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Abstract

The bipartite Ramsey number b(m,n) is the smallest positive integer r such that
every (red, green) coloring of the edges of K, contains either a red K, ,, or a green
K, . We obtain asymptotic bounds for b(m,n) for m > 2 fixed and n — oo.

1 Introduction

Recent exact results for bipartite Ramsey numbers [4] have rekindled interest in this
subject. The bipartite Ramsey number b(m,n) is the smallest integer  such that every
(red, green) coloring of the edges of K, , contains either a red K,,,, or a green K, ,.
In early work on the subject [1], Beineke and Schwenk proved that b(2,2) = 5 and
b(3,3) = 17. In [4] Hattingh and Henning prove that b(2,3) = 9 and b(2,4) = 14. The
following variation was considered by Beineke and Schwenk [1] and also by Irving [5]: for
1 < m < n, the bipartite Ramsey number R(m,n) is the smallest integer r such that
every (red, green) coloring of the edges of K, , contains a monochromatic K,,,. Irving
found that R(2,n) < 4n — 3, with equality if n is odd and there is Hadamard matrix of
order 2(n—1). The bound R(m,n) < 2™(n—1)+1 was proved by Thomason in [7]. Note
that b(m, m) = R(m,m). In this note, we obtain asymptotic bounds for b(m,n) with m
fixed and n — oo.

2 The Main Result

Theorem 1. Let m > 2 be fized. Then there are constants A and B such that

(m+1)/2 m
A(n) <b(m,n)<B(n) : n — oo.

logn logn
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Specifically, these bounds hold with

m+1)/2
A = (1 — e)mfl/(mfl) (m—_l>( )/

m2

B=(1+¢) (%)ml,

Proof. The upper bound is based on well-known results for the Zarankiewicz function.
Let z(r, s) denote the maximum number of edges that a subgraph of K, , can have if it
does not contain K, as a subgraph. We use the bound

and

where € > 0 s arbitrary.

s—1
r

1/s
> r(r—s+1)+(s—1)r, (1)

z(r;8) < <

which is found in [2] and elsewhere. To prove b(m,n) < r it suffices to show that z(r;m)+
z(r;n) < r?. Take € > 0 and set r = ¢(n/logn)™ where ¢ = (m — 1)~ (1 4 ¢). Then

z(?2m> § (mr— 1)“’” (1 B mr—l) . mr— 1
_ (mc_1>1/m lo;gzn_i_O((loin)m)' @

To bound z(r;n)/r?, we begin with the evident asymptotic formula

(n— 1)1/” _ ((n— 1)(logn)m>1/n _,_ (m=Dlogn (loglﬂ) |

T cn™ n n
Hence
—1\" —1 —1
z(r;n)<<n ) (1_n >+n
r r r r
L (m —1)logn Lo (loglogn> ‘ 3)
n n

Adding (2) and (3) we obtain

. . . 1/m
z(r,m)—;—z(r,n) L (m— L (m 1) ) logn Lo <loglogn)
r c n n

1 (m—1) <1_ 1 ) logn Lo <loglogn> ’

(1+e)t/m) n n

THE ELECTRONIC JOURNAL OF COMBINATORICS 8 (2001), #R17 2



so (z(r;m) + z(r;n))/r* < 1 for all sufficiently large n, completing the proof.

To prove the lower bound, we use the Lovasz Local Lemma in the manner pioneered
by Spencer [6]. Consider a random coloring of the edges of K, , in which, independently,
each edge is colored red with probability p. For each set S of 2m vertices, m from each
vertex class of the K, ,, let Rg denote the event in which each edge of the K, ,, spanned
by S is red. Similarly, for each set T' consisting of n vertices from each color class, let G
denote the event in which each edge of the K, ,, spanned by T is green. Then P(Rg) = p ’

m

for each of the (7;)2 choices of S, and we simply write P(R) for the common value. In the
same way, P(G) = (1 — p)™ for each of (1’;)2 possible G = G events. Let S be a fixed
choice of m vertices from each class. Then Nrr denotes the number of events Rg such
that Rg and Rg are dependent, that is the bipartite graphs spanned by S and S’ share at
least one edge. Similarly, let Nrs denote the number of events G such that Rg and G
are dependent. In the same way, for fixed a fixed choice T" of n vertices from each class,
we define the dependence numbers Ngg and Ngg. By the Local Lemma, the probability
that a random coloring has neither a red K,,,, or a green K, , is positive provided there

exist positive numbers zi and x4 such that

1>2pP(R), (4)
1> 2qP(G), (5)
logzr > xpNprP(R) + 26 Nra P(G), (6)
logzg > g NarP(R) + ¢ Nog P(G). (7)

With positive constants ¢; through ¢, to be chosen, set

p = ey /)
n = cor? ™ og r,
TR = C3,

Ta = exp (c4r2/(m+1)(log r)?).

To prove that there are choices of the constants cy,. .., ¢4 for which (4) through (7) hold,
we begin by noting the following bounds:

2
m

2
Nep < n2< r 1) < n2p2m-D),
m_

2 2n
Nra, Nag < <r) < (ﬂ) .
n n
We have

m2
NrrP(R) < 2D (ep 2/ mE0)™ = %y 2/0mD) = (1), r—o00,  (8)

THE ELECTRONIC JOURNAL OF COMBINATORICS 8 (2001), #R17 3



independent of the choice of ¢;. Also log Nra < 2nlogr = 2cy %™+ (logr)? and
P(G) = (1—p)" < exp(—pn®) = exp (—c1cdr? D (logr)?),

s0 ¢ Npe P(G) < exp ((cs + 22 — c163)r?/ ™t (log r)?). Hence x6 N P(G) = o(1) and
26Nae P(G) = o(1). provided we choose ¢, ¢y and ¢4 so that

cy < 105 — 20;. (9)

Note that (4) is automatically fulfilled, and also x¢NggP(G) = o(1) implies (5). In
view of (8) and x¢Nge P(G) = o(1), which is implied by (9), condition (6) holds for all
sufficiently large r if we choose

c5 > 1. (10)

Finally, since

xRNGR ]P(R) < C3(C2T 2/(m+1) lOg 7,)2 2(m— 1)(01T_2/(m+1))m2

= A2 ey ") (log r)?,
we see that (7) holds provided the constants ¢y, ..., ¢4 are chosen so that
cq > CT2c§ cs. (11)

To satisfy (9), (10), and (11), and at the same time find a near optimal (minimum) choice
for ¢y, we begin by considering the case of equality in (7)-(9). Set ¢5 = 1 and

2
ey =cy = 165 — 20;.

Since both ¢; and ¢y are positive, ¢; must satisfy 0 < ¢; < 1. To minimize ¢co = 1/(¢; —071”2)
we choose ¢; = m~% (™~ To satisfy (7)-(9) and still make a nearly optimal choice of

Co, set
2(1
C1 = m—2/(m2—1)7 Co = ( il 6) 2 3 = 1 + €,
— (14 €t

where € is positive and small enough that ¢; — (1 + 6)071” > 0. Then 071”20503 < 105 — 20y,
which is equivalent to c2(01 — c3c] 2) > 2, is satisfied and there is a suitable choice of ¢, so
that cf" 0203 < ¢4 < €163 — 2c9. A routine computation shows that this justifies the lower
bound statement with

m~+1)/2
A= (1-em YVm=D (m—1>( o ;

m2

where € > 0 is arbitrary. O]
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3 Open Questions

Our knowledge of b(2,n) closely parallels that of r(Cy, K,,). Co ncernlng the latter, Erdds
conjectured at the 1983 ICM in Warsaw that r(Cjy, K,,) = o(n*~¢) for some ¢ > 0 [3, p.
19].

Open Question 1. Prove or disprove that b(2,n) = o(n*=) for some € > 0.

Also, very little is known about the diagonal case. A well-known question in classical
Ramsey theory concerning the asymptotic behavior of r(n) [3, p. 10] has the following
counterpart for bipartite Ramsey numbers.

Open Question 2. Determine the value of

lim b(n,n)"",

n—oo
if it exists.

From [4] and [7] it is known that v/2e™'n2"/2 < b(n,n) < 2"(n — 1) + 1, so if the limit
exists, it is between V2 and 2.
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