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Abstract

We present a unified theory for permutation models of all the infinite fam-
ilies of finite and affine Weyl groups, including interpretations of the length
function and the weak order. We also give new combinatorial proofs of Bott’s
formula (in the refined version of Macdonald) for the Poincaré series of these
affine Weyl groups.

1991 Mathematics Subject Classification. primary 20B35; secondary
05A15.

1 Introduction

The aim of this paper is to present a unified theory for permutation representations
of the finite Weyl groups An−1, Bn, Cn, Dn, and the affine Weyl groups Ãn−1, B̃n,
C̃n, D̃n.

Our starting point is the symmetric group Sn, the group of permutations of
[1, . . . , n]. If Sn is presented as the group generated by adjacent transpositions, it
is isomorphic to the Weyl group An−1, and we obtain well-known interpretations of
several Coxeter group concepts in permutation language:

1. The Coxeter generators are the adjacent transpositions.

2. Reflections correspond to transpositions.

3. Length-decreasing reflections correspond to inversions.

4. The length of an element π is the number of inversions of π.

5. The weak order relation π ≤ σ holds if and only if the inversion set of π is
included in the inversion set of σ.
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We now introduce a mirror at the origin, reflecting the points 1 . . . n onto −1 . . .−n,
and we consider permutations of −n . . . n that are mirror symmetric in the sense that
they commute with the action of the mirror. The group of such permutations is
isomorphic to the Weyl group Cn.

Reflection in the origin is a rigid transformation of Z and the same game can be
played with any group of such rigid transformations. For instance, the translation
n steps to the right generates a transformation group of translations by a multiple
of n. The Z-permutations that commute with these rigid transformations are n-
periodic and the group that they form is isomorphic to Ãn−1. It turns out that for
any group of rigid transformations, the group of Z-permutations that commute with
these transformations will the one of the finite or affine AC-groups. To obtain the
BD-groups we add one extra condition of ’local evenness’.

What should replace adjacent transpositions in these models? All rigid transfor-
mations of Z are either translations or reflections, translating or reflecting the fun-
damental interval 1 . . . n to other places. A transposition in the fundamental interval
must also affect all these translated and reflected intervals accordingly. The result is
what we call a class transposition where the class of a position in the fundamental
interval is its orbit given by the rigid transformations. In the Cn-case, each class has
two elements, {±k}, while in the Ãn−1-case each class is infinite, {k + jn | j ∈ Z}.

With the class concept, we can extend most of the results for the symmetric group
to all these Z-permutation groups. Without going into the precise definitions, our
results can be summarized as follows:

1. The permutation groups defined by rigid transformations on Z (and conditions
of local evenness) are isomorphic to the finite and affine ABCD-groups.

2. The Coxeter generators are the adjacent class transpositions.

3. Reflections correspond to class transpositions.

4. Length-decreasing reflections correspond to class inversions.

5. The length of an element π is the number of class inversions of π.

6. The weak order relation π ≤ σ holds if and only if the class inversion set of π
is included in the class inversion set of σ.

7. The permutations are completely determined by their fundamental n-tuple
[π1, . . . , πn]. For each group we determine how the results above can be (less
elegantly) expressed in terms of the fundamental n-tuple.

Finally, as an application of our theory, we give new combinatorial proofs of Bott’s
formulas for the Poincaré series of the affine groups Ãn, B̃n, C̃n, D̃n. In a sequel to
this paper we shall present Bruhat order criteria for these permutation models.
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2 Preliminaries on Z-permutations

An ordinary permutation, such as 231, may be interpreted as a co-ordinate per-
muting operator on R

3 , mapping a vector [x1, x2, x3] to [x2, x3, x1]. In analogy
with this, a Z-permutation π is going to be an operator on R

Z, mapping a vector
[. . . , x−1, x0, x1, x2, . . .] to [. . . , xπ−1 , xπ0, xπ1 , xπ2, . . .].

In particular, [. . . ,−1, 0, 1, 2, . . .]
π
7→ [. . . , π−1, π0, π1, π2, . . .] and we shall identify

the operator π with this π-vector.
We define the product πσ of two Z-permutations as the composite operator “first

π, then σ”. From
[. . . ,−1, 0, 1, 2, . . .]

π
7→ [. . . , π−1, π0, π1, π2, . . .]

σ
7→ [. . . , πσ−1 , πσ0 , πσ1 , πσ2 , . . .] we see

that (πσ)i = πσi .
Our mental picture of Z is going to be the set of integer points on the real axis. We

will call these points positions. A Z-permutation π can be visualized as a distribution
of values at the positions, defined by placing the value πi at position i.

-s s s s s ssss

−1 0 1 2 3 4 5 6 7

π−1 π0 π1 π2 π3 π4 π5 π6 π7

But a Z-permutation can also be envisioned as an action, moving values from some
positions to other positions. An important special case is the action of an adjacent
transposition σ = (i i+1), which is to interchange the values at positions i and i+1.
We will use pictures as the one below to portray the action of transpositions, in this
case σ = (2 3).

-s s s s s ssss

−1 0 1 2 3 4 5 6 7

� �

Combining these models, we can interpret the multiplication rule (πσ)i = πσi as the
action of σ on the π-vector of values.

2.1 Locally finite Z-permutations

If we view a permutation as a value-moving action, we can ask how many values
that cross a given co-ordinate. For an ordinary permutation, it is clear that as many
values pass from left to right as from right to left, and for the application in mind,
we will use only Z-permutations with this property.

A Z-permutation π is locally finite if a finite number of values are moved from
the negative half-axis to the nonnegative half-axis and the same number of values are
moved in the other direction.

Reflection in the origin is not locally finite, for infinitely many values are moved
from one side to the other. Translation n steps to the right is not locally finite either,
for it moves n values from the left to the right but no values in the other direction.
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Proposition 1 For any partition of Z into half-axes (−∞,m] and [m+ 1,∞), a
locally finite Z-permutation π will move a finite number of values from the left to the
right and the same number of values in the other direction.

Proof Otherwise, the interval [0,m] would have a net inflow or outflow of values,
which is absurd. 2

Proposition 2 If π and σ are locally finite Z-permutations, then so is the inverse
π−1 and the product πσ. Thus, for every group of Z-permutations, the locally finite
Z-permutations form a subgroup.

Proof Easy. 2

2.2 Locally even Z-permutations

We say that a permutation is locally even at position m if it moves an even number
of values from the left of m to the right of m. This sharpening of the local finiteness
condition is needed in order for us to obtain representations of the groups of type D,
B̃ and D̃.

3 The ABCD-families of Weyl groups

The classification of finite and affine Weyl groups (due to Coxeter in 1935) features
the infinite families defined by the Coxeter graphs in the table below. For precise
definitions and for Coxeter group theory in general, we refer to the book [13] by
Humphreys.

Coxeter graphs encode groups as follows. The vertices are the generators of the
group. Every generator s satisfies s2 = 1. All other relations in the group are of the
kind (sisj)

m(i,j) = 1 for si 6= sj. The order m(i, j) is encoded in the graph by the
label of the edge between si and sj . If there is no edge, then the order is 2. If there
is an unlabeled edge, then the order is 3.

3.1 Brief history of permutation representations

There are classical representations of An−1 as the symmetric group Sn, and of Cn and
Dn as signed permutations and even signed representations respectively.

In the last fifteen years, representations of the affine groups Ãn, B̃n, C̃n and
D̃n by infinite periodic permutations have been presented. Lusztig [14] and Bédard

[1] seem to be the first references for the permutation representations of Ãn and

C̃n respectively (although none of them explicitly proves that these representations

are faithful). These representations of Ãn and C̃n are used also by Shi [18]. In H.
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Table 1: ABCD-families of irreducible finite and affine Weyl groups

Eriksson’s doctoral thesis [11], permutation representations (with proofs) are given

also for B̃n and D̃n, as well as related permutation models for the sporadic EFGH-
groups and many other nameless groups.

Permutation interpretations of length, weak order and Bruhat order on Ãn were
recently given by Björner and Brenti [4], using another approach than ours.

3.2 The permutation representations of this paper

The present paper is mainly a thorough expansion and improvement of a few results
from the second chapter of [11]. Instead of the case-by-case approach of [11], we here
obtain the same permutation models for the ABCD-groups with unified proofs. In
the same process we obtain general results on how to express the Coxeter generators,
the length function, the descent set and the weak order for all these groups.

We also prove that a permutation π in any of these groups can be represented by
its fundamental n-tuple [π1, . . . , πn]. Finally we investigate for each group how the
results translate to this computationally more tractable representation.

4 Rigid groups and compatible groups

Translations and reflections are the only rigid transformations of Z. We denote by Tn
a translation n steps to the right and byRm a reflection with respect tom, which must
be an integer or half-integer. A rigid group is a group of such rigid transformations.

The classification of rigid groups on Z is prehistoric, so the following proposition
comes without credits.
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Proposition 3 A nontrivial rigid group on Z is of one of three types: generated by
one translation 〈Tn〉, generated by one reflection 〈Rm〉 or generated by two reflections
〈Rm, Rm′〉.

Proof Let n be the smallest nonnegative integer such that Tn is in the group and
m the smallest nonnegative integer or half-integer such that Rm is in the group. If
both n and m are undefined, the group is trivial {id}. If only n is defined, the group
must be {Tkn | k ∈ Z}. If only m is defined, the group must be {Rm, id}, for a
product of two reflections is a translation. If both are defined, the group must be
{Tkn, RmTkn | k ∈ Z} which is 〈Rm, Rm′〉 for m′ = m+ n/2. 2

For each of these rigid groups, we are interested in the corresponding compatible
Z-permutations, compatible in the sense that they commute with all transformations
in the group.

Lemma 4 A Z-permutation π commutes with the translation Tn if and only if the
periodicity relation πi+n = πi + n holds for all positions i. It commutes with the
reflection Rm if and only if the mirror relation πi = 2m−π2m−i holds for all positions
i.

Proof The value on position πi is moved to position i by π and further to position
i+n by Tn, then on to πi+n by π−1 and finally to πi+n − n by T−1

n . Commutativity
therefore means that πi = πi+n − n, as stated in the lemma. The mirror relation
comes out similarly. 2

If positions i and j belong to the same orbit, that is if some transformation in the
rigid group maps i to j, then πi determines πj by one of these relations. Belonging to
the same orbit is an equivalence relation i ∼ j, and we shall denote the equivalence
class of the position i by 〈i〉. The π-value on any position in the class thus determines
the values on all positions in the class.

It is easy to see what the orbits are for the three kinds of nontrivial rigid groups.

Proposition 5 For the three kinds of nontrivial rigid groups, the relation i ∼ j has
the following significance:

〈Tn〉: i = j + kn for some k ∈ Z,

〈Rm〉: i = j or i+ j = 2m,

〈Rm, Rm′〉: i = j + kn or i + j = 2m + kn for some k ∈ Z. (n is defined by
m′ = m+ n/2.)

The same classes are useful for values. In fact, πi ∼ πj if and only if i ∼ j. This is
exactly what commutativity with the rigid transformations implies, so the following
proposition holds true.
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Proposition 6 Let 〈i〉 be a position class of a rigid group. Then, for any compatible
Z-permutation π, the value class 〈πi〉 consists of the π-values on the positions in 〈i〉.

4.1 Mirrors of types C and D

If we have the mirror relation πi = 2m− π2m−i for all positions i, we say that m is a
mirror position. The mirror relation implies that m is a fixpoint under π.

Recall the definition of locally even: π is locally even at position m if it is an even
number of values that is moved from the left of m to the right of m. We will apply
this condition only at mirror positions. We say that a mirror m is of type D if we
study only permutations that are locally even at m. Otherwise m is a mirror of type
C.

4.2 Class transpositions and adjacent class transpositions

We can extend the relation ∼ of belonging to the same orbit to a relation on pairs of
positions. Let 〈(i1, i2)〉 denote the equivalence class of a pair (i1, i2) under ∼, that is,
the orbit of (i1, i2) under the rigid group.

Say that a pair (i1, i2) of different positions is transposable (under the rigid group)
if there exists at least one compatible Z-permutation π such that πi1 = i2 and πi2 = i1.
Evidently, a pair (i1, i2) cannot be transposable if either i1 or i2 is a mirror, since
mirrors are always fixpoints of compatible permutations. It is also clear that (i1, i2)
cannot be transposable if the rigid group has n-periodicity and i2 = i1 + kn for some
integer k, since by periodicity we will have πi2 = πi1 + kn. In fact, these two simple
conditions are both necessary and sufficient.

Proposition 7 For the three kinds of nontrivial rigid groups, transposability works
as follows:

〈Tn〉: (i1, i2) is transposable iff i2 − i1 is not a multiple of n.

〈Rm〉: (i1, i2) is transposable iff neither position equals m.

〈Rm, Rm′〉: (i1, i2) is transposable iff neither position equals m+ kn/2 and i2 − i1 is
not a multiple of n. (n is defined by m′ = m+ n/2.)

In order to prove this result, one can construct a compatible permutation where
(i1, i2) is transposed if it satisfies all the conditions as follows. Define the class trans-
position 〈(i1 i2)〉 as the permutation in which every pair in 〈(i1, i2)〉 is transposed:

〈(i1 i2)〉 =
∏

(j1,j2)∈〈(i1,i2)〉

(j1 j2).

It is easy to check that this permutation is well-defined and compatible with the rigid
group, and we leave it to the reader.
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Remark. If the midpoint m = (i1 + i2)/2 is a mirror of type D, then the class
transposition 〈(i1 i2)〉, though compatible with the rigid group, does not belong to
the subgroup of permutations that are locally even at m, since an odd number of
values are moved from left to right of m.

4.3 Adjacent class transpositions

In the symmetric group, the adjacent transpositions are the Coxeter generators. We
shall now define the analog of adjacent transpositions in our permutation groups.

Fix a rigid group and let G be the group of compatible permutations, or possibly
the subgroup of locally even permutations if mirrors are of type D. We say that 〈(i j)〉
is an adjacent class transposition in G if either j is the smallest number greater than
i, or i is the largest number less than j, such that 〈(i j)〉 is a class transposition in
G.

The definition of adjacent class transpositions allows us to list all cases that can
occur. For each case we give an illustration of the action of the class transposition in
a small segment.

• If i and i+ 1 are non-mirrors, then 〈(i i+1)〉 is adjacent.

-s s s s ssss

i i+1

� �� �

• If m is a mirror of type C, then 〈(m−1 m+1)〉 is adjacent.

-s s s s ssss

C

m−1 m+1

��

• If m is a mirror of type D, then 〈(m−1 m+2)〉 is adjacent.

-s s s s ssss

D

m−1 m+2

' $' $
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Lemma 8 The three types of class transpositions above are the only adjacent class
transpositions.

Proof Inspection. 2

5 Representations of the ABCD-groups

For each of the rigid groups, the compatible Z-permutations form a group. These
groups are closely connected to the ABCD-families of finite and affine Weyl groups.
If the rigid group is the trivial group, 〈Tn〉, 〈Rm〉 or 〈Rm, Rm′〉, the compatible permu-

tation groups will be isomorphic to Weyl groups of type A, Ã, C and C̃ respectively.
If conditions of local evenness is added, we obtain the remaining groups, of type D,
B̃ and D̃.

Postponing the proof of the faithfulness of the representations below, we shall
define for each of the ABCD-groups a representation by Z-permutations. We like
to call this family of groups George groups in honor of George Lusztig who invented
the permutation representation S̃n for Ãn−1. A common characteristic of George
groups will be that the action takes place in positions belonging to 〈1〉, 〈2〉, . . . , 〈n〉.
Positions outside these n classes are fixed points for all Z-permutations involved.
Another common feature will be that the action of s1 transposes positions 1 and 2,
the action of s2 transposes positions 2 and 3 etc up to sn−1.

5.1 The compatible groups: Sn, S̃n, Cn and C̃n

We start by listing the compatible groups to the four possible rigid groups (including
the trivial rigid group).

5.1.1 Rigid group: trivial. The compatible group Sn represents An−1,
n ≥ 2.

The standard representation of An−1 by permutations of 1, 2, . . . , n can be viewed as
the group of Z-permutations that leave everything outside the fundamental interval
fixed. In this case, the rigid group is trivial, so every position has a class of its own.

e
s1

e
s2

e
s3

e
s4

-r1 r2 r3 r4r 5

s1
��
Figure 1: The action of s1 in S5 as a simple transposition
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5.1.2 Rigid group: 〈Tn〉. The compatible group S̃n represents Ãn−1, n ≥ 2.

Define S̃n as the group of all locally finite Z-permutations compatible with the trans-
lation group 〈Tn〉.

Proposition 9 A Z-permutation π compatible with 〈Tn〉 is locally finite iff the fol-
lowing sum condition holds:

n∑
1

πi =
n∑
1

i.

Proof Permutation of the values in the interval leaves the sum invariant. Whenever
a value v is moved leftwards out of the interval, the value v+n enters from right and
so the sum increases by n. And when a value v enters the interval from the left, the
value v+n leaves the interval to the right, decreasing the sum by n. Local finiteness
signifies that these two effects cancel. 2

The group S̃n is generated by the adjacent class transpositions si = 〈(i i + 1)〉,
for i = 1, . . . , n.

-14131211109876543210-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 � � � � � �� � � �� �
Figure 2: The action of s1 ∈ S̃4 as a periodic transposition.

5.1.3 Rigid group: 〈R0〉. The compatible group Cn represents Cn, n ≥ 2.

Define Cn as the group of permutations of [−n, . . . , n] compatible with the rigid group
〈R0〉, so that π−i = −πi for all i. Cn is generated by s0 = 〈(−1 1)〉 = (−1 1) and,
for i = 1, . . . , n− 1, si = 〈(i i+ 1)〉 = (i i+ 1)(−i − i− 1).

-r r r r rrrr
s3s3

s0

� �� � ��
C

g g g4 g
s0 s1 s2 s3

Figure 3: The actions of s3 and s0 in C4

As a concrete example of computing in this model, consider the element s3s0. In
C4, this permutes the interval [−4, . . . , 4] as follows:

[−4,−3,−2,−1, 0, 1, 2, 3, 4]
s3−→ [−3,−4,−2,−1, 0, 1, 2, 4, 3]
s0−→ [−3,−4,−2, 1, 0,−1, 2, 4, 3].



the electronic journal of combinatorics 5 (1998), #R18 11

5.1.4 Rigid group: 〈R0, Rn+1〉. The compatible group C̃n represents C̃n,
n ≥ 2.

Define C̃n as the group of permutations of Z compatible with 〈R0, Rn+1〉, so that
πi = −π−i and πi = 2n + 2 − π2n+2−i for all i. There are n infinite classes: 〈i〉 =

{±i+ k(2n+ 2) : k ∈ Z} for i = 1, . . . , n. C̃n is generated by the class transpositions
s0 = 〈(−1 1)〉 and sn = 〈(n n+ 2)〉 and, for i = 1, . . . , n− 1, si = 〈(i i+ 1)〉.

-rrrrrrrrrrrrrrr r r r r r r
���� �� ��� � � �� � � �

C C CC

s1 s1 s1s1

s0 s0s4 s4

Figure 4: The actions of s0, s1, s4 ∈ C̃4 as transpositions on Z.

5.2 Locally even subgroups: Dn, B̃n and D̃n

There are three possible ways of obtaining subgroups of the above compatible groups
by adding a condition of local evenness at mirror positions.

5.2.1 Subgroup of Cn, locally even at 0: Dn represents Dn, n ≥ 3.

Define Dn as the subgroup of Cn consisting of all permutations that are locally even
at position zero. Dn is generated by the adjacent class transpositions s0 = 〈(−1 2)〉
and, for i = 1, . . . , n− 1, si = 〈(i i+ 1)〉.

-r r r r rrrr
s3s3

s0 s0

� �� �
"!"!
D

g

g g g

s0

s1 s2 s3

Figure 5: The actions of s3 and s0 in D4

Let us do the same example as for C4. In D4, the action of s3s0 is:

[−4,−3,−2,−1, 0, 1, 2, 3, 4]
s3−→ [−3,−4,−2,−1, 0, 1, 2, 4, 3]
s0−→ [−3,−4, 1, 2, 0,−2,−1, 4, 3].

5.2.2 Subgroup of C̃n, locally even at 0: B̃n represents B̃n, n ≥ 3.

Define B̃n as the subgroup of C̃n consisting of all permutations that are locally even
at zero. The adjacent class transpositions are s0 = 〈(−1 2)〉 and sn = 〈(n n + 2)〉
and, for i = 1, . . . , n− 1, si = 〈(i i+ 1)〉.
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5.2.3 Subgroup of B̃n, locally even at n+ 1: D̃n represents D̃n, n ≥ 4.

Define D̃n as the subgroup of B̃n consisting of all permutations that are locally even
at position n + 1. The adjacent class transpositions are s0 = 〈(−1 2)〉 and sn =
〈(n− 1 n+ 2)〉 and, for i = 1, . . . , n− 1, si = 〈(i i+ 1)〉.

6 Theory of George groups

In this section we will develop a theory for George groups, analogous to the theory
for the symmetric group, with concepts such as inversions, inversion tables, length
function, weak order, descents and reflections.

6.1 Class inversions in George groups

Let G be a George group. An inversion in a permutation π is a pair (πi, πj) such
that i < j and πi > πj . If 〈(i j)〉 is a class transposition in G and (πi, πj) is an
inversion in π ∈ G, then the class 〈(πi, πj)〉 is a class inversion in π. If i < j, note
that the inversion property πi > πj is respected both by periodicity, πi+n > πj+n,
and by mirrors, π2m−j > π2m−i. Thus every pair in the class inversion 〈(πi, πj)〉 is an
inversion.

Example Consider the permutation π = [−2, 1,−3, 0, 3,−1, 2] in the George
group C3.

-s s s s sss

C

−3 −2 −1 1 2 3

−2 1 −3 3 −1 2

There are seven inversions in π: (−2,−3), (1,−3), (1, 0), (1,−1), (0,−1), (3,−1) and
(3, 2). However, there are only three class inversions:

〈(3, 2)〉 = {(−2,−3), (3, 2)},

〈(1,−3)〉 = {(1,−3), (3,−1)},

and 〈(1,−1)〉 = {(1,−1)}.

Hence, of the seven inversions we have five that are members of class inversions, while
(1, 0) and (0,−1) are not, since no class transposition involves 0, the mirror position.
2

We want to show that the adjacent class transpositions fill exactly the same role
in George groups as the adjacent transpositions do in the symmetric group, in the
following sense: adjacent transpositions create or resolve exactly one inversion, and
if there exists any inversion then there exists an adjacent inversion.
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Lemma 10 An adjacent class transposition 〈(i j)〉, i < j, affects (creates or re-
solves) exactly one class inversion.

Proof Without loss of generality, let us assume that the class transposition 〈(i j)〉
is acting on the identity permutation. It is clear from inspection of our list of adjacent
class transpositions (Section 4.3) that they create exactly one class inversion, namely
〈(j, i)〉. 2

We will need the following characterization of adjacent class transpositions.

Lemma 11 A class transposition 〈(i j)〉 in G is adjacent if and only if

(1) there is no k between i and j such that both 〈(i k)〉 and 〈(k j)〉 are class
transpositions in G; and

(2) if there is a period p, then |j − i| < p.

Proof The three adjacent class transpositions listed in Section 4.3 clearly satisfy
the above conditions. For the other direction, it is easy to check that condition (1)

is sufficient in all George groups except for S̃2 where the period is two. In this group
the first condition is satisfied not only by adjacent pairs but also by e.g. (1, 4), (1, 6),
(1, 8), etc, but the second condition then kicks into action. 2

Lemma 12 If π ∈ G has a class inversion then it has an adjacent class inversion.

Proof Let (πi, πj) be a class inversion representative such that j− i is minimal. By
the characterization of adjacency above, it is sufficient that we exclude two cases:

1. If there is some k between i and j such that both 〈(i k)〉 and 〈(k j)〉 are
class transpositions in G; then either (πi, πk) or (πk, πj) is a class inversion
representative, contradicting minimality of j − i.

2. If j − i is greater than the period n, then (πi, πj−n) is a class inversion repre-
sentative that contradicts minimality of j − i.

2
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6.2 The inversion table of a George group

Let Gn be a George group with n classes. Define I(π) as the set of class inversions
in a permutation π ∈ G. Define the class inversion number by inv(π) = |I(π)|, the
number of class inversions in π.

Our first aim is to show that inv(π) is always finite. Recall that the the interval
[1, . . . , n] contains one representative of each class of values. For π ∈ Gn and 1 ≤ i <

j ≤ n, define

ILij(π) as the set of class inversions in π of the form 〈(i, j′)〉 where j′ is a periodic
image of j;

IRij(π) as the set of class inversions in π of the form 〈(j′, i)〉 where j′ is a periodic
image of j.

For n ≥ j ≥ i ≥ 1, define

ILji(π) as the set of class inversions in π of the form 〈(i, j′)〉 where j′ is a mirror
image of j;

IRji(π) as the set of class inversions in π of the form 〈(j′, i)〉 where j′ is a mirror
image of j.

Define the inversion table of π by the numbers invij(π) = |ILij(π)| − |IRij (π)|.
Example As an example of these definitions, consider as in our previous example

the George group C3 and the permutation π = [−2, 1,−3, 0, 3,−1, 2]. In this group
there is no periodicity, so the only periodic image of i is i itself, and the only mirror
image of i is −i. The only non-empty inversion sets are invL11, invL31 and invR23,
containing respectively 〈(1,−1)〉, 〈(1,−3)〉, and 〈(3, 2)〉. Hence, the inversion table is

1 0 0
0 0 −1
1 0 0

2

Lemma 13 I(π) is the disjoint union of all ILij(π) and IRij (π) for i, j = 1, . . . , n.
Furthermore, if ILij(π) 6= ∅ then IRij (π) = ∅ and if IRij (π) 6= ∅ then ILij(π) = ∅. The
numbers invij(π) are always finite, and

inv(π) =
n∑
i=1

n∑
j=1

|invij(π)|,

so inv(π) is also finite.
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Proof Everything follows directly from the definitions except for finiteness of the
numbers. If the group acts on a finite interval, then of course the number of inversions
is finite. If it acts on Z then we use periodicity. For instance, by periodicity there
is a greatest periodic image j′ > i in the class 〈j〉 such that π−1

i > π−1
j′ , and hence

IRij (π) is a finite set. 2

Since the number of class inversions is finite, and adjacent class transpositions
resolve class inversions, we can express all permutations in a George group as products
of adjacent class transpositions as shown below.

Theorem 14 A George group is generated by its adjacent class transpositions.

Proof The identity permutation is the only permutation with no class inversions.
Suppose π has class inversion number inv(π) > 0. Then by Lemma 12 it has an
adjacent class inversion 〈(j, i)〉 and hence we can write π = π′〈(i j)〉 where inv(π′) =
inv(π) − 1 thanks to Lemma 10. Proceeding in this manner we eventually reach
the identity, at which time we will have expressed π as a product of adjacent class
transpositions. 2

6.3 The length function and weak order on George groups

For a George group G, let S be the set of adjacent class transpositions. Define the
length `(π) of π ∈ G to be the smallest length of a word for π in the alphabet S. This
is the usual definition of length in Coxeter groups. We will now give a convenient
formula for the length in terms of the number of class inversions.

Theorem 15 The length `(π) equals the class inversion number inv(π).

Proof By the proof of Theorem 14, there is a word for π of length inv(π). It is
also shortest possible, since starting from the identity permutation (where the class
inversion number is zero), each s ∈ S can at most increase the number of class
inversions by one. 2

For a George group G with generators S, define the weak order on G by σ ≤ π if there
is a factorisation π = σsi1si2 · · · sik where k = `(π)−`(σ) and all sij belong to S. This
is the usual definition of weak order in Coxeter groups. We shall now establish two
weak order criteria. First, we claim that weak order is equivalent to inclusion order
on the set of class inversions. Second, this translates to a computationally tractable
condition on the inversion tables.

Theorem 16 For any George group G, the following three assertions are equivalent:
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(1) π ≥ σ in the weak order on G.

(2) I(π) ⊇ I(σ)

(3) |invij(π)| ≥ |invij(σ)| and sgn invij(π) = sgn invij(σ) for all i, j = 1, . . . , n. (Zero
is considered both positive and negative.)

Proof (1) ⇒ (2): Assume that π ≥ σ in the weak order, so π = σsi1si2 · · · sik with
`(π) = `(σ) + k. Then each multiplication by a generator introduces a new class
inversion, but the class inversions already in I(σ) are not affected, so I(π) ⊇ I(σ).

(2)⇒ (1): Assume that I(π) ⊇ I(σ) and show that there is a factorization π = π′s

with `(π) = `(π′) + 1 and I(π′) ⊇ I(σ); induction would then give π ≥ σ. Let (πi, πj)
be a representative of a class inversion in I(π) \ I(σ), such that πi > πj , i < j,
and the difference j − i is minimal among such inversions. We can proceed much as
in the proof of Lemma 12 to show that (i, j) is adjacent. Then the adjacent class
transposition s = 〈(i j)〉 resolves the inversion (πi, πj) and affects no other class
inversion, so π = π′s will do as our factorisation.

(2) ⇔ (3): We must show that

ILij(π) ⊇ ILij(σ) ⇐⇒ |ILij(π)| ≥ |ILij(σ)|,

(and analogously for IRij ). The right implication is trivial. For the other direction, we
just observe that the set ILij(π) is determined by its cardinality. E.g. if ILij(π) has k
elements, where i < j, then ILij(π) = {(i, j), (i, j− p), (i, j − 2p), . . . , (i, j− (k− 1)p)}
where p is the period. 2

6.4 Descents and reflections in George groups

Let us briefly look at the interpretation of descent and reflection in our George groups.
In an ordinary permutation, a descent is any occurrence of πi > πi+1, i.e. an adjacent
inversion. In a general Coxeter group, a descent is defined as a length decreasing
generator.

Define a class descent in π as an adjacent class inversion. Obviously, the class
descents in π are in bijection with the set

D(π) = {s ∈ S | `(πs) < `(π)},

where S is the set of adjacent class transpositions, i.e. D(π) are the length decreasing
generators.

By a reflection in a Coxeter group is meant an element that is conjugate to a
Coxeter generator. In George groups, the reflections are then the class transpositions.

Lemma 17 A permutation t ∈ G is a class transposition iff t = σ−1sσ for some
generator s ∈ S and permutation σ ∈ G.
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Proof With s = 〈(i j)〉 and σa = i, σb = j we have σ−1sσ = 〈(a b)〉. 2

7 George groups and Weyl groups

The raison d’être for the George groups is of course that they are isomorphic to the
ABCD-families of Weyl groups. We are now ready to prove this. In the next section
we shall take the Weyl groups in turn and give specific interpretations of the results
of the previous chapter.

To begin with, we must investigate what Coxeter relations there are between the
generators of a George group G.

Lemma 18 If s and t are two adjacent class transpositions in a George group, then
the order m(s, t) of st is

m(s, t) = 2 if s and t are disjoint;

-r r r r r rrrr
ts � �� �

m(s, t) =∞ if the period is 2 and s = 〈(i i+1)〉 and t = 〈(i+1 i+2)〉 for some i;

-r r r r r
tsts � �� �� �� �

m(s, t) = 3 if any period is ≥ 3 and s = 〈(i i+1)〉 and t = 〈(i+1 i+2)〉 for some
i;

-r r r r r
st � �� �

m(s, t) = 3 if s = 〈(i−1 i)〉 and t = 〈(i i+3)〉 for some i (where i + 2 is a type
D mirror);

-rr rrr r r
s s

t t

D� � � �� �� �
m(s, t) = 2 if s = 〈(i i+1)〉 and t = 〈(i i+3)〉 for some i (where i + 2 is a type

D mirror);

-rrr r r
s s

t t

D� � � �� �� �
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m(s, t) = 4 if s = 〈(i i+1)〉 and t = 〈(i+1 i+3)〉 for some i (where i+ 2 is a type
C mirror);

-rrr r r
s st

C� � � �� �

Proof Inspection. 2

A convenient way of proving that a group with generators is isomorphic to a
Coxeter group is to use the following characterization of the weak order of a Coxeter
group.

Theorem 19 (K. Eriksson [12]) For any Coxeter group (W,S) with Coxeter re-
lations (st)m(s,t) = 1 for s, t ∈ S, there exists a poset P , unique up to isomorphism,
such that:

1. P has a least element 0̂.

2. There are |S| elements covering 0̂.

3. P admits an S-labeling of the edges of its Hasse diagram satisfying:

(a) No two edges incident to the same element of P have the same label.

(b) If there are two edges going upwards from p ∈ P with labels s and t, then
they are the first edges of two upward going paths from p of length m(s, t)
labeled alternatingly s and t. If m(s, t) < ∞ then these paths end in the
same element, while if m(s, t) =∞ the paths go on forever.

The poset P is isomorphic to the weak order on (W,S).

By this theorem we can prove that the weak order of a George group is isomorphic
to the weak order of the Coxeter group with corresponding relations, and hence they
are isomorphic as Coxeter systems.

Theorem 20 The George groups Sn (n ≥ 2), Cn (n ≥ 2), Dn (n ≥ 3), Sn (n ≥ 2), C̃n
(n ≥ 2), B̃n (n ≥ 3), D̃n (n ≥ 4), generated by the set of adjacent class transpositions,
are all Coxeter groups.

Proof We shall check that the weak order on a George group G satisfies the con-
ditions of the above theorem. Let SG be the set of adjacent class transpositions in
G.

1. The identity permutation is the least element.
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2. The identity has no inversions so all |SG| adjacent class transpositions will create
inversions. Hence there are |SG| elements covering the identity.

3. Every edge in the Hasse diagram of the weak order on G is between pairs π
and πs for some s ∈ SG. Label the edge by s. This is clearly an SG-labeling
satisfying that no two edges incident to the same element π have the same
label. If there are two edges going upwards from π with labels s and t, then
it is straightforward verification that they are the first edges of two upward
going paths from π of length m(s, t) labeled alternatingly s and t, and that if
m(s, t) < ∞ then these paths end in the same element, while if m(s, t) = ∞
the paths go on forever.

For example, take the case where s = 〈(i i+1)〉 and t = 〈(i i+3)〉 for some i
where i + 2 is a type D mirror; this gives m(s, t) = 2. Both edges go upwards
if both πi > πi+1 and πi > πi+3. We get two joining alternating paths of length
two:

[. . . , πi, πi+1, D, πi+3, πi+4, . . .]

[. . . , πi+1, πi, D, πi+4, πi+3, . . .]

[. . . , πi+4, πi+3, D, πi+1, πi, . . .]

[. . . , πi+3, πi+4, D, πi, πi+1, . . .]

X
X
X
X
X

X
X

X
X

X
XX

s

�
�
�
�
�

�
�

�
�

�
��

t
�
�
�
�
�
�
�
�
�
�
��

t

X
X
X
X
X
X
X
X
X
X
XX

s

2

8 Inversion tables of George groups

We shall now follow up on the list of Section 5. For every George group we shall
give a characterization of the fundamental n-tuple and compute explicit expressions
for the inversion table, from which the length formula and the weak order criterion
follows.

8.1 Compatible groups

8.1.1 George group Sn

The fundamental n-tuple is any permutation of [1, . . . , n]. The inversion table has
invij = −1 if i < j and π−1

i > π−1
j , zero otherwise. All other entries are zero. Thus



the electronic journal of combinatorics 5 (1998), #R18 20

the length function `(π) is the number of ordinary inversions in π.

8.1.2 George group S̃n

An n-tuple [π1, . . . , πn] is the fundamental n-tuple of a π ∈ S̃n if and only if it can
be written

[τ1 + k1n, . . . , τn + knn]

where τ ∈ Sn and k1 + . . .+ kn = 0. The action of si on the fundamental n-tuple is
si = (i i + 1) for i = 1, . . . , n − 1, while sn gives [πn − n, π2, . . . , πn−1, π1 + n]. The
inversion table is given by

invij(π) =

{
b
π−1
j −π

−1
i

n
c for i < j;

0 for i ≥ j,

where bxc denotes the greatest integer less than or equal to x. The value π−1
i can be

obtained from the fundamental n-tuple as follows: if i = τr, then

i+ krn = πr ⇔ i = πr−krn ⇔ π−1
i = r − krn.

8.1.3 George group Cn

An n-tuple [π1, . . . , πn] is the fundamental n-tuple of a π ∈ C̃n if and only if it is
a signed permutation, that is, if [|π1|, . . . , |πn|] is a permutation of [1, . . . , n]. The
action of si on the fundamental n-tuple is si = (i i+1) for i = 1, . . . , n− 1, while s0

changes the sign of the value at position 1.
The inversion table is given by

invij(π) =


−1 if i < j and π−1

i > π−1
j ;

1 if i ≥ j and π−1
i < π−1

−j ;
0 otherwise.

In terms of the fundamental n-tuple of π, the length function `(π) is the number of
pairs (i, j) that are inversions, plus the number of pairs (−i, j) that are inversions,
plus the number of negative values in the fundamental n-tuple.

8.1.4 George group C̃n

An n-tuple [π1, . . . , πn] is the fundamental n-tuple of a π ∈ C̃n if and only if it can be
written

[τ1 + k1(2n+ 2), . . . , τn + kn(2n+ 2)]

where τ ∈ Cn. The action of si on the fundamental n-tuple is si = (i i + 1) for i =
1, . . . , n−1, while s0 gives [−π1, π2, . . . , πn−1, π1+n] and sn gives [π1, π2, . . . , πn−1, 2n+
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2− πn]. The inversion table is given by

invij(π) =

{
b
π−1
j −π

−1
i

2n+2
c for i < j;

b
π−1
j +π−1

i

2n+2
c for i ≥ j.

The value π−1
i can be obtained from the fundamental n-tuple since if πr = i+kr(2n+

2), then π−1
i = r−kr(2n+2) while if πr = −i+kr(2n+2), then π−1

i = −r+kr(2n+2).

8.2 Locally even subgroups

8.2.1 George group Dn

An n-tuple [π1, . . . , πn] is the fundamental n-tuple of a π ∈ D̃n if and only if it is an
even signed permutation, i.e. with an even number of negative values. The action
of si on the fundamental n-tuple is si = (i i+1) for i = 1, . . . , n− 1, while s0 both
changes the sign of and interchanges the values at positions 1 and 2.

The inversion table is given by

invij(π) =


−1 if i < j and π−1

i > π−1
j ;

1 if i > j and π−1
i < π−1

−j ;
0 otherwise.

In terms of the fundamental n-tuple of π, the length function `(π) is the number of
pairs (i, j) that are inversions, plus the number of pairs (−i, j) that are inversions.

8.2.2 George group B̃n

An n-tuple [π1, . . . , πn] is the fundamental n-tuple of a π ∈ B̃n if and only if it can
be written

[τ1 + k1(2n+ 2), . . . , τn + kn(2n+ 2)]

where τ ∈ Cn and the number
∑n

i=1 |b
−πi+n+1

2n+2
c| is even. The action of si on the funda-

mental n-tuple is si = (i i+1) for i = 1, . . . , n−1, while s0 gives [−π2,−π1, π3, . . . , πn]
and sn gives [π1, . . . , πn−2, 2n+ 2−πn, 2n+ 2−πn−1]. The inversion table is given by

invij(π) =


b
π−1
j −π

−1
i

2n+2
c for i < j;

b
π−1
j +π−1

i

2n+2
c for i > j;

b
π−1
i

2n+2
c for i = j.

8.2.3 George group D̃n

An n-tuple [π1, . . . , πn] is the fundamental n-tuple of a permutation π ∈ D̃n if and
only if it can be written

[τ1 + k1(2n+ 2), . . . , τn + kn(2n+ 2)]
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where τ ∈ Cn and the numbers
∑n

i=1 |b
−πi+n+1

2n+2
c| and

∑n
i=1 |b

πi
2n+2
c| are both even.

The action of si on the fundamental n-tuple is si = (i i+1) for i = 1, . . . , n−1, while
s0 gives [−π2,−π1, π3, . . . , πn] and sn gives [π1, . . . , πn−2, 2n+ 2− πn, 2n+ 2− πn−1].
The inversion table is given by

invij(π) =


b
π−1
j −π

−1
i

2n+2
c for i < j;

b
π−1
j +π−1

i

2n+2
c for i > j;

0 for i = j.

8.3 A conjecture on inversion tables

We have seen that the inversion table of a permutation in a George group determines
the set of class inversions, and hence there is a unique permutation to each inversion
table. A natural question to ask is how one can recognize if a given table of integers
is the inversion table of a permutation. We conjecture a characterization.

Let us restrict the discussion to C̃n; all cases look about the same. In C̃n we have
the inversion table

invij(π) =

{
b
π−1
j −π

−1
i

2n+2
c for i < j;

b
π−1
j +π−1

i

2n+2
c for i ≥ j.

Now a simple fact,

bxc+ byc = bx+ yc(+1)
def
=

{
bx+ yc or
bx+ yc+ 1 ,

implies a lot of necessary conditions:

• invij + invjk = invij(+1) for i < j < k;

• invij + invki = invkj(+1) for i < j ≤ k;

• invik + invji = invkj(+1) for i ≤ j ≤ k and i < k;

• invjk + invji = invki(+1) for i ≤ j < k.

We conjecture that these necessary conditions are also sufficient. (Last minute note:
Jian-Yi Shi [19] has just given an affirmative answer to this conjecture.)

9 Application: the length generating function

Bott (1956) gave a formula for length generating function of affine Weyl groups.
Macdonald (and, independently, Reiner) refined the formula, taking into account
also the number of times certain generators are used in a reduced word.
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In this section we will show how the permutation models of the affine groups and
our previous results about them can be applied to give combinatorial explanations
to the refined version Bott’s formula. We start with some details about the formulas
and their background and proceed with our approach.

9.1 Background

The Poincaré series W (q) of a Weyl group W is the length generating function, i.e.

W (q)
def
=
∑
w∈W

q`(w).

For the finite and affine Weyl groups there are well-known expressions for the Poincaré
series in terms of the so called exponents of the groups (see Humphreys [13]).

An 1, 2, 3, . . . , n
Bn, Cn 1, 3, 5, . . . , 2n− 1
Dn 1, 3, 5, . . . , 2n− 3, n− 1

Table 2: The exponents of the Weyl group families.

Theorem 21 If Xn is an irreducible finite Weyl group with exponents e1, . . . , en, and
X̃n is the corresponding affine Weyl group, then the Poincaré series is

Xn(q) = (1 + q + . . .+ qe1)(1 + q + . . .+ qe2) · · · (1 + q + . . .+ qen) (1)

for the finite group, and

X̃n(q) =
Xn(q)

(1− qe1)(1− qe2) · · · (1− qen)
, (2)

for the affine group.

The finite case is easy, and Eq. 1 has a straightforward combinatorial proof for
each group. The affine case has been considered much harder. We will refer to Eq.
(2) as Bott’s formula. It was proved by Bott [5] in 1956, as an application of Morse
theory to the topology of Lie groups. Although there are several later proofs (see
references in [13]), none of them catches the simple combinatorial flavor of the finite

case. For the special case of Ãn, though, there are at least two combinatorial proofs
of Bott’s formula to be found in the literature, by Björner and Brenti [3] and by

Ehrenborg and Readdy [9]. For the case of C̃n, a very involved combinatorial proof
follows from the work of Bousquet-Mélou and K. Eriksson [6].
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9.2 The refined formula

Two Coxeter generators s and s′ are conjugated if they are connected in the Coxeter
graph by a path of edges with odd labels. (Recall that no label means label 3, so it
is odd.)

In general, the number of occurrences of a given generator s in a reduced word for
w is not invariant but depends on the choice of the reduced word. However, the num-
ber of occurrences of generators from a given conjugacy class is indeed independent
of the particular reduced word.

Bott’s formula was refined by Macdonald [15] and Reiner [17], taking into account
not only the length `(w) of an element but also the number of times each conjugacy
class of generators is used in a reduced word for w. For the ABCD-families the
refinement is is very easy to describe. Coxeter graphs of type A and D have no
edges with even labels so there is only one conjugacy class and hence no refinement
is possible. The Coxeter graph of B̃n has one edge labeled 4, making the generator
s0 a conjugacy class of its own. Similarly, the Coxeter graph of C̃n has two edges
labeled 4, so here both s0 and sn constitute separate conjugacy classes.

Let a(w) and b(w) denote the number of occurrences of s0 and sn respectively in
a reduced word for w. Then the refined formula for the finite group is

Bn(q, t) = Cn(q, t)q`(w)ta(w)

= (1 + tq)(1 + tq2) · · · (1 + tqn)(1 + q)(1 + q + q2) · · · (1 + q + . . . qn−1).

As in Bott’s original formula, the series for the affine group can be expressed using
the polynomial for the finite group. For C̃n we have the additional parameter b(w)
to consider.

Theorem 22 (Macdonald, Reiner) The following refined versions of Bott’s for-
mula hold.

B̃n(q, t)q`(w)ta(w) = Bn(q, t)
(1 + q)(1 + q2) · · · (1 + qn−1)

(1− tqn)(1− tqn+1) · · · (1− tq2n−1)
(3)

and

C̃n(q, t, u)q`(w)ta(w)ub(w) = Cn(q, t)
(1 + uq)(1 + uq2) · · · (1 + uqn)

(1− utqn+1)(1− utqn+2) · · · (1− utq2n)
. (4)

9.3 Our approach

We will now show how the model of the affine groups Ãn−1, B̃n, C̃n and D̃n as infinite
permutations can be used to give combinatorial proofs of the refined version of Bott’s
formula for these cases.
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Let the quotient X̃n/Xn be identified with the set of its minimal coset represen-
tatives. Then the Poincaré series factorizes:

X̃n(q) = Xn(q) · X̃n/Xn(q),

so Bott’s formula can equivalently be stated as

X̃n/Xn(q) =
1

(1− qe1)(1− qe2) · · · (1− qen)
.

This is the generating function for integer partitions into parts in {e1, e2, . . . , en}. We

will describe bijections from quotient groups to sets of partitions, starting with Ãn.
Then the other bijections (for C̃n, B̃n and D̃n) are all constructed basically in the
same way, with slight modifications according to the different types of mirrors.

9.4 Proof of Bott’s formula for Ãn

The parabolic subgroup An of Ãn permutes the numbers within the position segment
[1, n+1] (and (n+1)-periodically). Thus, the minimal coset representatives of Ãn/An
are the permutations in Ãn that are increasing in the position segment [1, n+1]. Any
such permutation that is not the identity must have a descent between positions
n + 1 and n + 2, so the class adjacent transposition sn+1, that switches positions
(n+ 1, n+ 2) (and periodically) is length decreasing.

We shall now present a map λ from the above quotient to finite sequences of
positive integers, such that `(w) = |λ(w)| (the sum of the integers in the sequence).

Definition Let w be a minimal coset representative in Ãn/An. We shall construct
a finite sequence λ(w) = (δ1, δ2, . . .) of positive integers by sorting w (eventually
reaching the identity permutation) in a certain way and recording the decrease in
length for each step. When step i starts we will have the position segment [i, n+ i]
in increasing order and a descent between n+ i and n+ i+ 1. In step i we move the
number at position n+ i+ 1 as many positions to the left as needed, say δi, to have
the position segment [i+ 1, n+ i+ 1] in increasing order. We record for each step i
the length decrease δi.

We give an example for Ã3 showing the segment [i, 3+i] in each step and recording
the sequence of length decreases. By periodicity, the number to be moved into the
segment is 4 plus the number at position i.

[−5, 1, 6, 8]
δ1=3
−→ [−1, 1, 6, 8]
δ2=2
−→ [1, 3, 6, 8]
δ3=2
−→ [3, 5, 6, 8]
δ3=1
−→ [5, 6, 7, 8]
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2

Obviously, we have `(w) = |λ(w)|. We shall now see what λ(w) must look like.

Lemma 23 λ is a bijection from Ãn/An to the set of integer partitions into parts of
sizes in {1, 2, 3, . . . , n}.

Proof In step i, we move the number xi at position n + i + 1 to its proper place
within the segment [i+1, n+ i+1]. The length decrease δi is the number of positions
that the number has been moved to the left, so 1 ≤ δi ≤ n. Since the permutation
was increasing in the segment [i, n + i] and periodically, we know that after the ith
step, the next number to be moved, xi+1 now at position n + i + 2, is greater than
the one just moved. xi, and will hence stop at a position to the right of it. Hence
δi ≥ δi+1. This proves that λ(w) is a partition of the right kind.

It is furthermore easy to see that for any such partition λ = (δ1, . . . , δb) the
process is invertible. Start with the identity permutation and consider the segment
[b + 1, n + b + 1]. After the number at position n + b + 1− δb is moved δb positions
to the right we now have an increasing segment [b, n+ b]. Continue in this way for b
steps and we will end up with a permutation whose segment [1, n+ 1] is increasing,

and hence is a member of Ãn/An.
2

The exponents for An is 1, 2, . . . , n. Consequently, the above lemma proves Bott’s
formula for Ãn.

9.5 Proof of Bott’s formula for C̃n

The parabolic subgroup Cn of C̃n permutes the numbers within the position segment
[−n, n] (and (2n+2)-periodically). Thus, the minimal coset representatives of C̃n/Cn
are the permutations in C̃n that are increasing in the position segment [−n, n]. Any
such permutation that is not the identity must have a descent between positions n and
n+1, so the class adjacent transposition sn, that switches (n, n+2) and periodically,
is length decreasing.

As in the A case, we will obtain a bijective map λ from the quotient group to
a certain set of integer partitions by recording the length decreases in each step a
sorting procedure. Unlike the A case, we now have a fixed segment [−n, n] that we
consider.

Definition Let w be a minimal coset representative in C̃n/Cn. In each step of the
sorting procedure we start with the length decreasing class adjacent transposition sn
that inserts the number at position n+ 2 into the segment [−n, n]. Then we use only
length decreasing class adjacent transpositions among s0, . . . , sn−1 to get to the next
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minimal coset representative; in other words, we sort the segment [−n, n]. We record
for each step i the length decrease δi.

We give an example for C̃2 showing the segment [−2, 2] in each step and recording
the sequence of length decreases. The number to be moved into the segment is 6 plus
the number at position −2.

[−17,−4, 0, 4, 17]
δ1=4
−→ [−11,−4, 0, 4, 11]
δ2=4
−→ [−5,−4, 0, 4, 5]
δ3=2
−→ [−4,−1, 0, 1, 4]
δ4=1
−→ [−2,−1, 0, 1, 2]

2

Lemma 24 λ is a bijection from C̃n/Cn to the set of integer partitions with parts
in {1, 2, . . . , 2n} and at most one part of each size up to n. If a(w) and b(w) denote
the number of occurrences of s0 and sn respectively in a reduced word for w, then the
partition λ(w) will have a(w) parts greater than n and b(w) parts in total.

Proof In step i, we insert a number xi into the segment [−n, n]. The length decrease
δi is the number of non-mirror positions that the number has been moved to the left,
so 1 ≤ δ ≤ 2n. Negative numbers will be moved to the left of position zero, giving
δ ≥ n+1 (and using s0 once), while positive numbers will stop to the right of position
zero, giving δ ≤ n (and not using s0).

Since the permutation is increasing in the segment [−n, n] and periodically, we
know that after the ith step, the next number to be moved, xi+1, is greater than the
one just moved, xi, and will hence stop at a position to the right of it. Now we must
distinguish two cases: If xi was positive, then it will not move during the next step,
so xi+1 will stop earlier than xi did, wherefore δi > δi+1. However, if xi was negative,
then it will move one position to the left during the next step if xi+1 is moved past
the positive mirror image of xi; hence, the xi+1 might stop at the same position as
the xi did, so δi ≥ δi+1.

To conclude that λ(w) is a partition of the right kind, we must also verify that
the number of parts greater than n is a(n) and that the total number of parts is b(n).
But this is clear, as the generator s0 is used precisely once for every negative number
that is inserted while sn is used once in every step.

Finally, as in case A it is easy to verify that for any such partition λ the process
is invertible.

2
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The above lemma can be summed up in the following three-variable generating
function identity:

C̃n/Cn(q, t, u)q`(w)ta(w)ub(w) =
(1 + uq)(1 + uq2) · · · (1 + uqn)

(1− utqn+1)(1− utqn+2) · · · (1− utq2n)
. (5)

This is of course equivalent with Eq. 4, the refined version of Bott’s formula for C̃n.

9.6 Proof of Bott’s formula for B̃n

The situation is the same for B̃n as for C̃n, except for the fact that sn moves the
number at position n + 2 directly to position n − 1, and simultaneously takes the
number at position n + 3 to position n. Here it is necessary to separate two cases:
the smallest number to the right of the mirror at n+ 1 is of course at position n+ 2,
but the second smallest one may be either the number next to it, at position n + 3,
or the number one period later, at position n+ 2 + (2n+ 2).

Definition Let w be a minimal coset representative in B̃n/Bn. We shall sort w in
two phases. The first phase continues as long the two smallest numbers to the right
of the mirror at n + 1 are at positions n + 2 and n + 2 + (2n + 2). A step in the
algorithm is to sort these two numbers into the segment in turn, and record their
respective contributions to the length decrease, δ2i−1, δ2i in step i. Say that the first
phase goes on for k steps.

In the second phase, the two smallest numbers to the right of the mirror at n+ 1
are at positions n + 2 and n + 3. We record in each step i of the second phase the
two length decreases δ2k+2i−1, δ2k+2i from sorting the two inserted numbers into the
segment respectively, counting the use of sn as contributing to δ2k+2i−1 and sn−1 as
contributing to δ2k+2i.

We give an example for B̃3 showing the segment [−3, 3] in each step and recording
the sequence of length decreases. The numbers to be moved into the segment is 8
plus the numbers at positions −3 and −2.

First phase:

[−43,−14,−5, 0, 5, 14, 43]
δ1=5,δ2=5
−→ [−25,−14,−5, 0, 5, 14, 25]

δ3=5,δ4=4
−→ [−14,−9,−5, 0, 5, 9, 14]

Second phase:

[−14,−9,−5, 0, 5, 9, 14]
δ5=4,δ6=3
−→ [−6,−5,−1, 0, 1, 5, 6]

δ7=1,δ8=0
−→ [−3,−2,−1, 0, 1, 2, 3]

2
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Lemma 25 λ is a bijection from B̃n/Bn to the set of integer partitions with parts
in {1, 2, . . . , 2n − 1} and at most one part of each size up to n − 1. If a(w) denote
the number of occurrences of s0 in a reduced word for w, then the partition λ(w) will
have a(w) parts greater than n− 1.

Proof In step i in the first phase, we take the numbers at positions n + 2 and
n+ 2 + (2n+ 2), say xi and xi + (2n+ 2), and inserts them into the segment [−n, n].
Since xi + (2n+ 2) is the second smallest element to right of n+ 1, we know that xi
will be sorted to the leftmost position in the segment and hence its contribution to
the length decrease is δ2i−1 = 2n − 1 (and not 2n, thanks to the jumping start). If
then xi + (2n + 2) is sorted to the leftmost position as well, phase two may go on;
otherwise, it is easily verified that we must now shift to the second phase.

In the second phase we record in each step the movement of the two inserted
numbers, which both, thanks to their jumping start, will be moved at most 2n − 2
times by class adjacent transpositions. Similarly, it takes only n switches for each of
these numbers to reach to the negative side. Now we can copy the argument from
the case of C̃n/Cn.

2

The above lemma can be summed up in the following two-variable generating
function identity:

B̃n/Bn(q, t)q`(w)ta(w) =
(1 + q)(1 + q2) · · · (1 + qn−1)

(1− tqn)(1− tqn+1) · · · (1− tq2n−1)
. (6)

This is equivalent with Eq. 3, the refined version of Bott’s formula for B̃n.

9.7 Proof of Bott’s formula for D̃n

The situation for D̃n is similar to B̃n, with the exception that also s0 is of type
D, switching (−2, 1) and (−1, 2) and periodically. Here the parabolic subgroup Dn

may sometimes not be able to sort the entire segment [−n, n]; the minimal coset

representatives of D̃n/Dn are the permutations in D̃n that are increasing in the po-
sition segment [−n, n] except possibly in the subsegment [−1, 1]. Define the map λ

in analogy with the previous section.

Lemma 26 λ is a bijection from D̃n/Dn to the set of integer partitions with parts
in {1, 2, . . . , 2n− 2} and at most one part of each size up to n− 2, and possibly with
one of the parts of size n− 1 marked with a dot.

Proof The difference from the case of B̃n/Bn is that now the numbers get to jump
in the middle of the segment too. Hence, each will be moved at most 2n − 2 times
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in total, and it takes only n − 1 switches for each of these numbers to reach to the
negative side, since s1 is not needed before using s0 in order to get to the negative
side. However, if a number is positive and is to be placed directly to the right of zero,
we will use s1 and record a “dotted” length decrease of n− 1. Now we can follow the
argument of case B̃n/Bn. .

2

The above lemma can be summed up in the following generating function identity:

D̃n/Dn(q)q`(w) =
(1 + q)(1 + q2) · · · (1 + qn−1)

(1− qn−1)(1− qn) · · · (1− q2n−2)
. (7)

However, Bott’s formula demands another equality:

D̃n/Dn(q) =
1

(1− q1)(1− q3) · · · (1− q2n−3)(1− qn−1
. (8)

To see that the formulas (7) and (8) are equivalent we need one final bijection.

Lemma 27 We have the generating function identity

1

(1− q1)(1− q3) · · · (1− q2n−3)
=

(1 + q)(1 + q2) · · · (1 + qn−1)

(1− qn)(1− qn+1) · · · (1− q2n−2)
.

Equivalently, the set I of integer partitions into parts of sizes in {1, 3, . . . , 2n−3} is in
bijection with the set J of integer partitions into parts of sizes in {1, 2, 3, . . . , 2n− 2}
with at most one part of each size up to n− 1.

Proof A bijection can be described in the following way. As long as there are two
equal parts of some size k ≤ n − 1, merge them into one part of size 2k. Clearly
this process gives a map from I to J and it is a bijection since we have the following
inverse map from J to I. As long as there is an even part 2k, split it into two parts
of size k. 2
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