Dodgson's Determinant-Evaluation Rule Proved by TWO-TIMING MEN and WOMEN

Doron ZEILBERGER¹

Submitted: April 15, 1996; Accepted: May 15, 1996

Bijections are where it's at —Herb Wilf

Dedicated to Master Bijectionist Herb Wilf, on finishing 13/24 of his life

I will give a bijective proof of the Reverend Charles Lutwidge **Dodgson's Rule**([D]):

$$\det\left[(a_{i,j})_{\substack{1\leq i\leq n\\1\leq j\leq n}}\right] \cdot \det\left[(a_{i,j})_{\substack{2\leq i\leq n-1\\2\leq j\leq n-1}}\right] = \det\left[(a_{i,j})_{\substack{1\leq i\leq n-1\\2\leq j\leq n-1}}\right] \cdot \det\left[(a_{i,j})_{\substack{2\leq i\leq n\\2\leq j\leq n}}\right] - \det\left[(a_{i,j})_{\substack{1\leq i\leq n-1\\2\leq j\leq n}}\right] \cdot \det\left[(a_{i,j})_{\substack{2\leq i\leq n\\1\leq j\leq n-1}}\right] \quad . \qquad (Alice)$$

Consider n men, 1, 2, ..., n, and n women 1', 2' ..., n', each of whom is married to exactly one member of the opposite sex. For each of the n! possible (perfect) matchings π , let

weight(
$$\pi$$
) := sign(π) $\prod_{i=1}^{n} a_{i,\pi(i)}$,

where $sign(\pi)$ is the sign of the corresponding permutation, and for i = 1, ..., n, Mr. *i* is married to Ms. $\pi(i)'$.

Except for Mr. 1, Mr. n, Ms. 1' and Ms. n' all the persons have affairs. Assume that each of the men in $\{2, \ldots, n-1\}$ has exactly one mistress amongst $\{2', \ldots, (n-1)'\}$ and each of the women in $\{2', \ldots, (n-1)'\}$ has exactly one lover amongst $\{2, \ldots, n-1\}^2$. For each of the (n-2)! possible (perfect) matchings σ , let

$$weight(\sigma) := sign(\sigma) \prod_{i=2}^{n-1} a_{i,\sigma(i)} ,$$

where $sign(\sigma)$ is the sign of the corresponding permutation, and for i = 2, ..., n - 1, Mr. *i* is the lover of Ms. $\sigma(i)'$.

¹ Department of Mathematics, Temple University, Philadelphia, PA 19122, USA. zeilberg@math.temple.edu http://www.math.temple.edu/~zeilberg ftp://ftp.math.temple.edu/pub/zeilberg . Supported in part by the NSF. Version of Dec 6, 1996. First Version: April 15, 1996. Thanks are due to Bill Gosper for several corrections.

² Somewhat unrealistically, a man's wife may also be his mistress, and equivalently, a woman's husband may also be her lover.

Let A(n) be the set of all pairs $[\pi, \sigma]$ as above, and let $weight([\pi, \sigma]) := weight(\pi)weight(\sigma)$. The left side of (*Alice*) is the sum of all the weights of the elements of A(n).

Let B(n) be the set of pairs $[\pi, \sigma]$, where now n and n' are unmarried but have affairs, i.e. π is a matching of $\{1, \ldots, n-1\}$ to $\{1', \ldots, (n-1)'\}$, and σ is a matching of $\{2, \ldots, n\}$ to $\{2', \ldots, n'\}$, and define the weight similarly.

Let C(n) be the set of pairs $[\pi, \sigma]$, where now n and 1' are unmarried and 1 and n' don't have affairs. i.e. π is a matching of $\{1, \ldots, n-1\}$ to $\{2', \ldots, n'\}$, and σ is a matching of $\{2, \ldots, n\}$ to $\{1', \ldots, (n-1)'\}$, and now define $weight([\pi, \sigma]) := -weight(\pi)weight(\sigma)$.

The right side of (Alice) is the sum of all the weights of the elements of $B(n) \cup C(n)$.

Define a mapping

$$T: A(n) \to B(n) \cup C(n)$$

as follows. Given $[\pi, \sigma] \in A(n)$, define an alternating sequence of men and women: $m_1 := n, w_1, m_2, w_2, \ldots, m_r, w_r = 1'$ or n', such that $w_i :=$ wife of (m_i) , and $m_{i+1} :=$ lover of (w_i) . This sequence terminates, for some r, at either $w_r = 1'$, or $w_r = n'$, since then m_{r+1} is undefined, as 1' and n' are lovers-less women. To perform T, change the relationships $(m_1, w_1), (m_2, w_2), \ldots, (m_r, w_r)$ from marriages to affairs (i.e. Mr. m_i and Ms. w_i get divorced and become lovers, $i = 1, \ldots, r$), and change the relationships $(m_2, w_1), (m_3, w_2), \ldots, (m_r, w_{r-1})$ from affairs to marriages. If $w_r = 1'$ then $T([\pi, \sigma]) \in C(n)$, while if $w_r = n'$ then $T([\pi, \sigma]) \in B(n)$.

The mapping T is weight-preserving. Except for the sign, this is obvious, since all the relationships have been preserved, only the nature of some of them changed. I leave it as a pleasant exercise to verify that also the sign is preserved.

It is obvious that $T : A(n) \to B(n) \cup C(n)$ is one-to-one. If it were onto, we would be done. Since it is not, we need one more paragraph.

Call a member of $B(n) \cup C(n)$ bad if it is not in T(A(n)). I claim that the sum of all the weights of the bad members of $B(n) \cup C(n)$ is zero. This follows from the fact that there is a natural bijection S, easily constructed by the readers, between the bad members of C(n) and those of B(n), such that $weight(S([\pi, \sigma])) = -weight([\pi, \sigma])$. Hence the weights of the bad members of B(n) and C(n)cancel each other in pairs, contributing a total of zero to the right side of (Alice). \Box

A small Maple package, *alice*, containing programs implementing the mapping T, its inverse, and the mapping S from the bad members of C(n) to those of B(n), is available from my Home Page http://www.math.temple.edu/~zeilberg.

Reference

[D] C.L. Dodgson, *Condensation of Determinants*, Proceedings of the Royal Society of London **15**(1866), 150-155.