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Abstract

Regev and Vershik (Electronic J. Combinatorics 4 (1997), #R22) have obtained some
properties of the set of hook lengths for certain skew Young diagrams, using asymptotic
calculations of character degrees. They also conjectured a stronger form of one of their
results.
We give a simple inductive proof of this conjecture.
Very recently, Regev and Zeilberger (Annals of Combinatorics, to appear) have inde-
pendently proved this conjecture.

1 Introduction

Regev and Vershik [1] have recently obtained some properties of the set of hook lengths for
certain skew Young diagrams. They prove the results using asymptotic calculations of the
degrees of certain sequences of characters of the symmetric group, and note that they do
not know a direct “finite” proof of their results.

The purpose of the present note is to present such a proof for one of their results, viz.
their Theorem 1.2.2. Moreover, Regev and Vershik’s Theorem 1.2.2 states that two different
sets of hook lengths have the same product, and the authors conjecture that in fact these
two sets are equal. (More precisely, the sets in question should be regarded as multisets,
i.e. the elements may have multiplicities.) We prove this conjecture.

Very recently, Regev and Zeilberger [2] have independently proved this conjecture.
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2 Notation

If n1 ≥ n2 ≥ · · · ≥ nm ≥ 0 are integers, with m ≥ 1, let D = D(n1, . . . , nm) be the Young
diagram with rows of lengths n1, . . . , nm. Following (and slightly extending) Regev and
Vershik [1] , we introduce the following definitions, see the examples in Figures 1 and 2.

R = R(m, n) is an m × n rectangle, i.e. a Young diagram with m rows of equal length
n.

We assume that n ≥ n1 and that R and D are positioned such that their top left corners
coincide. Then D ⊆ R. (Regev and Vershik consider only the case when R is the smallest
rectangle containing D, i.e. when n = n1 and nm ≥ 1. We find it convenient to treat a
slightly more general situation.)

D∗ is obtained by rotating D a half turn about the center of R; thus D∗ ⊆ R and R\D∗

is a Young diagram with rows of lengths n − nm, n − nm−1, . . . , n − n1.
SQ = SQ(n1, . . . , nm;n) is obtained from R \D∗ by adding two copies of D∗, one along

the left edge and one along the top edge of R.
We will use a coordinate system with the x-axis directed upwards and the y-axis directed

to the left. (Note that thus rows are numbered from the bottom to the top and columns
from the right to the left.) We may then describe the skew diagrams as follows.

R(m, n) = {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}
D∗(n1, . . . , nm) = {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ ni}

SQ(n1, . . . , nm;n) = {(i, j) : 1 ≤ i ≤ m, ni + 1 ≤ j ≤ ni + n}
∪ {(i, j) : m + 1 ≤ i ≤ 2m, 1 ≤ j ≤ ni−m}.

The hook length hA(x) of an element x of a (skew) diagram A is, as usual, the number
of elements of A directly below or to the right of x, including x itself. We define H(A) to
be the multiset {hA(x) : x ∈ A}.
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Figure 1: D∗(4, 2, 1) marked with 0; SQ(4, 2, 1; 4) marked with ×
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Figure 2: SQ(4, 2, 1; 4), R(3, 4) and D(4, 2, 1) with hook lengths

3 Result

Theorem. Let n ≥ n1 ≥ n2 ≥ · · · ≥ nm ≥ 0 (m ≥ 1) be integers. We then have the
equality of multisets of hook lengths

H
(
SQ(n1, . . . , nm;n)

)
= H

(
R(m, n)

) ∪ H
(
D(n1, . . . , nm)

)
. (1)

Proof. We say that (n, n1, . . . , nm) is good if (1) holds. The result follows by double induc-
tion, in m and nm, from the following three claims.

(i) If n ≥ n1 ≥ 0, then (n, n1) is good.

(ii) If (n, n1, . . . , nm) is good, then (n, n1, . . . , nm, 0) is good.

(iii) If (n, n1, . . . , nm) is good and nm−1 > nm, then (n, n1, . . . , nm−1, nm + 1) is good.

(i) is trivial: SQ(n1;n) consists of two rows with n and n1 elements, positioned such
that their hook lengths are 1, . . . , n and 1, . . . , n1, respectively, corresponding to the hook
lengths of R(1, n) and D(n1).

For (ii), note that SQ′ = SQ(n1, . . . , nm, 0;n) is obtained from SQ = SQ(n1, . . . , nm;n)
by inserting a new row (m + 1, 1), . . . , (m + 1, n), moving up all elements (i, j) with i ≥ m;
equivalently, SQ′ is obtained from SQ by adding a new element on top of each column
1, . . . , n. Each of these new top elements has m elements beneath it, and thus their hook
lengths are m + 1, . . . , m + n. Moreover, all elements in SQ keep the same hook length in
SQ′; consequently H(SQ′) = H(SQ) ∪ {m + 1, . . . , m + n}, see Figure 3.

For the right hand side of (1), we observe that adding a new row of length 0 does not
change D, while R = R(m, n) is changed to R′ = R(m + 1, n), which equals R with an
additional top row having hook lengths m + 1, . . . , m + n. Thus H(R′) = H(R) ∪ {m +
1, . . . , m + n}. Consequently, if H(SQ) = H(R) ∪ H(D), then H(SQ′) = H(R′) ∪ H(D)
too, which proves (ii).

For (iii) we let SQ′ = SQ(n1, . . . , nm + 1; n) and D′ = D(n1, . . . , nm + 1) (this time
R = R(m, n) stays the same), and argue similarly. SQ′ differs from SQ in three places: the
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Figure 3: Hook lengths in SQ(4, 2, 1, 0; 4) and R(4, 4)
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Figure 4: Hook lengths in SQ(4, 2, 1; 4)/SQ(4, 2, 2; 4) and D(4, 2, 1)/D(4, 2, 2)

element (m, nm + 1) is removed while two new elements (m, nm + n + 1) and (2m, nm + 1)
are added. This affects only the hook lengths in row m and in column nm +1, see Figure 4.

The hook length hSQ(m, j) of an element in row m in SQ is j − nm + m − k if nk <
j ≤ nk−1 with 1 < k ≤ m, and j − nm + m − 1 if n1 < j ≤ n + nm; consequently the
hook lengths in row m in SQ are the numbers 1, . . . , n + m − 1 except the m − 1 numbers
nk − nm + m − k, k = 1, . . . , m − 1.

The hook lengths in row m in SQ′ are similarly (by substituting nm + 1 for nm) the
numbers 1, . . . , n + m − 1 except nk − nm − 1 + m − k, k = 1, . . . , m − 1. The contributions
from this row to the difference between H(SQ) and H(SQ′) is thus equivalent to adding the
numbers nk − nm + m − k and removing the numbers nk − nm + m − k − 1, 1 ≤ k ≤ m − 1.

The hook lengths in column nm + 1 in SQ, not counting (m, nm + 1) which is already
taken care of, are nm + 2, . . . , nm + m, while the hook lengths in the same column in SQ′

(which lies entirely above row m) are nm + 1, . . . , nm + m. The net effect of the changes in
this column is thus an addition of the number nm + 1. Consequently, combining the effects
in the row and the column,

H(SQ′) = H(SQ) ∪ {nm + 1} ∪ {nk − nm + m − k}m−1
k=1

\ {nk − nm + m − k − 1}m−1
k=1 .

(2)
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For the right hand side of (1), we observe that D′ differs from D in that a new element
is added to the last row. The hook lengths in this row in D are 1, . . . , nm, while in D′ they
are 1, . . . , nm + 1, a net addition of nm + 1.

The element above the new element in the kth row from top has hook length in D
nk − nm + m − k − 1, while its hook length in D′ is increased by 1 to nk − nm + m − k.

No other hook lengths are affected, and consequently,

H(D′) = H(D) ∪ {nm + 1} ∪ {nk − nm + m − k}m−1
k=1 \ {nk − nm + m − k − 1}m−1

k=1 .

Comparing this with (2), we see that if H(SQ) = H(R) ∪ H(D), then H(SQ′) = H(R) ∪
H(D′) too. This completes the proof of (iii), and thus of the theorem.
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