. For
convenience, we may assume that the latter case holds; it is immaterial to the results.
Notice also that since S is a set, it contains no multiple entries and hence there are no
multiple arcs. Finally, notice that if the inverse of every element in S is itself in S, then
the digraph is equivalent to a graph, since every arc can be paired with an arc going in
the opposite direction between the same two vertices.

Definition 1.17 The Cayley colour digraph ~X = ~X(G; S) is very similar to a Cayley
digraph, except that each entry of S has a colour associated with it, and for any s ∈ S
and any g ∈ G, the arc in ~X from the vertex g to the vertex gs is assigned the colour
that has been associated with s.

All of the results of this paper also hold for Cayley colour digraphs. This is not always
made explicit, but is a simple matter to verify without changing any of the proofs used.

Definition 1.18 The set S of ~X(G; S) is called the connection set of the Cayley digraph
~X.

Definition 1.19 We say that the digraph ~Y can be represented as a Cayley digraph
on the group G if there is some connection set S such that ~Y ∼= ~X(G; S).
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Sometimes we say that ~Y is a Cayley digraph on the group G.

Definition 1.20 The automorphism group of the digraph ~X is the permutation group
that is formed of all possible automorphisms of the digraph. This group is denoted by
Aut( ~X).

Theorem 1.21 (Sabidussi [18], pg. 694) Let ~U and ~V be digraphs. Then

Aut(~U) o Aut(~V ) ≤ Aut(~U o ~V ).

This follows immediately from the definition of wreath product of permutation groups,
and is mentioned only as an aside in Sabidussi’s paper and in the context of graphs. It is
equally straightforward for digraphs.

In the case where the digraph ~U is irreducible with respect to o and ~V = Ek for some
k, the group Aut(~U o ~V ) will admit each set of vertices that corresponds to a copy of Ek as
a block. Consequently, there is a straightforward partial converse to the above theorem.

Corollary 1.22 If ~U is a digraph that is irreducible with respect to o, then

Aut(~U) o Aut(Ek) = Aut(~U) o Sk = Aut(~U o Ek).

Let G be a transitive permutation group that admits a complete block system B of
m blocks of size p, where B is formed by the orbits of some normal subgroup N / G.
Furthermore, assume that StabG(B) is not faithful. Define an equivalence relation ≡
on B by B ≡ B′ if and only if the subgroups of StabG(B) that fix B and B′, point-
wise respectively, are equal. We denote these subgroups by StabG(B)B and StabG(B)B′ ,
respectively. Denote the equivalence classes of ≡ by C0, . . . , Ca and let Ei = ∪B∈Ci

B.
The following result was proven in [6].

Lemma 1.23 (Dobson, [6]) Let ~X be a vertex-transitive digraph for which G ≤ Aut( ~X)

as above. Then StabG(B)|Ei
≤ Aut( ~X) for every 0 ≤ i ≤ a (here if g ∈ StabG(B), then

g|Ei
(x) = g(x) if x ∈ Ei and g|Ei

(x) = x if x 6∈ Ei). Furthermore, {Ei : 0 ≤ i ≤ a} is a
complete block system of G.

We now define some terms that classify the types of problems being studied in this
paper.

Definition 1.24 The digraph ~X is a CI-digraph on the group G if ~X = ~X(G; S) is a

Cayley digraph on the group G and for any isomorphism of ~X to another Cayley digraph
~Y = ~Y (G; S ′) on the group G, there is a group automorphism φ of G that maps ~X to ~Y .
That is, φ(S) = S ′.

If ~X is a CI-digraph on the group G, we will be able to use that fact together with the
known automorphisms of G to determine all Cayley digraphs on G that are isomorphic
to ~X.

One of the most useful approaches to proving whether or not a given Cayley digraph
is a CI-digraph has been the following theorem by Babai. This theorem has been used in
the vast majority of results to date on the Cayley Isomorphism problem.
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Theorem 1.25 (Babai, see [3]) Let ~X be a Cayley digraph on the group G. Then ~X is a

CI-digraph if and only if all regular subgroups of Aut( ~X) isomorphic to G are conjugate

to each other in Aut( ~X).

The following result was first proven by Turner in 1967.

Theorem 1.26 (Turner, [21]) The permutation group Zp is a CI-group for any prime p.

2 Main Theorem

Let x : Zn → Zn by x(i) = i + 1. We use this conceptualization of the n-cycle x at times
in what follows. We begin with a sequence of lemmas.

Lemma 2.1 Let x, y ∈ Sn be n-cycles such that there exists a|n such that 〈xa〉 = 〈ya〉. Let
B be the complete block system of 〈x, y〉 formed by the orbits of 〈xa〉 = 〈ya〉. Assume that
〈x, y〉/B contains a normal elementary abelian p-subgroup K for some p|a and 〈xa/p〉/B ≤
K, 〈ya/p〉/B ≤ K. Then either Stab〈x,y〉(B) 6= 〈xa〉, 〈xa/p〉 = 〈ya/p〉, or p 6 |n

a
and

there exists a normal elementary abelian subgroup K ′ of 〈x, y〉 such that K ′/B = K and
|K ′| ≥ p2.

Proof. For this lemma, it will be convenient notationally to assume that both x, y act
on Za/p × Zp × Zb, where b = n/a, in the following fashion:

1. B = {{(i, j, k) : k ∈ Zb} : i ∈ Za/p, j ∈ Zp},
2. xa/p(i, j, k) = (i, j + 1, k + αj), where αj = 1 if j = p − 1 and αj = 0 otherwise.

It is straightforward to see that xa(i, j, k) = (i, j, k + 1) so that ya(i, j, k) = (i, j, k + d),
d ∈ Z∗

b and ya/b(i, j, k) = (i, j +ai, ωi,j(k)), where ai ∈ Z∗
p and ωi,j ∈ Sb. As 〈xa〉 = 〈ya〉, y

centralizes xa so by Theorem 1.10, we have that ωi,j(k) = k+bi,j, bi,j ∈ Zb for every i ∈ Za/p

and j ∈ Zp. As ya/p(i, j, k) = (i, j+ai, k+bi,j), we have that ya(i, j, k) = (i, j, k+
∑p−1

j=0 bi,j).

Hence
∑p−1

j=0 bi,j ≡ d (mod b) for every i ∈ Za/p. Note that x−a/p(i, j, k) = (i, j−1, k−αj−1)

so that for s ∈ Z∗
p, x−sa/p(i, j, k) = (i, j−s, k +γj), where γj = −1 if p−1−s ≤ j ≤ p−1

and γj = 0 otherwise. Thus ya/px−sa/p(i, j, k) = (i, j − s + ai, k + γj + bi,j−s) for s ∈ Z∗
p.

If ai − s 6= 0

[ya/px−sa/p]p(i, j, k) = (i, j, k +

p∑

j=0

bi,j +

p−1∑

j=0

γj) = (i, j, k + d − s).

If ai − s = 0, then

[ya/px−sa/p]p(i, j, k) = (i, j, k + pbi,j−s + pγj).

Now, if 〈ya/p〉/B = 〈xa/p〉/B, then ya/pxr ∈ Stab〈x,y〉(B) for some r ∈ Z
∗
p. Hence either

Stab〈x,y〉(B) 6= 〈xa〉 or ya/pxra/p ∈ 〈xa〉, for some r ∈ Z∗
p. In the latter case, ya/p ∈ 〈xa/p〉.
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In either case, the result follows. If 〈ya/p〉/B 6= 〈xa/p〉/B, then there exists u, v ∈ Za/p

such that au 6≡ av (mod p), and, of course, au, av 6≡ 0 (mod p). If Stab〈x,y〉(B) = 〈xa〉,
then, as [ya/px−sa/p]p ∈ Stab〈x,y〉(B) and au − av 6≡ 0 (mod p), we would have that
d − au ≡ pbu,j−au + pγj (mod a). If p|b, we then have that d − au ≡ 0 (mod p) so
that d ≡ au (mod p). Analogous arguments will then show that d ≡ av (mod p) so that
av ≡ au (mod p), a contradiction. Thus p 6 |b.

If Stab〈x,y〉(B) = 〈xa〉, p 6 |b, and there exists u, v ∈ Za/p such that au 6= av, then let
K ′ be a Sylow p-subgroup of π−1(K), where π : 〈x, y〉 → Sa by π(g) = g/B. Note that
Ker(π) = Stab〈x,y〉(B) = 〈xa〉, and as au 6= av, we have that |K| 6= p. Then π−1(K)/〈x, y〉
and, of course, 〈xa〉 / π−1(K). Furthermore, |π−1(K)| = |K| · b. As p 6 |b, every Sylow
p-subgroup of π−1(K) has order |K|. We conclude that π−1(K) = K ′ · 〈xa〉. Let k, κ ∈ K ′

and xr ∈ 〈xa〉. Then (kxr)−1κ(kxr) = k−1κk ∈ K ′ as every element of 〈x, y〉 centralizes
〈xa〉. Whence K ′ / π−1(K). As a normal Sylow p-subgroup is characteristic, we have that
K ′ / 〈x, y〉. That K ′ is elementary abelian follows from the fact that K ′/B = K so that
K ′ ∼= K. The result then follows.

The proof of the following result is straightforward and left to the reader.

Lemma 2.2 Let m, k and s be integers, with gcd(m, s) = 1. Then there exists some
integer i ≡ s (mod m) such that gcd(i, mk) = 1.

Lemma 2.3 Let ~X1 be an irreducible CI-digraph of Zm and k ≥ 2. Then ~X = ~X1 o Ek

and ~X ′ = Ek o ~X1 are CI-digraphs of Zmk.

Proof. We will show that ~X is a CI-digraph of Zmk. The proof that ~X ′ is a CI-digraph
of Zmk is similar, although not exactly analogous. As ~X1 is irreducible, it follows by
Corollary 1.22 that

Aut( ~X) = Aut( ~X1) o Sk.

As Zm o Zk ≤ Aut( ~X), ~X is a Cayley digraph of Zmk. Furthermore, Aut( ~X) admits
a complete block system B of m blocks of size k, formed by the orbits of 〈xm〉. Let

δ ∈ Sn such that δ−1〈x〉δ ≤ Aut( ~X) and y = δ−1xδ. As ~X1 is a CI-digraph of Zm, any

two regular cyclic subgroups of Aut( ~X1) are conjugate. Hence there exists γ ∈ Aut( ~X)
such that γ−1yγ/B ∈ 〈x〉/B. For convenience, we replace γ−1yγ with y and assume that
y/B ∈ 〈x〉/B. As

StabAut( ~X)(B) = 1Sm o Sk,

there exists γ ∈ StabAut( ~X)(B) such that γ−1ymγ = xm. Again, we replace γ−1yγ with y
and thus assume that ym = xm.

Fix v0 ∈ B0, and define s such that x(v0) = ys(v0). Since x/B and y/B are m-cycles
and y/B ∈ x/B, we must have gcd(s, m) = 1. By Lemma 2.2, there exists some i such
that |〈ys+im〉| = mk. Furthermore, it is clear that ys+im/B = x/B. Replace ys+im with

y. Observe 〈x, y〉 ≤ Zm o Zk, and of course, Zm o Zk ≤ Aut( ~X). We identify Zmk with
Zm × Zk so that

x(i, j) = (i + 1, j + σi(j)),
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where σi(j) = 0 if i 6= m − 1 and σm−1(j) = 1. Then

y(i, j) = (i + 1, j + bi),

where bi ∈ Zk. As |y| = mk, we have that Σm−1
i=0 bi ≡ b (mod k) and b ∈ Z

∗
k. Let

β ∈ Aut( ~X) such that β(i, j) = (i, b−1j). We replace y with βyβ−1 and thus assume that
Σm−1

i=0 bi ≡ 1 (mod k). Let xm = z0z1 · · · zm−1 where each zi is a k-cycle that contains (i, 0).
Let

γ = z
−(Σm−1

i−1 bi)

1 z
−(Σm−1

i=2 bi)
2 · · · z−bm−1

m−1 .

It is then straightforward to verify that γ−1yγ = x and γ ∈ 1Sm o Zk ≤ Aut( ~X).

Lemma 2.4 Let ~X be a circulant digraph of order n such that if 〈x〉 and 〈y〉 are distinct

regular cyclic subgroups of Aut( ~X) and 〈x, y〉 admits a complete block system C, then
~X[C] = E|C| for every C ∈ C. Assume (inductively) that every such circulant digraph
with fewer than n vertices is a CI-digraph. If 〈x, y〉 admits a complete block system B of
n/p blocks of size p for some prime p|n and Stab〈x,y〉(B) is not faithful on some block of

B, then ~X is a CI-digraph of Zn.

Proof. By Lemma 1.23, since the action of Stab〈x,y〉(B) is not faithful, there are clearly
at least two blocks in the block system formed in Lemma 1.23. Denote this block system
by E. If vertices of ~X are labelled 0, 1, . . . , n − 1, according to the action of x, then the
vertices in the block E of E that contains the vertex 0 form the exponents of a proper
subgroup of 〈x〉, by Theorem 1.7. By hypothesis there are no arcs within the block E;
and since the action of 〈x〉 is transitive on the blocks of E, there are no arcs within any
block of E. If there is an arc from some vertex in the block B of B to some vertex in
the block B′ of B, where B and B′ are in different blocks of E, then Lemma 1.23 tells us
that all arcs from B to B′ exist (take 〈xa〉|E′, where B ∈ E ′). Thus ~X = ~X/F o ( ~X[B])

for B ∈ B. Since ~X[E] contains no arcs for any E ∈ E, we certainly have ~X[B] contains

no arcs for any B ∈ B. Thus ~X = ~X/B o Ep. If ~X/B is reducible, say ~X/B = ~X ′ o Ek,

then ~X = ( ~X ′ o Ek) o Ep = ~X ′ o Ekp. We continue this reduction until we reach a digraph
~X ′ such that ~X ′ is irreducible and ~X = ~X ′ o Ekp for some k. Let 〈x′〉 and 〈y′〉 be distinct

regular cyclic subgroups of Aut( ~X ′) such that 〈x′, y′〉 admits a nontrivial complete block
system C′. Let D be the unique complete block system of 〈x, y〉 of n/kp blocks of size

kp. Then, as Aut( ~X) = Aut( ~X ′) oSkp, there exist regular cyclic subgroups of Aut( ~X), say
〈x1〉 and 〈y1〉 such that 〈x1〉/D = 〈x′〉 and 〈y1〉/D = 〈y′〉/D. As 〈x′, y′〉 admits C′ as a
complete block system of, say, r blocks of size s, we have that 〈x1, y1〉 admits a complete

block system C of r blocks of size kps. Notice that if e is an edge of ~X ′ between two
vertices of C ′ ∈ C′, then there is an edge in ~X between two vertices of C ∈ C, where C is
the block of C that corresponds to the block C ′. As there are no edges of ~X between two
vertices of C ∈ C, there are no edges in ~X ′ between two vertices of C ′ ∈ C′. Thus, either
Aut( ~X ′) contains a unique regular cyclic subgroup (in which case ~X ′ is a CI-digraph), or
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by inductive hypothesis ~X ′ is a CI-digraph. Then by Lemma 2.3, since p ≥ 2, ~X is a
CI-digraph, and we are done.

Lemma 2.5 Let x, y be n-cycles acting on a set of n elements. Assume that every element
of 〈x, y〉 commutes with xa for some 0 < a < n. Let ab = n, so that 〈x, y〉 admits a
complete block system B of a blocks of size b. Assume that the action of Stab〈x,y〉(B)|B is
not faithful for some B ∈ B. Then 〈x, y〉 admits a complete block system Cb′ consisting
of ab/b′ blocks of size b′ for every b′|b; furthermore, there is some prime p|b such that the
action of Stab〈x,y〉(Cp) is not faithful.

Proof. Notice that
Stab〈x,y〉(B)|B = 〈xa〉|B

for any B ∈ B, since xa commutes with every element of 〈x, y′〉. Hence Stab〈x,y′〉(B)|B
admits blocks of every possible size b′ for which b′|b. By Lemma 1.14, 〈x, y′〉 admits a
complete block system with blocks of size b′ for any b′|b.

Suppose that b = rs. We choose r, s in such a way that r is as large as possible so that
Stab〈x,y〉(Cr)|C is faithful for every C ∈ Cr. (Notice that the transitivity of 〈x, y〉 means
that if Stab〈x,y〉(Cr)|C were not faithful for some C ∈ Cr, then it would not be faithful
for any C ∈ Cr.) We have 1 ≤ r < b, and 2 ≤ s ≤ b, since Stab〈x,y〉(B)|B is not faithful.

Let h ∈ Stab〈x,y〉(B) be such that h|B = 1|B but h 6= 1. Since Stab〈x,y〉(Cr)|C is
faithful for every C ∈ Cr, and for any C ⊂ B we have h|C = 1, but h 6= 1, we must have
h 6∈ Stab〈x,y〉(Cr). So if B′ ∈ B is such that h|B′ 6= 1, then there exists some C ⊂ B′

such that h(C) 6= C. Now, h|B′ = xiB′a|B′ for some iB′ . Since there are s blocks of Cr

in B′, formed by the orbits of 〈xsa〉, we have hs = 1, so xiB′as = 1. Hence b|iB′s, say
kB′b = iB′s. But b = rs, so kB′rs = iB′s, meaning that kB′r = iB′ for any B′. Thus
h ∈ Stab〈x,y〉(Cs). Since xiB′a|B′ is nontrivial, this has shown that Stab〈x,y′〉(Cs) is not
faithful. Now, suppose that gcd(r, s) = t 6= 1. Let r′ be such that r′t = r and let s′ be
such that s′t = s. Then for any B′,

iB′ = kB′r = kB′tr′,

and so
hs′ |′B = xiB′as′|′B = xkB′ ts′r′a = xkB′r′as.

Since Cr is formed by the orbits of xsa, we have hs′ ∈ Stab〈x,y〉(Cr), so hs′ = 1. It is
not difficult to calculate that iB′ = k′

B′rt, and since gcd(rt, s/t) = 1, to see that in fact
Stab〈x,y′〉(Crt) is faithful, contradicting the choice of r. So we see that gcd(r, s) = 1.

Let p be any prime such that p|s. We claim that the action of Stab〈x,y′〉(Cp) is not
faithful.

Towards a contradiction, suppose that the action of Stab〈x,y〉(Cp) were faithful. We will
show that this supposition forces the action of Stab〈x,y′〉(Crp) to be faithful, contradicting
the choice of r.

Let D be a block of Crp and let h ∈ Stab〈x,y′〉(Crp) be such that h|D = 1. If every such
h is an element of the group Stab〈x,y〉(Cr), then every such h = 1 and we are done. So we
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suppose that there is some such h that is not an element of the group Stab〈x,y′〉(Cr). As
before, we can calculate that h|B′ = xiB′a, and that iB′ = kB′r; and, similarly, iB′ = k′

B′p.
Since gcd(s, r) = 1, we have p 6 | r, so iB′ = k′′

B′rp. Now, the intersection of the orbit of
h containing the vertex v in B′ with the block D′ of Crp that contains the vertex v is
clearly the singleton {v}, since the block D′ is an orbit of xas/p. This shows that when h
fixes the block D′ set-wise, it in fact fixes this block point-wise, so that h ∈ Stab〈x,y〉(Crp)
with h|D = 1 in fact forces h = 1, as required. This proves our claim.

Thus, Cp is a collection of blocks of prime size of 〈x, y′〉, formed by the orbits of xn/p,
upon which Stab〈x,y〉(Cp) is not faithful.

Theorem 2.6 Let ~X be a circulant digraph such that whenever 〈x〉 and 〈y〉 are two

distinct regular cyclic subgroups of Aut( ~X) and 〈x, y〉 admits a nontrivial complete block

system B, then ~X[B] = E|B| for every B ∈ B. Then ~X is a CI-digraph.

Proof. Let x, y be n-cycles in Aut( ~X). Let

Y = {y′ ∈ Aut( ~X) : there exists γ ∈ Aut( ~X) such that γ−1yγ = y′}.
By Theorem 1.25, we need only show that x ∈ Y . Note that by Theorem 1.13 there exists
δ ∈ 〈x, y〉 such that 〈x, δ−1yδ〉 is solvable and 〈x, δ−1yδ〉 admits complete block systems
B0, . . . ,Bm+1 such that if Bi ∈ Bi, then there exists Bi+1 ∈ Bi+1 such that Bi ⊂ Bi+1

and |Bi+1|/|Bi| is prime for every 0 ≤ i ≤ m + 1, where |B0| = n and |Bm+1| = 1. We
thus assume without loss of generality that 〈x, y〉 has the preceding properties.

In order to enable us to use Lemma 2.3, the proof will proceed by induction on the
number of prime factors of n. The base case where n is prime is given by Theorem 1.26,
so in what follows, we can assume that any digraphs of strictly smaller order than n that
satisfy the hypothesis of this theorem are in fact CI-digraphs.

Choose y′ ∈ Y in such a way that 〈xa〉 = 〈(y′)a〉, where a is as small as possible
(0 < a ≤ n). If gcd(a, n) = k, then 〈(y′)k〉 = 〈xk〉, so by the choice of a, k = a. Thus, we
must have that a|n, say ab = n, and by [22, Proposition 7.1], the orbits of xa are blocks
of 〈x, y′〉, yielding a complete block system B consisting of a blocks of size b. It follows
by the proof of [17, Theorem 4.9] that we may assume B = Bi for some 0 ≤ i ≤ m + 1.

Let p = |Bi+1|/|Bi|, Bi+1 ∈ Bi+1 and Bi ∈ Bi. As 〈x, y′〉 admits Bi+1 as a complete
block system (if not, conjugate it by an element of 〈x, y′〉 as in Theorem 1.13), 〈x, y′〉/B
admits a complete block system C of a/p blocks of size p induced by Bi+1. Hence C
is formed by the orbits of 〈xa/p〉/B and also by the orbits of 〈(y′)a/p〉/B. As 〈x, y′〉 is
solvable, Stab〈x,y′〉/B(C)|C is solvable of prime degree p for every C ∈ C, so by Theorem
1.12 Stab〈x,y′〉/B(C)|C has a unique Sylow p-subgroup for every C ∈ C. Let K be a
Sylow p-subgroup of Stab〈x,y′〉/B(C). Then K / Stab〈x,y′〉/B(C) and is elementary abelian.
As a Sylow p-subgroup is characteristic, we have that K / 〈x, y′〉/B. It then follows by
Lemma 2.1 and our choice of a that Stab〈x,y′〉(B) 6= 〈xa〉 or p 6 |b and there exists a normal
elementary abelian subgroup K ′ of 〈x, y′〉 such that K ′/B = K and |K ′| ≥ p2.

If Stab〈x,y′〉(B) 6= 〈xa〉, then as 〈xa〉 = 〈(y′)a〉, we have that every element of 〈x, y′〉
centralizes 〈xa〉. Hence by Theorem 1.10, 〈x, y′〉 ≤ 〈x, y′〉/B o Zb. As |Stab〈x,y′〉(B)| > b,
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we have that StabStab〈x,y′〉(w) 6= 1 for every w ∈ Zn. As Zb is regular in its action on Zb,

we conclude that Stab〈x,y′〉(B) is not faithful on some block of B. By Lemma 2.5, 〈x, y′〉
admits a complete block system Cb′ consisting of ab/b′ blocks of size b′ for every b′|b;
furthermore, there is some prime p|b such that the action of Stab〈x,y′〉(Cp) is not faithful.

It then follows by Lemma 2.4 that ~X is a CI-digraph of Zn, so that in this case a = 1 and
we are done.

If p 6 |b and there exists a normal elementary abelian subgroup K ′ of 〈x, y′〉 such that
K ′/B = K and |K ′| ≥ p2, then 〈x, y′〉 admits a complete block system Cp of n/p blocks
of size p, formed by the orbits of K. As p2 divides |K|, p2 also divides |Stab〈x,y′〉(Cp)|.
Then Stab〈x,y′〉(Cp) does not act faithfully on some block of Cp and by Lemma 2.4, ~X is
a CI-digraph of Zn. Thus a = 1 and the result follows.

Corollary 2.7 Let ~X be a unit circulant digraph on n vertices. Then ~X is a CI-digraph.

Proof. If Aut( ~X) contains a unique regular cyclic subgroup, then ~X is a CI-digraph as

required. We let 〈x〉 be the regular representation of Zn contained in Aut( ~X). If 〈y〉 is

any other regular cyclic subgroup of Aut( ~X) and 〈x, y〉 admits a complete block system
B, then B is formed by the orbits of a normal subgroup of 〈x〉, so that B consists of

cosets of a subgroup H of Zn. As ~X is a unit circulant digraph, ~X[B] = E|B| and the
result follows by Theorem 2.6.

Let d be an arbitrary divisor of the positive integer n. Let (Zn)d = {z ∈ Zn :
gcd(z, n) = d}. The d− th layer of S ⊆ Zn is defined as (S)d = S ∩ (Zn)d. In 1975, Zibin’
made the following conjecture.

Conjecture 2.8 (Zibin’,[23]) Let X and X ′ be two isomorphic circulant graphs with
connection sets S and T , respectively. Then there exists md ∈ Z∗

n such that md(S)d = (T )d

for every divisor d of n.

Note that if d = 1, then (S)1 ⊆ Z
∗
n. Hence this special case of Zibin’s Conjecture is

Toida’s Conjecture, so that Zibin’s Conjecture implies Toida’s Conjecture.

Corollary 2.9 Toida’s Conjecture implies Zibin’s Conjecture.

Proof. We first show that for every d|n and circulant digraphs ~X(Zn, S) ∼= ~X(Zn, T ),

we have that ~X(Zn, (S)d) ∼= ~X(Zn, (T )d). Suppose not, and let ~X(Zn, S) be a graph of

minimal order and size such that there exists d|n and T ⊂ Zn such that ~X(Zn, S) ∼=
~X ′(Zn, T ) but ~X(Zn, (S)d) 6∼= ~X ′(Zn, (T )d). If Aut( ~X) contains a unique regular cyclic

subgroup, then ~X is a CI-digraph, in which case it is easy to verify that ~X(Zn, (S)d) ∼=
~X ′(Zn, (T )d). Let 〈x〉 be the canonical regular cyclic subgroup of Aut( ~X), so that x(i) =

i + 1. Let δ : ~X → ~X ′ be an isomorphism, and y = δ−1xδ. If 〈x, y, 〉 does not admit a
nontrivial complete block system, then [22, Theorem 25.3], then 〈x, y〉 is doubly transitive,

and so ~X the complete graph or it’s complement, in which case the result is trivial.
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Otherwise, 〈x, y〉 admits a nontrivial complete block system B of m blocks of size k,
necessarily formed by the orbits of 〈xm〉. As there is a unique complete block system of
〈x〉 with blocks of size k, (and hence of any subgroup of Sn that contains 〈x〉), we have

that δ(B) = B. Furthermore, assume that ~X[B] 6= Ek for B ∈ B. As δ(B) = B, we

have that δ ~X[B] = ~X ′[B′] for some B′ ∈ B. By the minimality of n, it follows that the

t-th layers of ~X[B] are isomorphic to the t-th layers of ~X ′[B′] ∼= ~X ′[B], t a divisor of k.

Let r be a multiple of m. Then the r-th layer of ~X is a disjoint union of m copies of
the t-th layer of ~X[B], and the r-th layer of ~X ′ is also a disjoint union of m copies of

the t-th layer of ~X ′[B]. We conclude that the r-th layers of ~X and ~X ′ are isomorphic.
Thus d is not a multiple of m. Furthermore, as δ(B) = B, δ is also an isomorphism of
~X(Zn, S−∪{(S)r : r is a multiple of m}) and ~X ′(Zn, T −∪{(T )r : r is a multiple of m}),
the d-th layer of ~X(Zn, S − ∪{(S)r : r is a multiple of m}) is the same as the d-th layer

of ~X, and the d-th layer of ~X ′(Zn, T −∪{(T )r : r is a multiple of m}) is the same as the

d-th layer of ~X ′. By the minimality of the size of ~X, we conclude that ~X[B] = Ek for

every B ∈ B. It then follows by Theorem 2.6 that ~X is a CI-graph. This then implies
that the d-th layer of ~X is isomorphic to the d-th layer of ~X ′, a contradiction. Thus the
d-th layer of ~X is isomorphic to the d-th layer of ~X ′ for every d|n and circulant digraph
~X ′ isomorphic to ~X.

Finally, it is straightforward to observe that the d-th layer of ~X is isomorphic to the
wreath product of En/d with a unit circulant graph of order d. As Toida’s Conjecture

holds, it follows by Lemma 2.3 that the d-th layer of ~X is a CI-digraph. The result then
follows.

The authors would gratefully like to acknowledge the assistance of Dave Witte of
Oklahoma State University in proving some of the more technical results in an earlier
version of this paper.
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[11] Klin, M.H. and R. Pöschel, The Konig problem, the isomorphism problem for cyclic
graphs and the method of Schur rings, Algebraic methods in graph theory, Vol. I, II.,
Szeged, 1978, pp. 405-434.
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[15] Muzychuk, M., Àdàm’s conjecture is true in the square-free case, J. Combin. Theory
A 72 (1995), 118-134.
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