ASYMPTOTICS OF THE NUMBER OF k-WORDS WITH AN ℓ -DESCENT

Amitai Regev*

Department of Mathematics The Pennsylvania State University University Park, PA 16802, U.S.A *E-mail: regev@math.psu.edu*

and

Department of Theoretical Mathematics The Weizmann Institute of Science Rehovot 76100, Israel *E-mail: regev@wisdom.weizmann.ac.il*

Submitted: December, 1997; Accepted: February 25, 1998

Abstract. The number of words $w = w_1 \cdots w_n$, $1 \le w_i \le k$, for which there are $1 \le i_1 < \cdots < i_\ell \le n$ and $w_{i_1} > \cdots > w_{i_\ell}$, is given, by the Schensted-Knuth correspondence, in terms of standard and semi-standard Young tableaux. When $n \to \infty$, the asymptotics of the number of such words is calculated.

^{*}Work partially supported by N.S.F. Grant No. DMS-94-01197.

The Main Results.

Let k, n > 0 be integers and let $W(k; n) = \{w_1 \cdots w_n \mid 1 \le w_i \le k \text{ for all } 1 \le i \le n\}$ denote the set of words of length n on the alphabet $\{1, \dots, k\}$. A word $w = w_1 \cdots w_n \in W(k, n)$ is said to have a descent of length ℓ if there exist indices $1 \le i_1 < \cdots < i_\ell \le n$ such that $w_{i_1} > \cdots > w_{i_\ell}$ (trivially, such words exist if and only if $\ell \le k$).

Let $W(k, \ell; n)$ denote the set of words in W(k; n) having descent $\leq \ell$, and denote $w(k, \ell; n) = |W(k, \ell; n)|$. Thus W(k; n) = W(k, k; n), and $w(k, k; n) = k^n$.

Recall: given two sequences $\{a_n\}$ and $\{b_n\}$ of real numbers, we denote $a_n \underset{n \to \infty}{\simeq} b_n$ (or simply $a_n \simeq b_n$) if $\lim_{n \to \infty} \frac{a_n}{b_n} = 1$.

The main result here is

Theorem 1. Let $1 \le \ell \le k$, then

$$w(k,\ell;n) \simeq_{n \to \infty} \frac{1! 2! \cdots (\ell-1)!}{(k-\ell)! \cdots (k-1)!} \cdot \left(\frac{1}{\ell}\right)^{\ell(k-\ell)} \cdot n^{\ell(k-\ell)} \cdot \ell^n$$

Remark. $\frac{1!\cdots(\ell-1)!}{(k-\ell)!\cdots(k-1)!} = \left[\frac{k!!}{\ell!!(k-\ell)!!}\right]^{-1}$, where $m!! \stackrel{\text{def}}{=} 1!2!\cdots(m-1)!$

Standard and Semistandard Tableaux.

Let $\lambda \vdash n$ (i.e. λ is a partition of n). A tableau of shape λ , filled with $1, \dots, n$, is standard if the numbers in it are increasing both in rows and in columns. Let d_{λ} denote the number of such tableaux. It is well known that $d_{\lambda} = \deg(\chi_{\lambda})$, where χ_{λ} is the corresponding irreducible character of the symmetric group S_n .

A k-tableau of shape λ is a tableau filled with $1, \dots, k$ possibly with repetitions; it is semi-standard if the numbers are weakly increasing in rows and strictly increasing in columns. Let $s_k(\lambda)$ denote the number of such k-tableaux. It is well known that $s_k(\lambda)$ is the degree of a corresponding irreducible character of $GL(k, \mathbb{C})$ (or of $SL(k, \mathbb{C})$).

The numbers $w(k, \ell; n)$ are given by

Theorem 2. Let $\wedge_{\ell}(n) = \{(\lambda_1, \lambda_2, \cdots) \vdash n \mid \lambda_{\ell+1} = 0\}$. Then

$$w(k,\ell;n) = \sum_{\lambda \in \wedge_{\ell}(n)} s_k(\lambda) \cdot d_{\lambda}.$$

Formulas for calculating d_{λ} 's and $s_k(\lambda)$'s are well known. Here we shall need the following formula:

Let $\lambda = (\lambda_1, \lambda_2, \cdots)$. If $\lambda_{k+1} > 0$ then $s_k(\lambda) = 0$. Assume $\lambda_{k+1} = 0$. Then

$$s_k(\lambda) = [1!2!\cdots(k-1)!]^{-1} \cdot \prod_{1 \le i < j \le k} (\lambda_i - \lambda_j + j - i) \tag{*}$$

We turn now to the proofs of Theorems 1 and 2, starting with

The proof of Theorem 2:

Apply the Schensted-Knuth correspondence [K] to $w \in W(k; n) : w \to (P_{\lambda}, Q_{\lambda})$, where P_{λ} and Q_{λ} are tableaux of same shape λ , Q_{λ} is standard and P_{λ} is k-semistandard. This gives a bijection

$$W(k;n) \leftrightarrow \{(P_{\lambda}, Q_{\lambda}) \mid \lambda \in \wedge_k(n), P_{\lambda} \text{ is } k \text{-semistandard}, Q_{\lambda} \text{ is standard}\}$$

Moreover, let $w \leftrightarrow (P_{\lambda}, Q_{\lambda})$ under this correspondence, then w has a descent of length $\geq r$ if and only if $\lambda_r \ge 0$. It clearly follows that the Schensted-Knuth correspondence gives a bijection

$$W(k, \ell; n) \leftrightarrow \{(P_{\lambda}, Q_{\lambda}) \mid \lambda \in \wedge_{\ell}(n), P_{\lambda} \text{ is } k \text{-semistandard}, Q_{\lambda} \text{ is standard}\}.$$

Hence

$$w(k,\ell;n) = \sum_{\lambda \in \Lambda_{\ell}(n)} s_k(\lambda) d_{\lambda}$$
 Q.E.D.

Remark. Let $1 \leq \ell \leq k$ and let $\lambda \in \wedge_{\ell}(n)$, then it is easy to verify that (*) implies that

$$s_k(\lambda) = a \cdot b \cdot c \qquad (**)$$

where $a = [(k-\ell)! \cdots (k-1)!]^{-1}, b = \prod_{1 \le i \le \ell} \left[\prod_{\ell+1 \le j \le k} (\lambda_i + j - i) \right]$ and
 $c = \prod_{1 \le i < j \le \ell} (\lambda_i - \lambda_j + j - i).$

The Proof of Theorem 1.

Here the results of [C.R] are applied. Let $\lambda \in \wedge_{\ell}(n), 1 \leq \ell \leq k$, and write:

$$\lambda = (\lambda_1, \cdots, \lambda_\ell) = (\lambda_1, \cdots, \lambda_k), \text{ where } \lambda_{\ell+1} = \cdots = \lambda_k = 0.$$

Also write $\lambda_j = \frac{n}{\ell} + c_j \sqrt{n}$. By the notations of [C.R], the factors b and c of (**) satisfy

$$b \approx \prod_{1 \le i \le \ell} \left(\frac{n}{\ell}\right)^{k-\ell} = \left(\frac{n}{\ell}\right)^{\ell(k-\ell)}$$

and

c =

$$c \approx \left[\prod_{1 \le i < j \le \ell} (c_i - c_j)\right] (\sqrt{n})^{\frac{\ell(\ell-1)}{2}}$$

Thus

$$s_k(\lambda) \approx [(k-\ell)! \cdots (k-1)! \ell^{\ell(k-\ell)}]^{-1} \cdot \left[\prod_{1 \le i < j \le \ell} (c_i - c_j)\right] \cdot n^{\ell(k-\ell) + \frac{\ell(\ell-1)}{4}}$$

Apply now [C.R. Theorem 2] with $\beta = 1$ (also ℓ replacing k and $s_k(\lambda)$ replacing $f(\lambda)$):

$$w(k,\ell;n) =_{\text{Thm 1}} \sum_{\lambda \in \wedge_{\ell}(n)} s_k(\lambda) d_{\lambda} \simeq$$

$$\simeq [(k-\ell)! \cdots (k-1)! \cdot \ell^{\ell(k-\ell)}]^{-1} \cdot \left(\frac{1}{\sqrt{2\pi}}\right)^{\ell-1} \cdot \ell^{\frac{1}{2}\ell^2} \cdot n^{\ell(k-\ell)} \cdot \ell^n \cdot I_{\ell},$$

$$(***)$$

where

$$I_{\ell} = \int_{\substack{x_1 + \dots + x_{\ell} = 0 \\ x_1 \ge \dots \ge x_{\ell}}} \left[\prod_{1 \le i < j \le \ell} (x_i - x_j) \right]^2 \exp\left(-\frac{\ell}{2} \sum_{j=1}^{\ell} x_j^2\right) d^{(\ell-1)}x$$

Special Case: Let $\ell = k$. Then $w(k, k; n) = k^n$. Cancelling k^n from both sides of (* * *) implies that

$$I_k = [1!2!\cdots(k-1)!]\sqrt{2\pi}^{k-1} \cdot \left(\frac{1}{k}\right)^{\frac{1}{2}k}$$

(Note: by [R, §4] I_k can also be calculated by the Mehta-Selberg integral).

In particular,

$$I_{\ell} = [1!2!\cdots(\ell-1)!]\sqrt{2\pi}^{\ell-1} \cdot \left(\frac{1}{\ell}\right)^{\frac{1}{2}\ell^2}$$

Substituting for I_{ℓ} in (* * *) implies that

$$w(k,\ell;n) \simeq \frac{1!2!\cdots(\ell-1)!}{(k-\ell)!\cdots(k-1)!} \cdot \left(\frac{1}{\ell}\right)^{\ell(k-\ell)} \cdot n^{\ell(k-\ell)} \cdot \ell^n$$

which completes the proof of Theorem 1.

Acknowledgement. I am thankful to Dr. H. Wilf for suggesting this problem.

References

- [C.R] P. S. Cohen, A. Regev, Asymptotics of combinatorial sums and the central limit theorem, SIAM J. Math. Anal., Vol 19, No 5 (1980) 1204–1215.
- [K] D. E. Knuth, The Art of Computer Programming, Vol. 3, Addison-Wesley, Reading, Mass., 1968.
- [R] A. Regev, Asymptotic values for degrees associated with strips of Young diagrams, Adv. in Math. 41 (1981), 115–136.

Q.E.D.