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Abstract

A symmetric group action on the maximal chains in a finite, ranked
poset is local if the adjacent transpositions act in such a way that
(i, i+ 1) sends each maximal chain either to itself or to one differing
only at rank i. We prove that when Sn acts locally on a lattice,
each orbit considered as a subposet is a product of chains. We also
show that all posets with local actions induced by labellings known
as R∗S-labellings have symmetric chain decompositions and provide
R∗S-labellings for the type B and D noncrossing partition lattices,
answering a question of Stanley.

1 Introduction

A symmetric group action on the maximal chains in a finite, ranked poset was
defined by Stanley in [St2] to be local if for each i, the adjacent transposition
si = (i, i + 1) sends each maximal chain either to itself or to one differing
from it only at rank i.

∗This work was supported by a Hertz Foundation Graduate Fellowship.
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There is a correspondence between rhombic tilings of a planar region and
equivalence classes of reduced expressions for a permutation up to commuta-
tion. This naturally translates symmetric group structure to poset structure
when Sn acts locally on the maximal chains in a poset. We begin by re-
viewing this correspondence which is thoroughly examined in [El] because
we it will allow us to explain why orbits of local symmetric group actions on
lattices are always products of chains.

When a permutation w is written as a product of adjacent transpositions
w = sa1sa2 . . . sal with l as small as possible, such a product is called a
reduced expression for w. To obtain a rhombic tiling from this, begin with
a vertical path consisting of n + 1 nodes; as one reads off each successive
adjacent transposition sai in a reduced expression, draw a new node to the
right of the current node of rank ai, and attach this new node to the nodes
of rank ai ± 1 in the current path to obtain a new path. The resulting
region is bounded on the left by the initial path, on the right by the final
path, and is tiled by quadrilaterals. These quadrilaterals may be replaced
by rhombi by appropriately adjusting line segment slopes. Two reduced
expressions differing only by commutation relations give rise to the same
rhombic tiling. Applying a braid relation sisi+1si = si+1sisi+1 to a reduced
expression amounts to a substitution within a tiling as in Figure 1. Any two

Figure 1: The relation sisi+1si = si+1sisi+1 in terms of tilings

reduced expressions for the same permutation give rise to rhombic tilings
which fit in exactly the same planar region. One may obtain any rhombic
tiling for a particular region from any other by applying braid relations.

We will use rhombic tilings to record how a maximal chain is deformed
under a local symmetric group action by successively applying the adjacent
transpositions in a reduced expression for a permutation. If p2 = wp1, then
each reduced expression for w gives rise to a (potentially distinct) way of
deforming the maximal chain p1 to p2 within a poset. The structure of a
poset with a local symmetric group action must allow for all possible ways
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of deforming one maximal chain to another.
Each rhombic tiling may be viewed as the projection of a discrete 2-

dimensional surface S within a hypercube or multi-dimensional box onto a
generic plane. Such a surface S may be deformed via braid relations (as in
Figure 1) to surfaces coming from other reduced expressions for the same
permutation; relations of the form sisi+1si = si+1sisi+1 will take surfaces
which include the front three faces of a cube to surfaces which instead includes
the back three faces. The surfaces given by the same permutation will have
the same boundary. The collection of rhombic tilings for a particular region
gives rise to all the minimal discrete surfaces within a multi-dimensional box
which have some fixed boundary. This point of view leads us to prove in
Section 2 that the maximal chains in an orbit of a local symmetric group
action must be arranged in such a way that they form the skeleton of such
a multi-dimensional box. Otherwise, braid relations would be violated or an
orbit would be incomplete (or both).

This does not, however, imply that each orbit is a product of chains
since the nodes in such a skeleton need not all be distinct. In Section 2, we
prove that the nodes are distinct when the poset is a lattice and conclude
that the orbits in lattices are products of chains. Sections 3 and 4 examine
local actions induced by labellings known as R∗S-labellings: in the former
section we prove that all posets with R∗S-labellings have symmetric chain
decompositions, while the latter provides R∗S-labellings for the interpolating
BD noncrossing partition lattices.

2 Orbit characterization

Simion and Stanley have shown in [SS] that the Frobenius characteristic of
a local symmetric group action on an orbit is always a complete symmetric
function. Theorem 3 will provide a more geometric proof of this result in
order to show how orbits are realized within posets. This will allow us to
characterize the orbits of local symmetric group actions on lattices in Theo-
rem 4, answering a question of Stanley.

Figure 2 gives an example of how the situation differs between posets and
lattices. Identifying the nodes labelled (0, 3) and (3, 0) within a product of
two 4-chains, yields a poset with a local symmetric group action with three
orbits. One orbit consists of the maximal chains from the original product
of chains before identification. Two new maximal chains are introduced, one
of which is depicted by the shaded lines in Figure 2. These maximal chains
due to crossover give rise to two trivial orbits.
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(0, 3)(3, 0)

(0, 0)

(3, 3)

Figure 2: A product of chains with node identification

This example depends on the fact that the above poset is not a lattice.

Definition 1. When the symmetric group acts locally on the maximal
chains in a poset, then the elements of an orbit subposet are the nodes in
any maximal chain within the orbit specifying it. The covering relations are
induced by covering relations from the maximal chains in the orbit.

In lattices, the maximal chains in an orbit subposet turn out to be exactly
the maximal chains belonging to the orbit specifying it.

Lemma 2 justifies geometric claims within the proof of Theorem 3.

Lemma 2. If si(p) 6= p and si+1(p) = p, then si+1(si(p)) 6= si(p). Similarly,
if si+1(p) 6= p and si(p) = p, then si(si+1(p) 6= si+1(p).

proof. If si+1(si(p)) = si(p) and si+1(p) = p, then

si(p) = si+1(si(p))

= si+1si(si+1(p))

= si(si+1(si(p)))

= si(si(p))

= p.

The second assertion follows similarly. 2

In Theorem 3 we will define a map φ from maximal chains in a poset
to lattice paths in ZZn. Lemma 2 implies that whenever im(φ) includes two
lattice paths involving segments abdf and acdf , (in Figure 3) respectively,
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and otherwise agreeing, then im(φ) will also include a lattice path through
acef which otherwise agrees with both these paths. No assumption is made
about whether bd is perpendicular or parallel to df .

c

e

f

d

a

b

Figure 3: Building an orbit

Theorem 3. If Sn acts locally on the maximal chains in a poset, then the
Frobenius characteristic of the action is an h-positive symmetric function.

proof. We will prove that the local symmetric group action on any orbit is
isomorphic to a local action on some product of chains Cλ1+1 × · · · × Cλk+1,
since this action will have Frobenius characteristic hλ.

Let us refer to maximal chains in a poset P as P -chains. We claim that
any orbit may be embedded by a map φ into the lattice ZZn in such a way
that poset rank is encoded as sum of coordinates and P -chains are sent to
lattice paths within INn. We will define φ in such a way that im(φ) will
be the collection of all minimal lattice paths from the origin to a particular
endpoint in INn. Furthermore, si will act nontrivially on a P -chain pwhenever
the segment of the lattice path φ(p) from rank i−1 to rank i is perpendicular
to the segment from rank i to i + 1. When path segments are labelled by
lattice basis vectors, then applying an adjacent transposition will amount
to swapping a lattice path with one which has the two consecutive labels
swapped.

We define φ by choosing a P -chain p and specifying how to embed wp
into INn for each w ∈ Sn. The embedding will be based on a choice of
reduced expression for w, but we will check that all reduced expressions for
the same permutation w yield the same lattice path φ(wp). To conclude that
φ is well-defined, we will also need to show that φ(w1p) = φ(w2p) whenever
w1p = w2p, using the definition of local action.

If si(p) = p for all i < a1 and sa1(p) 6= p, then let the lattice path φ(p)
begin with a segment from (0, . . . , 0) to (a1, 0, . . . , 0). The lattice path φ(p)
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will change direction at rank i for each i such that si(p) 6= p. In particular, if
sa2 acts nontrivially on p and all intermediate si act trivially on p, then φ(p)
includes the segment from (a1, 0, . . . , 0) to (a1, a2−a1, 0, . . . , 0). At this point,
we may specify how φ(wp) is related to φ(p) for any w which only involves
the adjacent transpositions s1, . . . , sa2−1. If sjp1 = p2 6= p1 for a P -chain p1

which has already been embedded up to rank j + 1, then p2 is embedded up
to rank j+1 by replacing the node of rank j in φ(p1) with the only other node
of rank j in INn which together with the rest of φ(p1) gives a lattice path. In
this way, the embedding of p up to rank a2 locally gives rise to every possible
discrete path of minimal length from the origin to (a1, a2− a1, 0, . . . , 0); first
one obtains φ(sa1(p)), and repeated application of Lemma 2 yields all minimal
length lattice paths from (0, . . . , 0) to (a1, a2−a1, 0, . . . , 0). These paths may
be sequentially embedded in many different orders, but the commutation
relations sisj = sjsi for |j − i| ≥ 2 force all choices to be equivalent.

The direction in which to extend φ(p) to rank a2 +1 is determined by how
sa2 acts upon the P -chains with image under φ passing through the lattice
point (a1, a2 − a1, 0, . . . , 0) which also agree with φ(p) afterwards. The edge
out of (a1, a2−a1, 0, . . . , 0) in φ(p) needs to be perpendicular to exactly those
segments into (a1, a2 − a1, 0, . . . , 0) which belong to lattice paths which are
acted upon nontrivially by sa2, and which also include the given segment out
of (a1, a2 − a1, 0, . . . , 0).

Lemma 2 implies that at each step of the embedding of p, the next seg-
ment of φ(p) should be perpendicular to all but at most one of the lattice
path edges leading into this new segment, so embedding is feasible. In this
fashion we may define φ(p). Each time φ(p) changes direction, we repeatedly
apply Lemma 2 just as we did at rank a1 to obtain lattice paths of the form
φ(wp). The relations sisi+1si = si+1sisi+1 imply that when three consecu-
tive segments of some φ(wp) are all perpendicular, six lattice paths result all
belonging to im(φ), and the restriction of these lattice paths to the interval
form the skeleton of a cube.

Repeated application of Lemma 2 and braid relations thus yields every
minimal lattice path from the origin to the endpoint of φ(p) as the image
of some P -chain, so φ will be onto. We need only show that any pair of
distinct lattice paths α, β ∈ im(φ) come from distinct P -chains to insure
that φ is well-defined. Let v1 and v2 be nodes in ZZn where α and β first
differ. There must also exist lattice paths γ, γ′ ∈ im(φ) containing v1 and
v2, respectively, which otherwise agree with each other. From the definition
of φ it follows that γ and γ′ are the images of distinct P -chains q, q′ which
satisfy q′ = si(q) for i = rank(v1). Hence, v1 and v2 must be the images of
distinct poset elements of rank i, implying α and β are the images of distinct
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P -chains, so φ is well-defined. Our definition of φ insures that φ is injective,
since φ(p) 6= φ(wp) whenever p 6= wp.

The local Sn-action on the orbit is thus an action well-known to have
Frobenius characteristic hλ, as desired. 2

The argument we present next was gleaned from a more complicated
proof involving the correspondence between rhombic tilings and commutation
classes of reduced expressions for a permutation.

Theorem 4. If Sn acts locally on a lattice, then each orbit is a product of
chains.

proof. We begin by proving that a poset obtained from a product of two
chains by identifying two of its nodes cannot be a lattice. After this, we
will show how to reduce the proof of the theorem to this case. We assume
throughout that there is no node identification at rank 1, because we dealt
with this possibility while proving φ was well-defined in Theorem 3.

Consider a product of two chains, each of which has rank r. Let us
identify a = (r, 0) with b = (0, r) and assume there is no node identification
below rank r. Suppose this poset is a lattice. We use induction on j to show
that (j, 1) ≤ a for all j < r. As the base case, observe that (0, 1) ≤ a since
a = b = (0, r). If (j, 1) ≤ (r, 0) for some j ≥ 0, then (j, 1)∨ (j+ 1, 0) ≤ (r, 0)
for j + 1 ≤ r. Since (j + 1, 0) ≤ (j + 1, 1) and (j, 1) ≤ (j + 1, 1) and
rank (j + 1, 1) = rank (j, 1) + 1, note that (j, 1) ∨ (j + 1, 0) = (j + 1, 1)
in the poset. The definition of join thus implies (j + 1, 1) ≤ (r, 0) = a
whenever (j, 1) ≤ (r, 0) for j + 1 ≤ r. By induction, (r − 2, 1) ≤ a, so
a ≥ (r − 2, 1) ∨ (r − 1, 0) = (r − 1, 1), a contradiction.

There is one somewhat subtle point to be addressed in the way we will
show a poset is not a lattice by restricting to some subposet and showing
this cannot be a lattice. When we assume a poset is a lattice, we need to
be careful about whether the join of two subposet elements also lies in the
subposet. In the above induction, we only deal with joins a ∨ b of rank one
more than the rank of a and b, so this must be the join of a and b in any
lattice containing the above as a subposet.

Now consider any product of chains with nodes a and b of rank r identified
and with no node identification below rank r. Choose a maximal chain p1

through the node a and a maximal chain p2 through b (before identification),
and then restrict attention to the nodes in some deformation of p1 to p2.
We choose p1 and p2 so that the number of adjacent transpositions needed
to deform p1 to p2 is as small as possible. If we let a = (a1, . . . , ak) and
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b = (b1, . . . , bk), using the coordinates given by the product of chains struc-
ture, then p1 and p2 both contain the node (min (a1, b1), . . . ,min(ak, bk))
and agree below this node. Furthermore, a minimal deformation will not
affect the nodes between 0̂ and (min (a1, b1), . . . ,min (ak, bk)). The nodes
above (min (a1, b1), . . . ,min(ak, bk)) which occur in a minimal deformation
will give rise to a product of two chains, but with a and b identified.

This last observation follows from the fact that the coordinates which in-
crease in travelling from (min (a1, b1), . . . ,min(ak, bk)) to a along the maximal
chain p1 are completely disjoint from the set of coordinates which increase
in p2 between (min (a1, b1), . . . ,min(ak, bk)) and b. An example is illustrated
in Figure 4. The product of two chains comes from interspersing steps in
the direction of p1 with steps in the direction of p2, while travelling from
(min (a1, b1), . . . ,min (ak, bk)) to (max (a1, b1), . . . ,max (ak, bk))

(0, 0, 0, 0)

(2, 2, 0, 0) = a

b = (0, 0, 1, 3)

(2, 2, 1, 3)

p1

p2

Figure 4: A 2-dimensional surface within a 4-dimensional product of chains

If a and b are identified in any product of chains, they will thus also be
identified in a subposet which is a product of two chains, and so the original
poset will not be a lattice. 2

3 Symmetric boolean decomposition

In this section, we show that posets with R∗S-labellings have symmetric
chain decompositions which may be defined in terms of these labellings. The
notion of R∗S-labelling was introduced by Simion and Stanley in [SS]. A
chain-labelling of a poset is R∗ if 0̂ ≺ u1 ≺ · · · ≺ uk = u ≤ v implies there
is a unique extension of this chain to a saturated chain from 0̂ to v with
strictly increasing labels between u and v. If a chain-labelling λ induces a
local Sn-action on the maximal chains of a poset, and the sequences labelling
the maximal chains are all distinct, then λ is an S-labelling; in this case, Sn
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acts on sequences of edge labels by permuting the order of the labels, and
this induces a local action on the maximal chains with corresponding labels.
An S-labelling which is also R∗ is an R∗S-labelling.

In the following theorem, we make reference to the unique saturated chain
from u to v with increasing labels for any pair u ≤ v. This is not well-
defined for a chain-labelling which is not an edge labelling, but we establish
the following convention. When we refer to the unique increasing chain from
u to v, we first choose the increasing maximal chain from 0̂ to u, and then
based on this choice we select the resulting increasing saturated chain from
u to v.

Theorem 5. If a finite, ranked poset admits an R∗S-labelling, then the
elements may be decomposed into a disjoint union of symmetrically placed
boolean lattices.

proof. We define a map φ from elements of a finite poset P to symmet-
rically placed boolean lattices in the poset and show that this map is a
decomposition. Let λ be an R∗S-labelling for a poset P of rank n. For each
v ∈ P , there are unique saturated chains 0̂ = u0 ≺ u1 ≺ · · · ≺ uk = v and
v = v0 ≺ · · · ≺ vl = 1̂ with strictly increasing labels. Since λ is an S-labelling,
there exist u and w such that 0̂ ≤ u ≤ v ≤ w ≤ 1̂ and rank w = n− rank
u with u and w satisfy the following two conditions: first, the set of labels
on the unique rising chain from 0̂ to u is the same as the set of labels on the
unique rising chain from w to 1̂. Second, the set of labels on the rising chain
from u to v is disjoint from the set of labels on the rising chain from v to w;
each of these sets is also disjoint from the set of labels on the rising chains
from 0̂ to u and from w to 1̂. This is possible by restricting Sn to acting lo-
cally on the saturated chain from 0̂ to v and likewise on the saturated chain
from v to 1̂ to obtain new saturated chains with all common labels shifted
down to below u and up to above w. There is a symmetrically placed boolean
lattice Bu,w on the interval from u to w. It consists of all nodes reached by
restricting Sn to acting locally on the orbit within this interval (u, w) which
includes the increasing chain from u to w. Since λ is an R∗-labelling, u and
w are uniquely specified, and v ∈ Bu,w, so let φ(v) = Bu,w.

Note that if φ(v1) = Bu,w and v2 ∈ Bu,w, then φ(v2) = Bu,w, because
the unique increasing chains from 0̂ to v2 and from v2 to 1̂ may be obtained
by taking a maximal chain which includes v2 in addition to u and w since
v2 belongs to Bu,w, and then applying a sequence of adjacent transpositions
permuting the labels above v2 and below v2 separately. Hence, φ provides a
decomposition. 2
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Note that R∗S-labellings restrict to intervals, so Theorem 5 also applies
to all the intervals in posets with R∗S-labellings.

Corollary 6. If a finite, ranked poset admits an R∗S-labelling, then it has
a symmetric chain decomposition.

proof. Theorem 9 provides a decomposition into symmetrically placed
boolean lattices, and each of these has a symmetric chain decomposition.
One may find an explicit construction of a symmetric chain decomposition
for the boolean lattices in a survery article by Greene and Kleitman [GK],
and this article also gives original references (de Bruijn et al., Leeb). 2

Reiner gives symmetric chain decompositions for the type B and interpo-
lating BD noncrossing partition lattices in [Re], but his SCD’s for interpo-
lating BD noncrossing partition lattices are not an immediate consequence
of his recursively defined SCD for type B. In the next section we provide an
R∗S-labelling for the type B noncrossing partition lattice, and this is easily
shown to restrict to an R∗S-labelling for the interpolating BD noncrossing
partition lattices. Theorem 5 leads to Reiner’s symmetric chain decomposi-
tion for type B, and this restricts to an SCD for the other types since the
R∗S-labellings restrict to other types. One may similarly show that other
subposet of posets with R∗S-labellings have symmetric chain decompositions.

4 Noncrossing partitions of types B and D

Reiner defined and studied noncrossing partition lattices for the classical
reflection groups in [Re]. In this section, we define an R∗S-labelling for the
type B, D and interpolating BD noncrossing partition lattices, answering a
question raised by Stanley in [St3]. The labelling for type B restricts to one
for the other types. This R∗S-labelling is also closely related to the labelling
by parking functions for the traditional (type A) noncrossing partition lattice
given in [St3].

The type B noncrossing partition is a partition of ±1,±2, . . . ,±n satis-
fying the following two conditions. If one places 1, 2, . . . , n,−1,−2, . . . ,−n
sequentially about a circle spacing the numbers evenly, and one draws straight
lines through the circle between any two numbers belonging to the same com-
ponent of a partition, then the interior of the circle should have 180 degree
rotational symmetry. Furthermore, deleting any two edges that cross should
leave the partition unchanged. By convention, the numbers are placed clock-
wise about the circle. For each component Ci there will be a component −Ci
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such that j ∈ Ci if and only if −j ∈ −Ci. In particular, one of the compo-
nents may satisfy C = −C. When such a component exists, this is called
the 0-component, denoted by C0. The noncrossing property precludes the
existence of more than one 0-component. The type B noncrossing partition
lattice is the poset of type B noncrossing partitions ordered by refinement.
The type D noncrossing partition lattice is the restriction to partitions with
C0 6= {±i} for 1 ≤ i ≤ n. The interpolating BD noncrossing partition lat-
tices arise by choosing a subset S ⊆ {1, . . . , n} and forbidding partitions with
C0 = {±i} for i ∈ S.

We define an edge-labelling λ for the type B noncrossing partition lattice
in terms of covering relations. If v is obtained from u by merging C with
−C to form C0, then C is entirely contained in some semicircle S. In this
case, we let λ(u, v) = i where i ∈ {1, . . . , n} and ±i is the last element of C
encountered while travelling clockwise about S. If v is obtained from u by
merging two components C1 and C2 (and simultaneously merging −C1 with
−C2), then one of the following conditions is true (for some choice of which
component is C1 and which is C2). Either there is some pair of elements both
in C2 such that all elements of C1 lie between these two elements of C2, or
there is some semicircle S which contains both C1 and C2 and such that all of
C2 comes before all of C1 travelling clockwise about S. In either case, there
is some i ∈ {1, . . . , n} such that ±i is the last element of C2 encountered
before the first clockwise element of C1, and then we let λ(u, v) = i.

For example, listing only blocks with more than one element, the maxi-
mal chain

∅ ≺ ±{5, 6} ≺ ±{5, 6}, {±4} ≺ ±{1, 3},±{5, 6}, {±4} ≺ ±{1, 2, 3},±{5, 6},
{±4} ≺ {±1,±2,±3,±4},±{5, 6} ≺ {±1,±2,±3,±4,±5,±6}

is labelled with the parking function λ = (5, 4, 1, 1, 4, 4). Figure 5 depicts
how components are sequentially merged in this maximal chain; arc labels
indicate the order in which components are merged.

We follow Stanley [St3] in referring to sequences in {1, . . . , n}n as type
B parking functions. The number of maximal chains in NCB(n) is nn, and
Theorem 7 will show that λ labels each maximal chain with a distinct type
B parking function.

Theorem 7. The labelling λ on the type B noncrossing partition lattice is
an R∗S-labelling.

proof. We prove that λ is a bijection between maximal chains and sequences
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Figure 5: A maximal chain in a type B noncrossing partition lattice

in {1, . . . , n}n by recursively defining the inverse map. After that, we verify
that the Sn-action permuting the order of the digits in parking functions
induces a local action on corresponding maximal chains to conclude that λ
is an S-labelling. Finally, we check that λ is also an R∗-labelling.

It will suffice to provide the inverse to λ for those maximal chains in
which 1 is merged with some j ∈ {2, . . . , n,−1} at rank 1. These chains
will be labelled by exactly those parking functions which have 1 as their
first digit. Symmetry will imply that for each i ∈ {1, . . . , n} there is an
analogous bijection between maximal chains which have i merged with some
j ∈ {i + 1, . . . , n, 1, . . . ,−i} at rank 1 and type B parking functions with i
as their first digit.

Given a parking function with first digit 1, the choice of which j to merge
with 1 at rank 1 will depend on the content (but not the order) of the
remaining n− 1 digits in the parking function. In order to determine j, let
us rearrange the remaining parking function digits in increasing order and
view this weakly increasing sequence as a path from (1, 1) to (n, n) made up
of steps up and steps to the right, each of length 1. If every lattice point in
this path is of the form (k, i) for i ≤ k, then let j = −1. Otherwise, let j be
the unique integer such that (j + 1, j) belongs to the lattice path and this
is the first place the path goes above the staircase path. (Lattice paths are
used in a similar fashion in [Re].)

Of the n−1 digits specifying such a path, those which are less than j will
determine how elements between 1 and j−1 will be merged in the remainder
of the saturated chain while digits between j and n will determine how to
merge elements between j and −1 on the circle. Note that the former corre-
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spond to type A parking functions on 1, . . . , j−2 while the latter correspond
to elements of [j, . . . , n]n−j . Hence, the n− 1 remaining digits give rise to a
type A parking function on 1, . . . , j − 2 interspersed with a type B parking
function on j, . . . n.

There is a corresponding decomposition of the space of maximal chains
which recursively completes the bijection. This involves the following prod-
uct structure which is discussed in [Re], and which generalizes similar struc-
ture for type A as studied in [SU]. Let Mi(NCB(n)) denote the collection
of maximal chains in the type B noncrossing partition lattice on ±1, . . . ,±n
which begin by merging i ∈ {1, . . . , n} with any j ∈ {i + 1, . . . ,−i} and
merging −i with −j. Let Mi,j(NCB(n)) denote the restriction to max-
imal chains with a particular choice of j. Observe that Mi(NCB(n)) =∐

j∈{i+1,...,−i}Mi,j(NCB(n)). Also note that the interval (u, 1̂) from a type

B noncrossing partition u of rank 1 up to 1̂ is isomorphic to NCA(j − i) ×
NCB(n − j + i) if i is merged with j in u. Hence, maximal chains in such
an interval are labelled by type A parking functions interspersed with type
B parking functions, as desired.

To show that λ induces a local symmetric group action, we need to check
that the maximal chain labelled by the type B parking function (a1, . . . , an)
differs only at rank i from the maximal chain labelled (a1, . . . , ai+1, ai, . . . , an)
for ai 6= ai+1. Note that λ−1 “decides” which node to visit next at each
step in choosing a maximal chain from 0̂ to 1̂ based only on the content of
the remaining digits. This implies that the two maximal chains will agree
up to rank i − 1. Also observe that merge steps i and i + 1 “commute”
for ai 6= ai+1 by virtue of the recursively defined bijection λ. This notion
of commutativity comes from treating merge steps as operators which take
poset elements of rank i − 1 to ones of rank i. Our discussion of edge-
labelled graphs immediately following this theorem should clarify this point.
The symmetric group relations are automatically satisfied since the action
on maximal chains is induced by a valid symmetric group action on the type
B parking functions which label them.

Finally, we claim that this S-labelling is also R∗. First note that the
unique rising chain from 0̂ to 1̂ involves merging {1, . . . , i} with {i + 1} at
stage i for 1 ≤ i < n and then merging {1, . . . , n} with {−1, . . . ,−n} at
stage n. For u ≤ v the increasing chain from u to v is found similarly, but
skipping steps merging components which are already merged in u or still
not merged in v. 2

One may associate graphs to orbits and edge labellings of these graphs
to maximal chains within each orbit to make the recursive structure explicit.
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Figure 5 is an example of such a graph. Begin with a circle with nodes
1, . . . , n,−1, . . . ,−n placed sequentially about it. For each covering relation
u ≺ v in a maximal chain, we will draw a pair of arcs which are each labelled
with the rank of v. For convenience, we will refer to left and right endpoints
of arcs, by which we will mean the endpoint that appears to the left or right
from the point of view from the center of the circle. The absolute value
of the left endpoints of the pair of arcs labelled i will be the ith digit of
the parking function which labels our maximal chain. Labelling poset edges
with the absolute value of the right endpoints of the same arcs gives another
poset edge-labelling. This labelling restricts to an EL-labelling for the type
A noncrossing partition lattice; the type A labelling was defined by Björner
and was studied by Edelman and Simion in [ES]. Unfortunately, the type B
labelling is not also an EL-labelling. The type A analogue of edge-labelled
graphs are equivalent to the vertex-labelled trees discussed in [ES].

If C is merged with −C in the covering relation u ≺ v, recall that there
is some semicircle containing all of C. Draw an arc from i to −i where i is
the last element of C encountered travelling clockwise about this semicircle.
If C1 is merged with C2 and C1 lies entirely between consecutive elements of
C2, then draw an arc with left endpoint at the element of C2 which comes last
clockwise before reaching C1. The right endpoint will be the first element
of C1 encountered continuing clockwise from this element of C2. Otherwise,
there is a semicircle which includes all of C1 and all of C2. Draw an arc
connecting the nearest elements of C1 and C2 to each other.

These edge-labelled graphs always satisfy the following two conditions.
First, each point on the circle is the right endpoint to exactly one arc. Second,
the labels on the arcs with a particular left endpoint increase as one reads
away from the center of the circle, i.e. as the right endpoints of these arcs
progress counterclockwise.

Note that whenever two consecutive digits ai and ai+1 in a parking func-
tion differ, the arcs labelled i and i+ 1 will have different left endpoints, so
swapping these arc labels gives an edge-labelled graph which still satisfies the
above two conditions. Hence, the two maximal chains with parking functions
(a1, . . . , an) and (a1, . . . , ai+1, ai, . . . , an) have edge-labelled graphs with these
arc labels swapped, so the chains differ only at rank i. Successively applying
adjacent transpositions shows that maximal chains p and wp in the same
orbit give rise to the same underlying graph, but with arc-labels permuted
by w.

One may restrictR∗S-labellings to subposets by forbidding particular arcs
within these graphs. The interpolating BD noncrossing partition lattices are
an example of such a restriction.
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Theorem 8. The labelling λ restricts to an R∗S-labelling for the interpo-
lating BD noncrossing partition lattices.

proof. The maximal chains of type B which do not occur in a particular
interpolating BD noncrossing partition lattice constitute entire orbits. Hence
the restriction of the R∗S-labelling is still an S-labelling. An increasing chain
between two partitions which both satisfy C0 6= {±i} never involves merging
±i to form C0 = {±i} at an intermediate step, so every remaining interval
still has a unique increasing chain. 2

Ehrenborg defined in [Eh] the function

FP =
∑

0̂=t0≤t1≤···≤tk−1<tk=1̂

x
ρ(t0,t1)
1 x

ρ(t1,t2)
2 · · ·xρ(tk−1,tk)

k

which counts the chains in a finite, ranked poset P which include any partic-
ular collection of ranks. We use Theorem 8 to evaluate FP for interpolating
BD noncrossing partition lattices. Let φP be the Frobenius characteristic of
the local symmetric group action induced by an R∗S-labelling of P . Simion
and Stanley proved in [SS] that FP = ωφP , where ω is the symmetric function
involution which (in particular) swaps eλ with hλ.

In the following two corollaries, we sum over compositions of n, denoted
by α, where αi counts the number of digits in a type B parking function
which are equal to i. Each composition accounts for a single orbit of the
symmetric group action on parking functions permuting positions.

Corollary 9. If P is the type B noncrossing partition latticeNCB(n), then

FP =
∑

{α∈INn|α1+···+αn=n}

eα.

proof. We invoke the theorem of Simion and Stanley that FP = ωφP , with
φP , as defined above. To obtain φP , we sum Frobenius characteristic over
orbits. Each orbit is a product of chains and so has Frobenius characteristic
hα. 2

For example, if P = NCB(3) then FP = e3
1 + 6e1e2 + 3e3.

Corollary 10. If P is the interpolating BD noncrossing partition lattice
NCBD

S , then

FP =
∑

{α∈INn∩PFS |α1+···+αn=n}

eα
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for PFS =
⋂
i∈S{α|αi + · · ·+ αj < j − i+ 1 for some i ≤ j ≤ n or αi + · · ·+

αn + α1 + · · ·+ αj < j + n − i+ 1 for some j < i}.
proof. Theorem 8 implies NCBD

S (n) has an R∗S-labelling, so we again use
the fact that FP = ωφP . Note that the type B orbits which survive are those
with edge-labelled graph not involving an arc from i to −i for any i ∈ S.
The definition of PFS allows the parking functions corresponding to exactly
these maximal chains. 2

For example, if P = NCBD
S (3) with S = {1}, then FP = e3

1 + 5e1e2 + 2e3.
This poset has two fewer orbits than NCB(3), since the orbits of NCB(3)
with label content (1, 1, 1) and (1, 1, 2) are no longer permitted.

In the specialization of Corollary 10 to type B, we have S = ∅, which
means {1, . . . , n}n ∩ PFS = {1, . . . , n}n, and we recover Corollary 9. When
S = {1, . . . , n}, i.e. in the case of the type D specialization, we obtain FP =∑

a∈PF{1,...,n} eα(a). Using recursive product structure, FP for type D may

alternatively be expressed as

FNCB(n) − n

 ∑
T⊆{3,...,n}

e|T |+2FNCA(t1−2)FNCA(n−t|T |)

|T |−1∏
i=1

FNCA(ti+1−ti)

 .

Each of the subtracted sums comes from forbidding a particular 0-block
of the form {±i}. The edge-labelled graphs involving an arc from i to −i
also have arcs from i to i+ 1, so T specifies the right endpoints of all other
arcs with left endpoint i. We choose T ⊆ {3, . . . , n} above for the case i = 1,
but the contribution to FP will be the same for any i, so we multiply by
n to consider all possible i ∈ {1, . . . , n}. This n may be replaced by any
j ∈ {1, . . . , n} to give a similar formula for an interpolating BD noncrossing
partition lattice with j = |S|.
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