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Abstract

In this paper, we enumerate k-noncrossing tangled diagrams. A tangled diagram
is a labeled graph with vertices 1, . . . , n, having degree at most two, which are
arranged in increasing order in a horizontal line. The arcs are drawn in the upper
halfplane with a particular notion of crossings and nestings. Our main result is
the asymptotic formula for the number of k-noncrossing tangled diagrams Tk(n) ∼
ck n−((k−1)2+(k−1)/2) (4(k − 1)2 + 2(k − 1) + 1)n for some ck > 0.

1 Tangled diagrams as molecules or walks

In this paper we compute the numbers of k-noncrossing tangled diagrams and prove the
asymptotic formula

Tk(n) ∼ ck n
−((k−1)2+(k−1)/2) (4(k − 1)2 + 2(k − 1) + 1)n, ck > 0. (1.1)

This article is accompanied by the Maple package TANGLE, which is available at

www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/tangled.html
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Figure 1: Arcs in tangled diagrams: a list of all possible arc-configurations.

K-noncrossing tangled diagrams are motivated by the studies of RNA molecules. They
serve as a combinatorial model for searching molecular configurations and were recently
studied [5] by the first three authors. Let us recall that a tangled diagram, or a tangle,
is a labeled graph on the vertex set [n] = {1, . . . , n}, with vertices of degree at most two,
drawn in increasing order in a horizontal line. The arcs are drawn in the upper halfplane.
In general, a tangled diagram has isolated vertices and its types of nonisolated vertices
are given in Fig. 1. Tangled diagrams have possibly isolated vertices, for instance, the
tangled diagram displayed in Fig. 1 has the isolated vertices 2 and 12.

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 2: A tangled diagram with 13 vertices.

In order to describe the geometric crossings in tangled diagrams, we map a tangled
diagram into a partial matching. This mapping is called inflation and intuitively “splits”
each vertex of degree two, j, into two vertices j and j′ having degree one, see Fig. 3.
Accordingly, a tangle with ℓ vertices of degree two is expanded into a diagram on n + ℓ
vertices. Clearly, the inflation map has a unique inverse, obtained by identifying the
vertices j, j′. A set of k arcs (irs

, jrs
), 1 ≤ s ≤ k, is called a k-crossing if ir1

< ir2
< · · · <

irk
< jr1

< jr2
< · · · < jrk

and k-nesting if ir1
< ir2

< · · · < irk
< jrk

< jrk−1
< · · · < jr1

.
A partial matching is called k-noncrossing (k-nonnesting) [4], if it does not contain any
k-crossing (k-nesting). A tangle is k-noncrossing (k-nonnesting) if its inflation is a k-
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Figure 3: The inflation of a tangled diagram into a partial matching with 8 vertices.

noncrossing (k-nonnesting) partial matching [5]. It is interesting to note that tangled
diagrams are in correspondence with the following types of walks:

Observation 1. The number of k-noncrossing tangled diagrams on [n], without
isolated vertices, equals the number of simple lattice walks in the region x1 ≥ x2 ≥ · · · ≥
xk−1 ≥ 0, from the origin back to the origin, taking n days, where at each day the walker
can either make one unit step in any (legal) direction, or else feel energetic and make any
two consecutive steps (chosen randomly).

Observation 2. The number of k-noncrossing tangled diagrams on [n], (allowing
isolated vertices), equals the number of simple lattice walks in the region x1 ≥ x2 ≥ · · · ≥
xk−1 ≥ 0, from the origin back to the origin, taking n days, where at each day the walker
can either feel lazy and stay in place, or make one unit step in any (legal) direction, or
else feel energetic and make any two consecutive steps (chosen randomly).

These observations follow easily from the consideration in [5]. The paper is organized
as follows: in Section 2 we consider enumeration and computation using the holonomic
framework [14]. In Section 3 we validate that the formula, proved in Section 2 for k =
2, 3, 4, holds for arbitrary k.

2 Efficient enumeration

Let tk(n) and t̃k(n) denote the numbers of k-noncrossing tangled diagrams with and
without isolated vertices, respectively. Furthermore let fk(m) denote the number of k-
noncrossing matchings on m vertices or equivalently be the number of ways of walking n
steps in the region x1 ≥ x2 ≥ · · · ≥ xk−1 ≥ 0, from the origin back to the origin. Then,
as shown in [5], t̃k(n) and tk(n) are given by:

t̃k(n) =

n
∑

i=0

(

n

i

)

fk(2n− i) and tk(n) =

n
∑

i=0

(

n

i

)

t̃k(n− i). (2.1)

As for fk(n), Grabiner and Magyar proved an explicit determinant formula, [9] (see also
[4], (9)) that expresses the exponential generating function of fk(n), for fixed k, as a
(k − 1) × (k − 1) determinant

∑

n≥0

fk(2n) ·
x2n

(2n)!
= det[Ii−j(2x) − Ii+j(2x)]|

k−1
i,j=1, (2.2)
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where Im(2x) is the hyperbolic Bessel function:

Im(2x) =

∞
∑

j=0

xm+2j

j!(m+ j)!
. (2.3)

Recall that a formal power series G(x) is D-finite if it satisfies a linear differential equation
with polynomial coefficients. For any m the hyperbolic Bessel functions are D-finite [11],
which is also called P -finite in [14]. By general considerations, that we omit here, it
is easy to establish a priori bounds for the order of the recurrence, and for the degrees
of its polynomial coefficients, any empirically derived recurrence (using the command
listtorec in the Salvy-Zimmerman Maple package gfun, that we adapted to our own
needs in our own package TANGLE), is ipso facto rigorous. We derived explicit recurrences
for k = 2, 3, 4, and they can be found in the webpage of this article. Also, once recurrences
are found, they are very efficient in extending the counting sequences. In the same page
one can find the sequences for Tk(n) for 1 ≤ n ≤ 1000, for k = 2, 3, 4, and the sequences
for 1 ≤ n ≤ 50 for k = 5, 6 (using a variant of the Grabiner-Magyar formula implemented
in our Maple package TANGLE).

Once the existence of a recursion is established, we can, for k = 2, 3, 4, employ the
Birkhoff-Tritzinsky theory [2, 13] and non-rigorous “series analysis” due to Zinn-Justin
[3, 15]. This allows us to safely conjecture that, for any fixed k, we have the following
asymptotic formula:

tk(n) ∼ ck · n−((k−1)2+(k−1)/2) (4(k − 1)2 + 2(k − 1) + 1)n for some ck > 0. (2.4)

In the next Section we shall prove (2.4) for arbitrary k.

3 Tangled diagrams for arbitrary k

In Lemma 3.1 we relate the generating functions for k-noncrossing tangled diagrams
Tk(z) =

∑

n tk(n)zn and k-noncrossing matchings [4] Fk(z) =
∑

n fk(2n) z2n. The func-
tional equation derived will be instrumental to prove (2.4) for arbitrary k. For this purpose
we shall employ Cauchy’s integral formula. Let D be a simply connected domain and let
C be a simple closed positively oriented contour that lies in D. If f is analytic inside C
and on C, except at the vertices z1, z2, . . . , zn that are in the interior of C, then we have
Cauchy’s integral formula

∫

C

f(z)dz = 2πi

n
∑

k=1

Res[f, zk]. (3.1)

In particular, if f has a simple pole at z0, then Res[f, z0] = lim
z→z0

(z − z0)f(z).

Lemma 3.1. Let k ∈ N, k ≥ 2 and |z| < 2. Then we have

Tk

(

z2

1 + z + z2

)

=
1 + z + z2

z + 2
Fk(z). (3.2)
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Proof. The relation between the number of k-noncrossing tangled diagrams, tk(n), and
the number of k-noncrossing matchings, fk(2m), given in (2.1) implies

tk(n) =
∑

r,ℓ

(

n

r

)(

n− r

ℓ

)

fk(2n− 2r − ℓ).

Expressing the binomial coefficients by contour integrals we obtain
(

n

r

)

=
1

2πi

∮

|u|=α

(1 + u)nu−r−1du

fk(2n− 2r − ℓ) =
1

2πi

∮

|z|=β2

Fk(z)z
−(2n−2r−ℓ)−1dz

tk(n) =
∑

r,ℓ

(

n

r

)(

n− r

ℓ

)

fk(2n− 2r − ℓ)

=
1

(2πi)3

∑

r,ℓ

∮

|v|=β1

|z|=β2

|u|=β3

(1 + u)nu−r−1(1 + v)n−rv−ℓ−1 ×

Fk(z) z
−(2n−2r−ℓ)−1dv du dz,

where α, β1, β2, β3 are arbitrarily small positive numbers. Due to absolute convergence of
the series we derive

tk(n) =
1

(2πi)3

∑

r

∮

|v|=β1

|z|=β2

|u|=β3

(1 + u)nu−r−1Fk(z) z
−2n+2r−1(1 + v)n−rv−1 ×

∑

ℓ

(z

v

)ℓ

dv du dz,

which is equivalent to

tk(n) =
1

(2πi)3

∑

r

∮

|u|=β3

|z|=β2

(1 + u)nu−r−1Fk(z) z
−2n+2r−1 ×

(
∮

|v|=β1

(1 + v)n−r

v − z
dv

)

du dz.

Since v = z is the only (simple) pole in the integration domain, (3.1) implies
∮

|v|=β1

(1 + v)n−r

v − z
dv = 2πi (1 + z)n−r.

We accordingly obtain

tk(n) =
1

(2πi)2

∑

r

∮

|u|=β3

|z|=β2

(1 + u)nu−r−1Fk(z) z
−2n+2r−1(1 + z)n−rdu dz. (3.3)
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Proceeding analogously with respect to the summation over r yields

tk(n) =
1

(2πi)2

∮

|u|=β3

|z|=β2

(1 + u)nFk(z) z
−2n−1(1 + z)nu−1

∑

r

z2r

ur(1 + z)r
du dz

=
1

(2πi)2

∮

|z|=β2

Fk(z) z
−2n−1(1 + z)n

(

∮

|u|=β3

(1 + u)n 1

u− z2

1+z

du

)

dz.

Since u = z2

1+z
is the only pole in the integration domain, Cauchy’s integral formula implies

∮

|u|=β3

(1 + u)n 1

u− z2

1+z

du = 2πi

(

1 +
z2

1 + z

)n

.

We finally compute

tk(n) =
1

2πi

∮

|z|=β2

Fk(z) z
−1z−2n(1 + z)n(1 +

z2

1 + z
)ndz

=
1

2πi

∮

|z|=β2

Fk(z) z
−1

(

1 + z + z2

z2

)n

dz

=
1

2πi

∮

|z|=β2

1 + z + z2

z + 2
Fk(z)

(

z2

1 + z + z2

)−n−1

d

(

z2

1 + z + z2

)

and the lemma follows from Cauchy’s integral formula

Tk

(

z2

1 + z + z2

)

=
1 + z + z2

z + 2
Fk(z). (3.4)

This completes the proof.

Theorem 3.2. For any k ≥ 2, the number of k-noncrossing tangled diagrams is asymp-

totically given by

tk(n) ∼ ck n
−((k−1)2+ k−1

2
)
(

4(k − 1)2 + 2(k − 1) + 1
)n
, where ck > 0. (3.5)

Proof. According to [11, 14], Fk(x) =
∑

n fk(2n) x2n and Tk(x) are both D-finite. There-
fore both have a respective singular expansion [7]. We consider the following asymptotic
formula for fk(2n) [10]: for any k ≥ 2

fk(2n) ∼ n−((k−1)2+ k−1

2
) (2(k − 1))2n . (3.6)

(3.6) allows us to make two observations. First Fk(x) has the positive, real, dominant sin-

gularity, ρk = (2(k−1))−1 and second, in view of the subexponential factor n−((k−1)2+ k−1

2
),

we have

Fk(z) = O
(

(z − ρk)
((k−1)2+ k−1

2
)−1
)

, as z → ρk. (3.7)
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According to Lemma 3.1 we have

Tk

(

z2

z2 + z + 1

)

=
z2 + z + 1

z + 2
Fk(z), (3.8)

where |z| ≤ ρk ≤ 1
2

+ ǫ, ǫ > 0 is arbitrarily small and the function

ϑ(z) =
z2

z2 + z + 1

is regular at z = ρk. Since the composition H(η(z)) of a D-finite function H and a rational
function η, where η(0) = 0 is D-finite [11], the functions Tk(ϑ(z)) and Fk(z) have singular
expansions. Using Bender’s method (Fk(z) satisfies the “ratio test”) [1], the relations
(3.8) and (3.6) imply

[zn]Tk(ϑ(z)) ∼
ρ2

k + ρk + 1

ρk + 2
[zn]Fk(z) ∼

ρ2
k + ρk + 1

ρk + 2
n−((k−1)2+ k−1

2
)
(

ρ−1
k

)2n
. (3.9)

It follows that

τk =
ρ2

k

ρ2
k + ρk + 1

is the positive, real, dominant singularity of Tk(z). Indeed, Pringsheim’s Theorem [12]
guarantees the existence of a positive, real, dominant singularity of Tk(z), denoted by
τk. For 0 ≤ x ≤ 1 the mapping x 7→ ϑ(x) is strictly increasing and continuous, whence
τk = ϑ(ζ) for some 0 < ζ ≤ 1. We shall proceed by analyzing the dominat singularities
of Tk(z). We observe that any such dominant singularity v can be written as v = ϑ(ζ).
Suppose ϑ(ζ) is an additional dominant singularity of Tk(ϑ(z)). We note that

∀ ζ ∈ C \ R; |ϑ(ζ)| = τk =⇒ |ζ | < ρk, (3.10)

from which we conclude that τk is the unique dominant singularity of Tk(z). It remains
to show that the subexponential factors of Tk(ϑ(z)) and Tk(z) coincide. Let STk

(z−ϑ(ζ))
denote the singular expansion of Tk(z) at v = ϑ(ζ). Since ϑ(z) is regular at ζ , Tk(ϑ(z))
we have the supercritical case of singularity analysis [7]: given ψ(φ(z)), φ being regular at
the singularity of ψ, the singularity-type of the composition is that of ψ. Indeed, we have

Tk(ϑ(z)) = O(STk
(ϑ(z) − ϑ(ζ))) as ϑ(z) → ϑ(ζ)

= O(STk
(z − ζ)) as z → ζ.

The equation (3.8) leads to the following interpretation for Tk(ϑ(z)) at z = ζ :

Tk(ϑ(z)) = O(Fk(z)) as z → ζ,

from which we can conclude that Tk(z) has at v = ϑ(ζ) exactly the same subexponential
factors as Fk(z) at ζ . We accordingly derive

[zn]Tk(z) ∼ ck n
−((k−1)2+ k−1

2
)

(

ρ2
k

ρ2
k + ρk + 1

)n

for some ck > 0 (3.11)

and the theorem follows.
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