
A van der Waerden Variant

Kevin J. Compton
BRICS Research Centre, University of Aarhus, Denmark

and EECS Department, University of Michigan
Ann Arbor, MI 48109-2122

kjc@umich.edu

Abstract

The classical van der Waerden Theorem says that for every every finite set
S of natural numbers and every k-coloring of the natural numbers, there is a
monochromatic set of the form aS+b for some a > 0 and b ≥ 0. I.e., monochro-
matism is obtained by a dilation followed by a translation. We investigate the
effect of reversing the order of dilation and translation. S has the variant van
der Waerden property for k colors if for every k-coloring there is a monochro-
matic set of the form a(S+ b) for some a > 0 and b ≥ 0. On the positive side it
is shown that every two-element set has the variant van der Waerden property
for every k. Also, for every finite S and k there is an n such that nS has the
variant van der Waerden property for k colors. This extends the classical van
der Waerden Theorem. On the negative side it is shown that if S has at least
three elements, the variant van der Waerden property fails for a sufficiently
large k. The counterexamples to the variant van der Waerden property are
constructed by specifying colorings as Thue-Morse sequences.

Submitted July 17, 1997; Accepted April 2, 1999.

AMS Subject Classification. Primary: 05D10. Secondary: 11B85, 68R15.

1 Introduction.

Van der Waerden’s theorem on arithmetic progressions is over seventy years old [26],
but it continues to reveal new facets and inspire new results. It has many general-
izations, such as the Hales-Jewett Theorem [6] and multidimensional versions [21]. It
has had unexpected connections with other parts of mathematics, such as topological
dynamics [5]. The numerical bounds from van der Waerden’s original proof, long
thought to be the best attainable, have been dramatically reduced in recent years
[23].

In its most familiar formulation, van der Waerden’s Theorem says that if � =
{0, 1, 2, . . .} is partitioned into a finite number of classes, one of the classes contains
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arbitrarily long arithmetic progressions. To distinguish this theorem from the variant
we will introduce, we refer to it as the classical van der Waerden Theorem. Another
way of stating the theorem is to say that for every k-coloring of � (or mapping
α : � → {0, . . . , k − 1}) and every finite S ⊆ �, there are integers a > 0 and b ≥ 0
such that aS + b = {as + b | s ∈ S} is monochromatic. That is, α maps all elements
in some set aS + b to the same color. Thus, we can find a monochromatic set by
dilating S (multiplying every element by a) and then translating (adding b to every
element).

The question we will consider involves another, apparently unexplored, variation:
what happens when the order of dilation and translation is reversed? Is it the case
that if � is k-colored and S is a finite subset of �, there are a > 0 and b ≥ 0 such that
a(S + b) is monochromatic? The answer, interestingly enough, depends on S and k.
For some values of S and k this property (which we call the variant van der Waerden
property) holds; for others it does not. We do not yet have a characterization of the
cases where it holds, but this paper makes some initial progress in that direction.

For a nonempty set S ⊆ � and k > 0, VW (S, k) holds if for every k-coloring of �
there are integers a > 0 and b ≥ 0 such that a(S + b) is monochromatic. (When we
speak of a set of the form a(S + b), we will assume that a > 0 and b ≥ 0.) Clearly,
if VW (S, k) holds, T ⊆ S and l < k, then VW (T, l) holds. Also, if c ≥ 0 and
VW (S + c, k) holds, then VW (S, k) holds.

In Section 2 we will examine the positive instances of the variant van der Waerden
property and in Section 3 we will examine negative instances. Proofs of the negative
results make use of Thue-Morse sequences which have been studied both in formal
language theory and topological dynamics. We conclude with some open questions
in Section 4. Many of the results in this paper were originally conjectured on the
basis of computer experiments. We will describe how the experiments led to the
results proved in this paper. The C program vw.c used in these experiments may be
downloaded from the EJC site.

The computer program we used computed some values ofM(S, k), which is defined
to be the least M such that every k-coloring of {0, 1, 2, . . . ,M} has a monochromatic
subset of the form a(S + b). If we define M ′(S, k) to be the least M ′ such that every
k-coloring of {0, 1, 2, . . . ,M ′} has a monochromatic subset of the form aS + b, it is
clear that M ′(S, k) ≤ M(S, k) whenever M(S, k) is defined. Brown, et al. [4] give a
nearly complete account of the values of M ′(S, k) when |S| = 3.

In general, one may formulate many different variants of van der Waerden’s The-
orem by asking, for a given set A of finite sets of integers and a given k > 1,
whether every k-coloring of � will make at least one element of A monochro-
matic. Researchers have investigated this question for various choices of A (see,
e.g. [3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]), but not for the one considered here.

We will require a few definitions in the sections that follow. Besides k-colorings of
�, we will also consider k-colorings of initial intervals of �. It is useful to identify a k-
coloring α : {0, 1, . . . , i−1} → {0, . . . , k−1} with a word of length i over the k-symbol
alphabet, viz., the word α0α1 · · ·αi−1, where αi = α(i). Similarly, we identify a k-
coloring of � with an infinite word over the k symbol alphabet. Thus, we may speak
of k-coloring α : I → {0, . . . , k−1} being a prefix of k-coloring β : J → {0, . . . , k−1}
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if I is an initial interval of J and α is the restriction of β to I; if, in addition, I is
properly contained in J , we say α is a proper prefix of β. When α is a prefix of β, we
will also say that β is an extension of α.

2 Positive Instances

Instances where the variant van der Waerden property holds satisfy the usual com-
pactness property of Ramsey-type theorems (see [6]). That is, if VW (S, k) holds,
there is an M such that for every k-coloring of {0, 1, . . . ,M}, there is a monochro-
matic set of the form a(S + b) is contained in {0, 1, . . . ,M}. For each S and k such
that VW (S, k) holds, let M(S, k) be the least such M .

The compactness property allows us to verify through a computer search that
VW (S, k) holds. Suppose S and k are given. We may systematically list k-colorings
of sets {0, 1, ..., i} until we find an i such that all k-colorings contain a monochromatic
set of the form a(S+b). This approach may be improved by applying standard search
techniques.

The table in Figure 1 below shows the result of running a search program for
various values of k and various two-element sets S. For the empty entries the program
did not return a value because it exceeded a time limit. In the classical Van der
Waerden Theorem, the case where S has two elements is not interesting. For the
variant van der Waerden property, the situation is not completely trivial, as we shall
see.

k
2 3 4 5

{0,1} 2 4 12 32
{0,2} 4 6 12
{1,2} 4 12 32
{0,3} 6 12 24
{1,3} 6 12 24
{2,3} 6 12 48
{0,4} 8 12 24

S {1,4} 8 24
{2,4} 8 12 24
{3,4} 8 16
{0,5} 10 20
{1,5} 10 18
{2,5} 10 24
{3,5} 10 18
{4,5} 10 24

Figure 1: Some values of M(S, k)

When S has precisely two elements it is useful to regard the problem of whether
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VW (S, k) holds as a graph coloring problem. Let S = {c, d} with c < d and let �(S)
be the graph whose vertex set is � and edge set is {{a(c+b), a(d+b)} | a > 0, b ≥ 0}.
Then VW (S, k) holds if and only if �(S) is not k-colorable. If �(S) is not k-colorable,
then M(S, k) is the least integer M such that �(S) restricted to {0, 1, . . . ,M} is not
k-colorable.

The following proposition, conjectured after a cursory examination of the table,
is quite easy to show.

Proposition 2.1 Let c < d be nonnegative integers. Then M({c, d}, 2) = 2d.

Proof. �(S) restricted to {0, 1, . . . , 2d} is not 2-colorable because it contains a
triangle consisting of the edges {c, d}+ c, {c, d}+ d and 2{c, d}.

On the other hand, �(S) restricted to {0, 1, . . . , 2d− 1} is 2-colorable. The only
edges in this graph are of the form {c, d} + b, where 0 ≤ b ≤ d − 1. Let l = d − c.
Color a vertex i with color 0 if bi/lc is even, and with color 1 otherwise. Since the
only vertices that i might possibly be adjacent to are i− l and i+ l, no two adjacent
vertices have the same color. 2

We now show that the variant van der Waerden property holds for two-element
sets.

Theorem 2.2 Let |S| = 2. Then VW (S, k) holds for all k > 0.

Proof. By the remarks above, it is enough to show that �(S) is not k-colorable. It
is easier to show something a little stronger. Let �n(S) be the graph whose vertex
set is � and edge set is {{a(c + b), a(d + b)} | n ≥ a > 0, b ≥ 0}. Clearly, the edge
set of �(S) is the union of the edge sets of the graphs �n(S). We will show that for
every S and k, there is an n = n(S, k) such that �n(S) contains a (k + 1)-clique.
Thus, �(S) contains a (k + 1)-clique and therefore is not k-colorable.

First, we show by induction on k that for each k there is an n such that �n({0, 1})
contains a k-clique whose vertices are all less than or equal to n. The case k = 1
is trivial. If k = 2 then we may take n = 1. Observe that for each n, �n({0, 1})
is periodic in the following sense. Let p(n) = lcm{1, 2, . . . , n}. Consider any edge
a({0, 1} + b) in �n({0, 1}). Since a ≤ n, p is a multiple of a, say p = aq. Then
a({0, 1}+ b) + p = a({0, 1}+ b+ q) is also an edge in �n({0, 1}). Thus, if �n({0, 1})
contains a k-clique whose vertices are all ≤ n, then by periodicity, it also contains
a k-clique whose vertices are all ≥ p(n) and ≤ n + p(n). Let n′ = n + p(n). Then
�n′({0, 1}) contains a k-clique whose vertices are all ≥ p(n) and ≤ n + p(n) and,
furthermore, contains an edge from 0 to each one of the vertices in this k-clique.
That is, �n′({0, 1}) contains a (k + 1)-clique all of whose vertices are ≤ n′.

Now we consider the case where S is an arbitrary two-element set. Let S = {c, d}
where c < d. We have seen that for a given k there is an n such that �n({0, 1})
contains a k-clique. We will show that �n(S) also contains a k-clique by describing
an embedding of �n({0, 1}) into �n(S). Let l = d − c and define h : � → � by
h(x) = lx + cp(n) (where p(n) is as above). Consider any edge a({0, 1} + b) in
�n({0, 1}). As before, p = p(n) is a multiple of a so we may write p = aq. Thus, h



the electronic journal of combinatorics 6 (1999), #R22 5

maps a({0, 1}+ b) to la({0, 1}+ b)+acq = a{cq+ lb, cq+ lb+ l}. We know that q ≥ 1
so setting b′ = cq + lb− c, we see that b′ ≥ 0, cq + lb = c+ b′ and cq+ lb+ l = d+ b′.
The image of the edge a({0, 1}+ b) under h is therefore a(S + b′), an edge in �n(S).
2

S M(S, 2) S M(S, 2)
{0,1,2} {2,4,5} 20
{0,1,3} 12 {3,4,5}
{0,2,3} 12 {0,1,6} 36
{1,2,3} {0,2,6} 24
{0,1,4} 22 {1,2,6}
{0,2,4} {0,3,6} 24
{1,2,4} 18 {1,3,6} 28
{0,3,4} 20 {2,3,6} 30
{1,3,4} 20 {0,4,6} 24
{2,3,4} {1,4,6} 32
{0,1,5} {2,4,6}
{0,2,5} 24 {3,4,6} 24
{1,2,5} 22 {0,5,6} 32
{0,3,5} 24 {1.5.6}
{1,3,5} {2,5,6} 30
{2,3,5} 24 {3,5,6} 24
{0,4,5} {4,5,6}
{1,4,5} 22

Figure 2: Some values of M(S, 2)

The results in Figure 2 give the values of M(S, 2) for some three-element sets S.
The program ran out of space on all the entries where no value of M(S, 2) is given.
Notice that in all these cases, the elements of S represent three distinct congruence
classes modulo 3. We give a partial explanation for this in the next section.

Theorem 2.3 For every finite S ⊆ � and k, there is an n = n(S, k) such that
VW (nS, k) holds.

Proof. By the compactness property of the classical van der Waerden Theorem, for
every S and k, there is an m such that for any k-coloring of {0, 1, . . . ,m}, there are
a > 0 and b ≥ 0 with aS + b monochromatic; in particular, a ≤ m and b ≤ m.
Let n = lcm{1, 2, . . . ,m}. Consider any k-coloring α of {0, 1, . . . ,mn}. Define a k-
coloring β on {0, 1, . . . ,m} by β(i) = α(ni). Thus, there are a and b, with 0 < a ≤ m
and 0 ≤ b ≤ m, such that aS + b is monochromatic with respect to β. Therefore,
anS + bn is monochromatic with respect to α. But n is divisible by a, say n = ac, so
a(nS + bc) is monochromatic with respect to α. 2
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3 Negative Instances and Thue-Morse Sequences

As we noted, the sets for the empty entries in Figure 2 consist of integers representing
three distinct congruence classes modulo 3. We can show that VW (S, 2) does not
hold when elements of S represent three distinct congruence classes modulo 3. (We
do not know if the converse holds.) The proof of this result will serve as a model for
proofs of more general results.

Suppose we run the program described in the previous section with S = {0, 1, 2}
and k = 2. The program does not verify that VW (S, k) holds; instead, when it
exhausts the space that has been allocated to it (160 integers) it outputs the first 81
colors of the last coloring in its search:

001001101001001101101001101

001001101001001101101001101

101001101001001101101001101

There is a pattern here! Let σi be the i-th color in this sequence (beginning with σ0

and ending with σ80). If i ≡ 1(mod 3), then σi = 0. If i ≡ 2(mod 3), then σi = 1. For
all i < 27, σi = σ3i. These rules together with the initial value σ0 = 0 determine the
sequence uniquely and allow us to continue it indefinitely. There is a more succinct
way to express this sequence as a Thue-Morse sequence.

We will consider a simple mathematical system (sometimes called a D0L system
[22]) consisting of a finite alphabet Σ, a mapping T : Σ → Σ∗, and a word w ∈ Σ∗.
Here Σ∗ is the set of words over Σ. We assume, for simplicity, that Σ is a set of
integers {0, 1, . . . , k − 1}; the natural order on Σ gives a lexicographic order on Σ∗.
Rather than T (i) = α, we usually state a rewrite rule i→ α.

We may extend T to a mapping T : Σ∗ → Σ∗ by taking

T (α0α1 · · ·αl−1) = T (α0)T (α1) · · ·T (αl−1).

for symbols α0, . . . , αl−1 ∈ Σ. Similarly, we can extend T to a mapping on infinite
words over Σ. The study of L systems concerns iterations of T applied to w. If w is
a single symbol, say 0, and each i ∈ Σ is the initial symbol of T (i), then T n(0) is a
prefix of Tn+1(0) and each of the words 0, T (0), T 2(0), T 3(0), . . . is a prefix of some
(possibly infinite) limit word σ, called the Thue-Morse sequence for (Σ, T, 0). This is
the least word in lexicographic order such that T (σ) = σ. To specify a Thue-Morse
word, it suffices to list the rewrite rules for T , since we take w = 0.

The famous sequence of Thue [25, 24] and Morse [19, 20] is generated by the
rewrite rules 0→ 01 and 1→ 10. It begins

01101001100101101001100101100110 · · ·

and has many interesting combinatorial properties [2].
The sequence at the beginning of this section is generated by the rewrite rules

0→ 001 and 1→ 101. This sequence is indeed a counterexample to VW ({0, 1, 2}, 2),
as can be seen from the proof of the following theorem.
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Theorem 3.1 Let p be a prime and k ≥ 2. Take r = d(p−1)/ke+2. If S is a subset
of � whose elements represent at least r distinct congruence classes modulo p, then
VW (S, k) does not hold.

Proof. Let s = r − 2 = d(p− 1)/ke, t = b(p− 1)/kc, and j be the remainder when
p− 1 is divided by k. Thus, p− 1 = js+ (k − j)t. Consider the rewrite rules

i→ i 0s 1s · · · (j − 1)s jt (j + 1)t · · · (k − 1)t

for i = 0, 1, . . . , k− 1. Let σ = σ0σ1σ2 · · · be the associated Thue-Morse sequence.We
show that no set of the form a(S + b) is monochromatic with respect to σ.

The value of σi is determined by its congruence class modulo p, unless i ≡
0(mod p). No set representing at least r = s + 2 distinct congruence classes can
be monochromatic because at most one of its elements is congruent to 0 modulo p,
and its other elements represent at least s+ 1 congruence classes.

Proceed by contradiction, taking a(S+b) to be a minimal monochromatic set (i.e.,
its largest element is minimal). If a is divisible by p, (a/p)(S + b) would be a smaller
monochromatic set, a contradiction. If a is not divisible by p, then the elements of
a(S+ b) represent at least r distinct congruence classes modulo p, and hence a(S+ b)
is not monochromatic. Once more we arrive at a contradiction. 2

We will improve this result presently. However, it is already strong enough to
show an important result concerning the variant van der Waerden property.

Corollary 3.2 If |S| ≥ 3, there is a k such that VW (S, k) fails.

Proof. Let p be a prime larger than the greatest element of S. Thus, every element
of S represents a distinct congruence class modulo p. Take k large enough that
|S| ≥ d(p− 1)/ke+ 2. 2

When k is reasonably large compared to p, Theorem 3.1 gives very good results
with respect to the Thue-Morse sequence. When p is large compared to k, we can
obtain better bounds using the probabilistic method (see Alon and Spencer [1]).

Theorem 3.3 Let p be a prime and k ≥ 2. Take r = dlogk(p
2 − p)e + 2. If S is a

subset of � whose elements represent at least r distinct congruence classes modulo p,
then VW (S, k) does not hold.

Proof. In the proof of Theorem 3.1, the rewrite rules are of the form i→ i α, where
α is a particular word of length p− 1. The only property of α used in the proof can
be stated as follows.

If α is regarded as a k-coloring of {1, 2, . . . , p−1}, then no set of the form
a(S + b)(mod p) with a 6≡ 0 (mod p) is monochromatic.
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Here T (mod p) indicates the set formed by replacing every t ∈ T with an integer
t′ ≡ t (mod p), where 0 ≤ t′ < p. (If a(S + b)(mod p) happens to contain 0, it is
considered monochromatic if all its nonzero elements have the same color.) If we can
show under the hypotheses of the present theorem that such an α exists, we are done.

Consider a probability space consisting of all k-colorings α of the set {1, 2, . . . , p−
1} with the uniform probability measure. Define the random variable X(α) on this
space to be the number of pairs (a, b) such that 1 ≤ a < p, 0 ≤ b < p, and
a(S + b)(mod p) is monochromatic with respect to α. Now let us estimate E[X],
the expectation of X. We may write X as a sum X =

∑
a,bXa,b where

Xa,b(α) =

{
1, if a(S + b)(mod p) is monochromatic with respect to α;
0, otherwise.

This sum is taken over the range 1 ≤ a < p, 0 ≤ b < p. By linearity of expectation
we have that E[X] =

∑
a,bE[Xa,b]. Now for fixed values of a and b, a(S + b)(mod p)

contains at least r − 1 nonzero elements. There are k ways to color them monochro-
matically, so E[Xa,b] ≤ k/kr−1 = 1/kr−2. Thus, E[X] ≤ p(p − 1)/kr−2. Since
r > logk(p

2−p)+2, we have E[X] < 1. We see that X is a nonnegative integer-valued
random variable with expectation less than 1. Therefore, for some α, X(α) = 0. This
is the coloring we seek. 2

4 Final Questions

Many questions remain. Here are a few questions suggested by the results of this
paper.

1. Is it the case that VW (S, k) holds if and only if for every prime p, every k-
coloring of {1, 2, . . . , p − 1}, every a > 0, and every b ≥ 0, a(S + b)(mod p) is
monochromatic?

2. Is it true that whenever VW (S, k) fails, there is a Thue-Morse sequence α over
the k-symbol alphabet such that no set of the form a(S + b) is monochromatic
with respect to α?

3. Is there a reason that the 2-coloring turned up by our computer search on
S = {0, 1, 2} and k = 2 happens to be the initial part of a simple Thue-
Morse sequence? In particular, if the program continued (with additional space
added as needed), would it continue to generate the Thue-Morse sequence? The
computer generated 2-coloring is the first counterexample (under lexicographic
ordering) to the variant van der Waerden property. We conjecture that for all S
and k where the variant van der Waerden property fails, the first counterexam-
ple coloring is a Thue-Morse sequence. Readers interested in doing computer
experiments to gain insight into this problem might first check to see how long
it takes for the color of the integer 17 to stabilize during the search for a coun-
terexample when S = {0, 1, 2} and k = 2. This will give some idea of the
subtleties of the problem.
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4. We see from Corollary 3.2 and Theorem 2.3 that the variant van der Waerden
property is affected both by dilation of S and number of colors. For a given
S with at least three elements, define FS(n) to be the least k ≥ 1 such that
VW (nS, k) fails. It follows that FS(n) is unbounded. However, it is not mono-
tone in general. What can we say about the behavior of the function FS(n)?

5. Fix k ≥ 2. Is there an infinite set Tk such that for each finite S ⊆ Tk, VW (S, k)
holds? A possibility for T2 might be {2, 2 ·3, 2 ·3 ·5, 2 ·3 ·5 ·7, 2 ·3 ·5 ·7 ·11, . . .}.

6. Characterize the S and k for which VW (S, k) holds.
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