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Abstract

Let G be a finite abelian group, and let S be a sequence of elements in G. Let
f(S) denote the number of elements in G which can be expressed as the sum over
a nonempty subsequence of S. In this paper, we slightly improve some results of
[10] on f(S) and we show that for every zero-sum-free sequences S over G of length
|S| = exp(G) + 2 satisfying f(S) > 4 exp(G) − 1.
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1 Introduction

Let G be a finite abelian group (written additively)throughout the present paper. F(G)
denotes the free abelian monoid with basis G, the elements of which are called sequences
(in G). A sequence of not necessarily distinct elements from G will be written in the
form S = g1 · · · · · gn =

∏n

i=1 gi =
∏

g∈G gvg(S) ∈ F(G), where vg(S) > 0 is called the
multiplicity of g in S. Denote by |S| = n the number of elements in S (or the length of
S) and let supp(S) = {g ∈ G : vg(S) > 0} be the support of S.

We say that S contains some g ∈ G if vg(S) > 1 and a sequence T ∈ F(G) is a
subsequence of S if vg(T ) 6 vg(S) for every g ∈ G, denoted by T |S. If T |S, then let
ST−1 denote the sequence obtained by deleting the terms of T from S. Furthermore, by
σ(S) we denote the sum of S, (i.e. σ(S) =

∑k

i=1 gi =
∑

g∈G vg(S)g ∈ G). By
∑

(S) we
denote the set consisting of all elements which can be expressed as a sum over a nonempty
subsequence of S, i.e.

∑

(S) = {σ(T ) : T is a nonempty subsequence of S}.
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We write f(S) = |
∑

(S)|, 〈S〉 for the subgroup of G generated by all the elements of S.
Let S be a sequence in G. We call S a zero−sum sequence if σ(S) = 0, a zero−sum−

free sequence if σ(W ) 6= 0 for any subsequence W of S, and squarefree if vg(S) 6 1 for
every g ∈ G.

Let D(G) be the Davenport’s constant of G, i.e., the smallest integer d such that every
sequence S of elements in G with |S| > d satisfies 0 ∈

∑

(S). For every positive integer r
in the interval {1, . . . , D(G) − 1}, let

fG(r) = min
S, |S|=r

f(S), (1)

where S runs over all zero-sumfree sequences of r elements in G.
In 1972, Eggleton and Erdős (see [4]) first tackled the problem of determining the

minimal cardinality of
∑

(S) for squarefree zero-sum-free sequences (that is for zero-sum-
free subsets of G). In 2006, Gao and Leader [5] proved the following result.

Theorem A [5] Let G be a finite abelian group of exponent m. Then
(i) If 1 6 r 6 m − 1 then fG(r) = r.
(ii) If gcd(6, m) = 1 and G is not cyclic then fG(m) = 2m − 1.
In 2007, Sun[11] showed that fG(m) = 2m − 1 still holds without the restriction that

gcd(6, m) = 1.
Using some techniques from the author [12], the author [13] proved the following two

theorems.

Theorem B([9],[13]) Let S be a zero-sumfree sequence in G such that 〈S〉 is not a cyclic
group, then f(S) > 2|S| − 1.

Theorem C ([13]) Let S be a zero-sumfree sequence in G such that 〈S〉 is not a cyclic
group and f(S) = 2|S| − 1. Then S is one of the following forms

(i) S = ax(a + g)y, x > y > 1, where g is an element of order 2.
(ii) S = ax(a + g)yg, x > y > 1, where g is an element of order 2.
(iii) S = axb, x > 1.
However, Theorem B is an old theorem of Olson and White (see [10] Theorem 1.5)

which has been overlooked by the author.
Recently, by an elegant argument, Pixton [10] proved the following result.

Theorem D ([10]) Let G be a finite abelian group and S a zero-sum-free sequence of
length n generating a subgroup of rank greater than 2, then f(S) > 4|S| − 5.

One purpose of the paper is to slightly improve the above result of Pixton. We have

Theorem 1.1 Let n > 2 be a positive integer. Let G be a finite abelian group and
S = (gi)

n
i=1 a zero-sum-free sequence of length n generating a subgroup H of rank 2 and

H 6∼= C2 ⊕ C2m, where m is a positive integer. Suppose that
∑

(S) 6= Aa ∪ (b + Ba),

where a, b ∈ G, Aa, Ba are some subsets of the cyclic group 〈a〉 generated by a and b 6∈ 〈a〉,
then f(S) > 3n − 4.
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Theorem 1.2 Let n > 5 be a positive integer. Let G be a finite abelian group and
S = (gi)

n
i=1 a zero-sum-free sequence of length n generating a subgroup H of rank 2 and

H 6∼= C2 ⊕ C2m, 6∼= C3 ⊕ C3m, 6∼= C4 ⊕ C4m, where m is a positive integer. Suppose that

∑

(S) 6= Aa ∪ (b + Ba), Aa ∪ (b + Ba) ∪ (2b + Ca), Aa ∪ (b + Ba) ∪ (−b + Ca),

where a, b ∈ G, Aa, Ba, Ca are some subsets of the cyclic group 〈a〉 generated by a and
b 6∈ 〈a〉, then f(S) > 4n − 9.

Theorem 1.3 Let G be an abelian group and S = (gi)
n
i=1 is a zero-sum-free sequence of

length n > 5 that generating a subgroup of rank greater than 2 and 〈S〉 6∼= C2 ⊕C2 ⊕C2m,
then f(S)| > 4|S| − 3 except when S = ax(a + g)yc, ax(a + g)ygc, axbc, where a, b, c, g are
elements of G with ord(g) = 2, in these cases, f(S) = 4|S| − 5 when the rank of the
subgroup generated by S is 3.

Another main result of the paper runs as follows.

Theorem 1.4 Let G = Cn1
⊕ . . . ⊕ Cnr

be a finite abelian group with 1 < n1| . . . |nr. If
r > 2 and nr−1 > 4, then every zero-sum-free sequence S over G of length |S| = nr + 2
satisfies f(S) > 4nr − 1.

This partly confirms a former conjecture of Bollobás and Leader [2] and a conjecture of
Gao, Li, Peng and Sun [6], which is outlined in Section 5.

The paper is organized as follows. In Section 2 we present some results on Davenport’s
constant. In section 3 we prove more preliminary results which will be used in the proof of
the main Theorems. The proofs of Theorems 1.1 to 1.3 are given in Section 4. In section
5 we will prove Theorem 1.4 and give some applications of Theorems 1.1 and 1.2.

2 Some bounds on Davenport’s constant

Lemma 2.1 (see [8]) Let G be a non-cyclic finite abelian group. Then D(G) 6
|G|
2

+ 1.

Lemma 2.2 ([10] Lemma 4.1) Let k ∈ N. If H 6 G are some finite abelian groups and
G1 = G/H ≃ (Z/2Z)k+1. Then D(G) 6 2D(H) + 2k+1 − 2.

Lemma 2.3 ([10] Lemma 2.3) Let H 6 G be some finite abelian groups and G1 = G/H
is non-cyclic, then D(G) 6 (D(G1) − 1)D(H) + 1.

Lemma 2.4 (i)Let G be a finite abelian group of rank 2 and G 6∼= C2 ⊕ C2m. Then (i)

D(G) 6
|G|
3

+ 2.
(ii) D((Z/pZ)r) = r(p − 1) + 1 for prime p and r > 1.
(iii) D(G) 6 |G|.

Proof. (iii) is obvious. (i) and (ii) follow from Theorems 5.5.9 and 5.8.3 in [7]. 2
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Lemma 2.5 If G is an abelian group of rank greater than 2 and G 6∼= C2 ⊕ C2 ⊕ C2m ,
then D(G) 6

|G|+2
4

.

Proof. Since G has rank greater than 2, then G has p-rank at least 3 for some prime
p, and thus there exists a subgroup H 6 G with G/H ≃ (Z/pZ)3. We can then apply
Lemmas 2.3 and 2.4 (ii),(iii) to conclude that

D(G) 6
3(p − 1)

p3
|G| + 1 6

2

9
|G| + 1 6

|G| + 2

4

when p > 3. If p = 2 we can apply Lemmas 2.1 and 2.2 to see that

D(G) 6 2D(H) + 6 6 2 ·

(

|H|

2
+ 1

)

+ 6 =
|G|

8
+ 8 6

|G| + 2

4

when |G| > 60. Further, the only case with |G| 6 60 and G 6∼= C2 ⊕ C2 ⊕ C2m is that
G ∼= C2 ⊕ C4 ⊕ C4, in this case D(G) = 8 6

32+2
4

. We are done. 2

Lemma 2.6 ([10] Theorem 5.3) If G is an abelian group of rank greater than 2, and let
X ⊆ G\{0} be a generating set for G consisting only of elements of order greater than 2.
Suppose A ⊂ G satisfies |(A + x)\A| 6 3 for all x ∈ X. Then min{|A|, |G\A|} 6 5.

Lemma 2.7 ([10] Lemma 4.3) Let G be a finite abelian group and let X ⊆ G\{0} be a
generating set for G. Suppose A is a nonempty proper subset of G. Then

∑

x∈X

|(A + x)\A| > |X|.

Lemma 2.8 ([10] Lemma 4.4) Let G be a finite abelian group and let X ⊆ G\{0} be a
generating set for G. Suppose f : G → Z is a function on G. Then

∑

x∈Xg∈G

max{f(g + x) − f(g), 0} > (max(f) − min(f))|X|.

Using the technique in the proof of [10] Theorem 5.3, we have

Lemma 2.9 Let m > 0 be a positive integer and G a finite abelian group, and let X ⊆
G\{0} be a generating set for G. Suppose A ⊆ G satisfies |(A + x)\A| 6 m for all x ∈ X
and there exists a proper subset Y ⊂ X such that H = 〈Y 〉 and G1 = G/H both contain
at least (m + 1) elements. Then min{|A|, |G\A|} 6 m2.

Proof. First, without loss of generality we may replace X by a minimal subset X1 of X
such that 〈X1 ∩ Y 〉 = 〈Y 〉 and 〈X1〉 = G.
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Define a function f : G1 → Z by f(g) = |A ∩ (g + H)|. Then we have that

|(A − x)\A| =
∑

g∈G1

|((A − x)\A) ∩ (g + H)|

=
∑

g∈G1

|(A − x) ∩ (g + H)| − |(A − x) ∩ A ∩ (g + H)|

=
∑

g∈G1

|(A) ∩ (g + x + H)| − |(A − x) ∩ A ∩ (g + H)|

>
∑

g∈G1

max{f(g + x) − f(g), 0}.

It follows that

m|X\Y | >
∑

x∈X\Y

|(A − x)\A|

>
∑

x∈X\Y

∑

g∈G1

max{f(g + x) − f(g), 0}

> (max(f) − min(f))|X\Y |

by Lemma 2.8, since X\Y projects to |X\Y | distinct nonzero elements in G1 because
X is a minimal generating set with the property described in the first paragraph. Thus
(max(f) − min(f)) 6 m. Then by replacing A by G\A if necessary, we can assume that
f(g) 6= |H| for any g ∈ G1. The reason is that

(G\A + x)\(G\A) = A\(A + x),

so
|(G\A + x)\(G\A)| = |A\(A + x)| = |(A − x)\A|.

Since for every x ∈ Y we have

|(A + x)\A| =
∑

g∈G1

|((A + x)\A) ∩ (g + H)|

=
∑

g∈G1

|((A + x) ∩ (g + H) − (A + x) ∩ A ∩ (g + H)|

=
∑

g∈G1

|((A + x) ∩ (g + H + x) − ((A + x) ∩ (g + x + H)) ∩ (A ∩ (g + H))|

=
∑

g∈G1

|((A ∩ (g + H)) + x − (A ∩ (g + H) + x) ∩ (A ∩ (a + H))|

=
∑

g∈G1

|((A ∩ (g + H) + x)\(A ∩ (g + H))|,
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thus we can apply Lemma 2.7 to obtain that

m|Y | >
∑

x∈Y

|(A + x)\A|

=
∑

g∈G1

∑

x∈Y

|((A ∩ (g + H) + x)\(A ∩ (g + H))|

> |supp(f)| |Y |,

where supp(f) = {g ∈ G1|f(g) 6= 0} is the support of f . Since |G1| > m + 1, this implies
that f(g) = 0 for some g, and thus f(g) 6 m for all g ∈ G1. Then |A| =

∑

g∈G1
f(g) 6

max(f)|supp(f)| 6 m2, as desired. 2

3 Proof of Theorems 1.1 to 1.3

Proof of Theorem 1.1:

Proof. We first prove the theorem if S contains an element of order 2. Suppose that
S = (gi)

n
i=1 generates G, G has rank 2, 0 6∈

∑

(S), and gn has order 2. Let G be the
quotient of G by the subgroup generated by gn, then G has rank 2 since G 6∼= C2 ⊕ C2m.
Let S = (gi)

n−1
i=1 be the projection of the first n − 1 terms of S to G. Then 0 ∈

∑

(S)
would imply that either 0 or gn lies in

∑

((gi)
n−1
i=1 ) and hence 0 ∈

∑

(S), so 〈(gi)
n−1
i=1 〉 is

not a cyclic group and
∑

(S) =
∑

((gi)
n−1
i=1 )∪ {gn}∪ (

∑

((gi)
n−1
i=1 ) + gn) is a disjoint union.

Therefore, by Theorem B

f(S) > 2f((gi)
n−1
i=1 ) + 1 > 2(2n − 3) + 1 > 4n − 5 > 3n − 4,

as desired.
Now suppose for contradiction that the theorem fails for some abelian group G of

minimum size. Choose S = (gi)
n
i=1 to be a counterexample sequence of minimum length

n, so f(S) 6 3n−5. Also, S must generate G by the minimality of |G|, so G is noncyclic,
G 6∼= C2 ⊕ C2m. Moreover, by the minimality of n we have that either the theorem holds
for all Sg−1

i (1 6 i 6 n); or 〈Sg−1
i 〉 ∼= C2 ⊕ C2m, or

∑

(Sg−1
i ) = Aa ∪ (b + Ba), where

a, b ∈ G, Aa, Ba are some subsets of the cyclic group 〈a〉 generated by a and b 6∈ 〈a〉 for
some 1 6 i 6 n. We divide the remaining proof into three cases.

Case 1: 〈Sg−1
i 〉 ∼= C2 ⊕C2m for some 1 6 i 6 n. Then S = (Sg−1

i )gi and gi 6∈ 〈Sg−1
i 〉

since G 6∼= C2⊕C2m. It follows that
∑

(S) =
∑

(Sg−1
i )∪{gi}∪(

∑

(Sg−1
i )+gi) is a disjoint

union, by Theorem B we have f(S) > 2f(Sg−1
i ) + 1 > 2(2n− 3) + 1 > 3n− 4, as desired.

Case 2:
∑

(Sg−1
i ) = Aa ∪ (b + Ba) for some 1 6 i 6 n. Then gi 6∈ 〈a〉 since

∑

(S) 6= Aa ∪ (b + Ba). By the definitions of
∑

(Sg−1
i ), we have Sg−1

i = S(gigj)
−1gj, gj =

b+ la 6∈ 〈a〉, S(gigj)
−1 ⊆ 〈a〉 and j 6= i. It follows that

∑

(Sg−1
i ) = Aa∪{gj}∪(gj +Aa) :=

A, Aa ⊆ 〈a〉 is a disjoint union and

∑

(S) = A ∪ {gi} ∪ B, B = (gi + Aa) ∪ {gi + gj} ∪ (gi + gj + Aa).
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If gi = gj or A ∩ B 6= ∅, then xi ∈ (b + 〈a〉) ∪ (−b + 〈a〉), and thus

∑

(S) = Aa ∪ (b + Ba) ∪ (2b + Ca), or Aa ∪ (b + Ba) ∪ (−b + Ca),

where Aa, Ba, Ca are some subsets of 〈a〉.
If gi ∈ b + 〈a〉, then gi = b + ka for some k ∈ Z and

∑

(S) ⊃ Aa ∪ (b + Ba) ∪ (2b + ka + Ba),

and the right hand side is a disjoint union, and thus

f(S) > |Aa| + |Ba| + |Ba| > n − 2 + 2(n − 1) = 3n − 4.

If gi ∈ −b + 〈a〉, then gi = −b + ka for some k ∈ Z and

∑

(S) ⊇ Aa ∪ (b + Ba) ∪ (−b + ka + (Aa ∪ {0})

and Aa ∪ (b + Ba) ∪ (−b + ka + (Aa ∪ {0}) is a disjoint union, and thus

f(S) > |Aa| + |Ba| + |Aa| + 1 > n − 2 + 2(n − 1) = 3n − 4.

If gi 6= gj and A∩B = ∅, then
∑

(S) = A∪{gi}∪B, B = (gi+Aa)∪{gi+gj}∪(gi+gj+Aa)
is a disjoint union, hence

f(S) = 4|Aa| + 3 > 4(n − 2) + 3 > 3n − 4.

Case 3: If the theorem holds for all Sg−1
i , 1 6 i 6 n. Let A =

∑

(S) ⊆ G. Then for
any i we have

∑

(Sg−1
i ) ⊆ (A − gi) ∩ A, so

|(A − gi)\A| 6 f(S) − f(Sg−1
i ) 6 3n − 5 − (3(n − 1) − 4) = 2.

It is easy to see that S satisfies the conditions of Lemma 2.9 since 〈S〉 6∼= C2 ⊕ C2m.
Applying Lemma 2.9 to A ⊆ G with generating set S, we obtain that either A or G\A
has cardinality at most 4. Since |A| > 4, so we have that |G\A| 6 4.

We now consider the two cases. If |G\A| = 1, then n 6 D(G)−1 6
|G|
3

+1 by Lemma
2.4(i), and hence

|G| = |A| + 1 6 3n − 5 + 1 6 |G| − 1,

which is a contradiction.
Otherwise, there is some nonzero element y ∈ G\A, and S is still zero-sum free after

appending −y, so n 6 D(G) − 2 6
|G|
3

by Lemma 2.4(i) again, and thus

|G| 6 |A| + 4 6 3n − 5 + 4 6 |G| − 1,

is again a contradiction. Theorem 1.1 is proved.
2
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Proof of Theorem 1.2:

Proof. For |S| = 5, by Theorems 1.1, we have f(S) > 3|S| − 4 = 4|S| − 9, so the theorem
holds for n = 5. If S = (gi)

n
i=1 contains an element of order 2, say, o(gn) = 2. By the

similar argument as in Theorem 1.1 and by Theorem B, we have

f(S) > 2f((gi)
n−1
i=1 ) + 1 > 2(2n − 3) + 1 > 4n − 5,

as desired.
Now suppose for contradiction that the theorem fails for some abelian group G of

minimum size. Choose S = (gi)
n
i=1 to be a counterexample sequence of minimum length

n, so f(S) 6 4n − 10. Also, S must generate G by the minimality of |G|, so G is
noncyclic, G 6∼= C2 ⊕ C2m, 6∼= C3 ⊕ C3m, 6∼= C4 ⊕ C4m. Moreover, by the minimality of n
we have that either the theorem holds for all Sg−1

i (1 6 i 6 n), or 〈Sg−1
i 〉 ∼= C2 ⊕ C2m,

or 〈Sg−1
i 〉 ∼= C3 ⊕ C3m, or 〈Sg−1

i 〉 ∼= C4 ⊕ C4m, or
∑

(Sg−1
i ) = Aa ∪ (b + Ba), or

Aa ∪ (b + Ba) ∪ (2b + Ca), or Aa ∪ (b + Ba) ∪ (−b + Ca), where a, b ∈ G, Aa, Ba, Ca are
some subsets of the cyclic group 〈a〉 generated by a and b 6∈ 〈a〉 for some 1 6 i 6 n. We
divide the remaining proof into five cases.

Case 1: 〈Sg−1
i 〉 ∼= C2 ⊕ C2m, or 〈Sg−1

i 〉 ∼= C3 ⊕ C3m or 〈Sg−1
i 〉 ∼= C4 ⊕ C4m for some

1 6 i 6 n. Then S = (Sg−1
i )gi and gi 6∈ 〈Sg−1

i 〉 since G 6∼= C2 ⊕ C2m, G 6∼= C3 ⊕ C3m and
G 6∼= C4 ⊕ C4m. It follows that

∑

(S) =
∑

(Sg−1
i ) ∪ {gi} ∪ (

∑

(Sg−1
i ) + gi) is a disjoint

union, by Theorem B we have f(S) > 2f(Sg−1
i ) + 1 > 2(2n− 3) + 1 > 4n− 5, as desired.

Case 2:
∑

(Sg−1
i ) = Aa ∪ (b + Ba) for some 1 6 i 6 n. Then gi 6∈ 〈a〉 since

∑

(S) 6= Aa∪(b+Ba). By the definitions of
∑

(Sg−1
i ), we have Sg−1

i = (S(gigi)
−1)gj, gj =

b+ la 6∈ 〈a〉, S(gigj)
−1 ⊆ 〈a〉 and j 6= i. It follows that

∑

(Sg−1
i ) = Aa∪{gj}∪(gj +Aa) :=

A, Aa ⊆ 〈a〉 is a disjoint union and

∑

(S) = A ∪ {gi} ∪ B, B = (gi + Aa) ∪ {gi + gj} ∪ (gi + gj + Aa).

If gi = gj or A ∩ B 6= ∅, then gi ∈ (b + 〈a〉) ∪ (−b + 〈a〉), and thus

∑

(S) = Aa ∪ (b + Ba) ∪ (2b + Ca), or Aa ∪ (b + Ba) ∪ (−b + Ca),

where Aa, Ba, Ca are some subsets of 〈a〉, a contradiction. It follows that
∑

(S) = A ∪
{gi} ∪ B, B = (gi + Aa) ∪ {gi + gj} ∪ (gi + gj + Aa) is a disjoint union, and thus f(S) =
4|Aa| + 3 > 4|S(gigj)

−1| + 3 = 4(n − 2) + 3 = 4n − 5, as desired.
Case 3:

∑

(Sg−1
i ) = Aa ∪ (b + Ba) ∪ (2b + Ca) := A for some 1 6 i 6 n. Then

gi 6∈ 〈a〉 since
∑

(S) 6= Aa ∪ (b + Ba)∪ (2b + Ca). By the definitions of
∑

(Sg−1
i ), we have

Sg−1
i = (S(gigjgk)

−1)gjgk, gj = b + la 6∈ 〈a〉, gk = b + l1a 6∈ 〈a〉, (S(gigjgk)
−1) ⊆ 〈a〉 and

j 6= k 6= i. It follows that
∑

(Sg−1
i ) = Aa∪ (b+Ba)∪ (2b+Ca) := A, Aa ⊆ 〈a〉 is a disjoint

union and |Aa| > |S(gigjgk)
−1| = n− 3, |Ba| > |Aa|+ 1 > n− 2, |Ca| > |Aa|+ 1 > n− 2.

And
∑

(S) = A ∪ {gi} ∪ B, B = (gi + A).
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If gi = gj or gi = gk or A∩B 6= ∅, then gi ∈ (b+ 〈a〉)∪ (−b+ 〈a〉)∪ (2b+ 〈a〉)∪ (−2b+ 〈a〉)
and b is an element of order at least 4 by the assumptions. If gi ∈ b+ 〈a〉, then gi = b+ka
for some k ∈ Z and

∑

(S) = Aa ∪ (b + B′
a) ∪ (2b + C ′

a) ∪ (3b + ka + Ca), Ba ⊆ B′
a, Ca ⊆ C ′

a

is a disjoint union, and thus

f(S) = |Aa| + |B′
a| + |Ca| + |Ca| > n − 3 + 3(n − 2) = 4n − 9.

If gi ∈ 2b + 〈a〉, then gi = 2b + ka for some k ∈ Z and

∑

(S) ⊇ Aa ∪ (b + B′
a) ∪ (2b + C ′

a) ∪ (3b + ka + Ba), Ba ⊆ B′
a, Ca ⊆ C ′

a

and Aa ∪ (b + B′
a) ∪ (2b + C ′

a) ∪ (3b + ka + Ba) is a disjoint union, and thus

f(S) > |Aa| + |B′
a| + |Ca| + |Ba| > n − 3 + 3(n − 2) = 4n − 9.

If gi ∈ −b + 〈a〉, then gi = −b + ka for some k ∈ Z and

∑

(S) = A′
a ∪ (b + B′

a) ∪ (2b + Ca) ∪ (−b + ka + (Aa ∪ {0})), Aa ⊆ A′
a, Ba ⊆ B′

a

is a disjoint union, and thus

f(S) > |Aa| + |Ba| + |Ca| + |Aa| + 1 > n − 3 + 3(n − 2) = 4n − 9.

If gi ∈ −2b + 〈a〉, then gi = −2b + ka for some k ∈ Z and

∑

(S) ⊇ A′
a ∪ (b + B′

a) ∪ (2b + Ca) ∪ (−b + ka + Ba), Aa ⊆ A′
a, Ba ⊆ B′

a

is a disjoint union, and thus

f(S) > |Aa| + |Ba| + |Ca| + |Ba| > n − 3 + 3(n − 2) = 4n − 9.

If gi 6= gj and gi 6= gk and A ∩ B = ∅, then
∑

(S) = A ∪ {gi} ∪ B, B = (gi + A) is a
disjoint union, hence

f(S) > 2(n − 3) + 4(n − 2) + 1 > 4n − 9.

Case 4:
∑

(Sg−1
i ) = Aa∪(b+Ba)∪(−b+Ca) := A for some 1 6 i 6 n. Then gi 6∈ 〈a〉

since
∑

(S) 6= Aa∪(b+Ba)∪(−b+Ca). By the definitions of
∑

(Sg−1
i ), we may assume that

Sg−1
i = (S(gigjgk)

−1)gjgk, gj = b + la 6∈ 〈a〉, gk = −b + l1a 6∈ 〈a〉, (S(gigjgk)
−1) ⊆ 〈a〉 and

j 6= k 6= i. It follows that
∑

(Sg−1
i ) = (

∑

(S(gigjgk)
−1(l + l1)a))∪ (b + (

∑

(S(gigjgk)
−1)∪

{0})) ∪ (−b + (
∑

(S(gigjgk)
−1) ∪ {0})) := A, (

∑

(S(gigjgk)
−1) ⊆ 〈a〉 is a disjoint union

and |S(gigjgk)
−1| = n − 3. And

∑

(S) = A ∪ {gi} ∪ B, B = (gi + A).
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The remaining proof of this case is similar to the proof of the case 3, we omit the detail.
Case 5: If the theorem holds for all Sg−1

i , 1 6 i 6 n. Let A =
∑

(S) ⊆ G. Then for
any i we have

∑

(Sg−1
i ) ⊆ (A − gi) ∩ A, so

|(A − gi)\A| 6 |
∑

(S)| − |
∑

(Sg−1
i )| 6 4n − 10 − (4(n − 1) − 9) = 3.

It is easy to see that S satisfies all the conditions of Lemma 2.9 by the assumptions.
Applying Lemma 2.9 to A ⊆ G with generating set S, we obtain that either A or G\A
has cardinality at most 9.

We now consider the two cases. If |G\A| = 1, then n 6 D(G)−1 6
|G|
5

+3, and hence

|G| = |A| + 1 6 4n − 10 + 1 6
4

5
|G| + 3 6 |G| − 1

since |G| > 25, which is a contradiction.
Otherwise, there is some nonzero element y ∈ G\A, and S is still zero-sum free after

appending −y, so n 6 D(G) − 2 6
|G|
5

+ 2, and thus

|G| 6 |A| + 9 6 4n − 10 + 9 6
4

5
|G| + 7 6 |G| − 1

when |G| > 50, which is again a contradiction.
The only left case is that G ∼= C5⊕C5. If n = 8 = D(G)−1 then f(S) = 24 > 4×8−9.

The case that n = 7 follows from [6] Lemma 4.5. The case that n = 6 follows from the
proof of the above case 5 since f(S) = |A| > |G| − 9 > 4 × 6 − 9. The case that n = 5
follows from Theorem 1.1 since f(S) > 3 × 5 − 4 = 11 = 4 × 5 − 9.

2

Proof of Theorem 1.3:

Proof. If there exists some integer i, 1 6 i 6 n such that the rank of 〈Sg−1
i 〉 is two and

f(Sg−1
i ) = 2|Sg−1

i | − 1, then by Theorem C we have Sg−1
i = ax(a + g)y, ax(a + g)yg, axb,

where a, b, g are elements of G with ord(g) = 2. It follows from our assumption that
gi 6∈ 〈Sg−1

i 〉, and thus

f(S) = 2f(Sx−1
i ) + 1 = 2(2n − 3) + 1 = 4n − 5.

If rank〈Sg−1
i 〉 = 2 and f(Sg−1

i ) > 2|Sg−1
i |, then

f(S) = 2f(Sg−1
i ) + 1 = 2(2n − 2) + 1 = 4n − 3.

If 〈Sg−1
i 〉 ∼= C2 ⊕ C2 ⊕ C2m for some i, 1 6 i 6 n, then gi 6∈ 〈Sg−1

i 〉 since 〈S〉 6∼=
C2 ⊕ C2 ⊕ C2m, and so

f(S) = 2f(Sg−1
i ) + 1 > 2(4(n − 1) − 5) + 1 = 8n − 17 > 4n − 3

since n > 4, as desired.
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Now we suppose that for all i, 1 6 i 6 n, 〈Sg−1
i 〉 is an abelian group of rank greater

than 2 and 〈Sg−1
i 〉 6∼= C2 ⊕ C2 ⊕ C2m.

First we will show that the theorem holds for n = 4. Let S = abcd such that
rank〈abc〉 = rank〈abd〉 = rank〈acd〉 = rank〈bcd〉 = 3, then a, b, c, a+b, a+c, b+c, a+b+c
are distinct elements in

∑

(abcd) since rank〈abc〉 = 3. The case that rank〈a, b, c, d〉 = 4
is trivial since f(abcd) = 15 in this case. It is easy to see that d 6∈ {a, b, c, a+b, a+c, b+c}
and a + d 6∈ {a, b, c, a + b, a + c, a + b + c}.

(i) If d = a + b + c, d + a = b + c and d + b = a + c, then 2a = 2b = 0 and
〈S〉 ∼= C2 ⊕ C2 ⊕ C2m, a contradiction.

(ii) If d = a+b+c, c = a+b+d and b = a+c+d, then 2(a+b) = 2(a+d) = 2(a+c) = 0.
Let b = −a + g1, c = −a + g2, d = −a + g3, o(g1) = o(g2) = o(g3) = 2, then g3 = g1 + g2,
and thus 〈S〉 ∼= C2 ⊕ C2 ⊕ C2m.

(iii) If d + a = b + c, d + b = a + c and d + c = a + b, then 2a = 2b = 2c = 2d. Let
b = a + g1, c = a + g2, d = a + g3, o(g1) = o(g2) = o(g3) = 2, then g3 = g1 + g2 and so
〈S〉 ∼= C2 ⊕ C2 ⊕ C2m.

(iv) If If d = a + b + c, c = a + b + d and b + a = c + d, then 2c = 2d = 0, 2(a + b) = 0.
Let b = −a + g1, c = g2, d = g3, o(g1) = o(g2) = o(g3) = 2, then g1 = g2 + g3, and thus
〈S〉 ∼= C2 ⊕ C2 ⊕ C2m.

By symmetry, we conclude that 〈S〉 ∼= C2⊕C2⊕C2m whenever there are three relations.
If there are precisely two relations, then f(abcd) = 13; If there is only one relation, then
f(abcd) = 14; If there is no relations between a, b, cd , then f(abcd) = 15. Therefore the
theorem holds for n = 4.

Suppose for contradiction that the theorem holds for some abelian group G of minimum
size. Choose S = (gi)

n
i=1 to be a counterexample sequence of minimum length n > 5,

so f(S) < 4n − 4. Also S must generate G by minimality of |G|, rank(G) = 3 and
G 6∼= C2 ⊕ C2 ⊕ C2m. Moreover, by the minimality of n > 5, we have that the theorem
holds for Sg−1

i .
Let A =

∑

(S) ⊂ G, then
∑

(Sg−1
i ) ⊂ (A − gi) ∩ A, and thus |(A − gi)\A| 6 |A| −

f(Sg−1
i ) 6 4n − 4 − (4n − 7) = 3. It follows from Lemma 2.6 that min{|A|, |G\A|} 6 5.

Since |A| > 2|S| − 1 > 9, then we have

|G\A| 6 5.

If |G\A| = 1, then n 6 D(G) − 1 6
|G|−2

4
by Lemma 2.5, and hence

|G| = |A| + 1 6 4n − 4 + 1 6 |G| − 5,

is a contradiction. Otherwise, there is some nonzero element y ∈ G\A, and X is still

zero-sum-free after appending −y, so n 6 D(G) − 2 6
|G|−6

4
. Therefore

|G| 6 |A| + 5 6 4n + 1 6 |G| − 1,

is again a contradiction. 2
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4 Proof of Theorem 1.4

Now we are in a position to prove Theorem 1.4.

Proof. If rank〈S〉 > 3, then f(S) > 4|S| − 5 = 4(nr + 2) − 5 > 4nr − 1. If rank〈S〉 = 2,
since |S| = nr + 2 6 D(〈S〉) − 1, then 〈S〉 6∼= C2 ⊕ C2m, C3 ⊕ C3m. If 〈S〉 ∼= C4 ⊕ C4m,
then |S| = D(G) − 1 and thus f(S) = |〈S〉| − 1 = 4nr − 1. If 〈S〉 6∼= C4 ⊕ C4m, then
f(S) > 4|S| − 9 = 4nr − 1 by Theorem 1.2. We are done. 2

Similarly, by Theorem 1.1, we can prove the following theorem in [6].

Theorem 4.1 ([6] Theorem 1.1) Let G = Cn1
⊕ . . . ⊕ Cnr

be a finite abelian group with
1 < n1| . . . |nr. If r > 2 and nr−1 > 3, then every zero-sum free sequence S over G of
length |S| = nr + 1 satisfies f(S) > 3nr − 1.

Proof. If rank〈S〉 > 3, then f(S) > 4|S| − 5 = 4(nr + 1) − 5 > 3nr − 1. If rank〈S〉 = 2,
since |S| = nr + 1 6 D(〈S〉) − 1, then 〈S〉 6∼= C2 ⊕ C2m. Therefore f(S) > 3|S| − 4 >

3(nr + 1) − 4 = 3nr − 1 by Theorem 1.1. We are done. 2

We recall a conjecture by Bollobás and Leader, stated in [2].

Conjecture 4.1 Let G = Cn ⊕ Cn with n > 2 and let (e1, e2) be a basis of G. If
k ∈ [0, n − 2] and

S = en−1
1 ek+1

2 ∈ F(G).

Then we have f(G, n + k) = f(S) = (k + 2)n − 1.

By a main result of [6] and Theorem 1.4, the conjecture holds for k ∈ {0, 1, 2, n − 2}.
Moreover, the following general conjecture stated in [6] holds for k = 2.

Conjecture 4.2 Let G = Cn1
⊕ . . . ⊕ Cnr

be a finite abelian group with r > 2 and
1 < n1| . . . |nr. Let (e1, . . . , er) be a basis of G with ord(ei) = ni for all i ∈ [1, r], k ∈
[0, nr−1 − 2] and

S = enr−1
r ek+1

r−1 ∈ F(G).

Then we have f(G, nr + k) = f(S) = (k + 2)nr − 1.
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