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Abstract

A significant sector of coding theory is that of comma-free coding; that is, codes

which can be received without the need of a letter used for word separation. The

major difficulty is in finding bounds on the maximum number of comma-free words

which can inhabit a dictionary. We introduce a new class called a self-reflective

comma-free dictionary and prove a series of bounds on the size of such a dictionary

based upon word length and alphabet size. We also introduce other new classes

such as self-swappable comma-free codes and comma-free codes in q dimensions and

prove preliminary bounds for these classes. Finally, we discuss the implications and

applications of combining these original concepts, including their implications for

the NP-complete Post Correspondence Problem.

1 Introduction

1.1 Comma-free codes

Comma-free codes were first introduced by Crick, Griffith, and Orgel [2] in 1957 as a
potential explanation for the fact that DNA codes only twenty amino acids, despite the
fact that it is a code with word-length three and a four-letter alphabet. While this
explanation was revealed to be incorrect, comma-free codes are still a major area of
exploration in coding theory. Initially, we establish definitions.

Let n be a fixed positive integer. Consider a dictionary of words in which each word
has length k chosen from an n-letter alphabet. Let the alphabet consist of letters a1, a2,
a3, . . . , an.

A set D of k-letter words is called a Comma-Free Dictionary (according to Golomb,
Gordon, and Welch [4]) if whenever words a1a2 · · ·ak and b1b2 · · · bk are in D, the “over-
laps” a2a3 · · ·akb1, a3 · · ·akb1b2, . . . , akb1b2 · · · bk−1 are not in D.
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The major problems investigated have been in determination of the maximum number
of words a comma-free dictionary can possess, according to Levenshtein [6]. If the size
of each word is k and the size of the alphabet is n, the maximum number of elements in
D is denoted as W (k, n). Golomb, Gordon, and Welch [4] established a bound for the
maximum size of a comma-free dictionary as

W (k, n) ≤
1

k

∑

d|k

µ(d)nk/d, (1)

where µ(d) is the Möbius function. This bound is established by noticing several phe-
nomena.

Initially, we consider equivalence classes of words formed by taking cyclic shifts of the
letters of that word. We have equivalence classes ω which contains all cyclic shifts φi(ω).
We define a cyclic shift φi(ω) where φ(a1a2 · · ·ak) = a2a3 · · ·aka1. For instance, ABCD and
CDAB are cyclic shifts of each other, so they are in the same equivalence class. Furthermore,
we observe that a comma-free dictionary cannot contain more than one member from each
equivalence class. To show this, consider the overlaps formed by repeating one word in
the equivalence class. This yields overlaps of all other words in the equivalence class.
Repeating ABCD gives ABCDABCD which contains CDAB as an overlap.

Golomb, Gordon, and Welch [4] also put forth the concept of subperiod. Let d be
a divisor of k. We say that a word a1a2 · · ·ak has subperiod d if it is of the form
a1a2 · · ·ada1a2 · · ·ad · · · · · ·a1a2ad. If a word has subperiod d < k, such as ABCABC, it
cannot be contained in a comma-free dictionary, because repeating such a word to yield
ABCABCABCABC contains the original word as an overlap. We call a word with subperiod
d = k primitive.

The bound (1) is calculated by counting all equivalence classes with subperiod k.
Golomb, Gordon, and Welch [4] provedthis bound was tight for k = 1, 3, 5, 7, 9, 11, 13,
and 15, and conjectured that it was tight for all odd k. This was proved by Eastman [3]
in 1965. The only tight bound for even k was given by Golomb, Gordon, and Welch [4].
They found that

W (2, n) ≤
⌊1

3
n2
⌋

. (2)

Finding a general tight bound for all even k is an open problem.

2 Self-reflective comma-free codes

One focus of this paper is Self-Reflective Comma-Free Codes. Initially, we must estab-
lish a definition. Let σ(a1a2 · · ·ak) = akak−1 · · ·a2a1. We note that for every comma-
free dictionary D = {ω1, ω2, . . . , ωx}, there is a similar comma-free dictionary D =
{σ(ω1), σ(ω2), . . . , σ(ωx)}.

Definition: A set Dr ⊆ D (where D is a comma-free dictionary) is called a self-
reflective comma-free dictionary if for all words ω ∈ Dr, σ(ω) ∈ Dr. The focus of this
paper is to establish bounds on the maximum size of self-reflective comma-free dictionaries
for general n and k. Denote the greatest number of words Dr can possess as Wr(k, n).
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Figure 1: Bijective Circle

2.1 Results

2.1.1 Lemmas

We utilize the following lemmas for assistance in proving bounds on the size of self-
reflective comma-free dictionaries. They give insight into word structure and properties
of specific word types.

Lemma 1. If σ(ω1) ∈ ω1, then σ(φi(ω1)) ∈ ω1 for all i.

Proof. When i = 0, the proof is trivial. Assume i > 1.

σ(ai+1ai+2 · · ·aka1a2 · · ·ai−1ai) = aiai−1 · · ·a2a1ak · · ·ai+2ai+1,

but we know ai−1ai−2 · · ·a2a1ak · · ·ai+1ai ∈ ω1, so aiai−1 · · ·a2a1ak · · ·ai+2ai+1 ∈ ω1.
This completes our proof.

Lemma 2. Let ω = a1a2 · · ·aw−1awaw−1 · · ·a2a1b1b2 · · · bw−1bwbw−1 · · · b2b1. If ω is prim-
itive, then there does not exist any ω1 such that ω1 ∈ ω and σ(ω1) = ω1.

Proof. Assume some ω1 exists. Let ω1 = bubu−1 · · · b1a1 · · ·aw · · ·a1b1 · · · bw · · · bu+1.
Consider a bijective circle in which each letter of ω1 is represented by a coloring of

points around a circle, as shown in Figure 1. This figure, by construction, is fixed under

reflection about l1 =
←−→
awbw. Furthermore, we assume ω is self-reflective, so it must also
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Figure 2: Bijective Circle

be fixed under reflection about l2 =
←→
PQ where P and Q are the midpoints of akak+1 and

bkbk+1 respectively.
But since the circle-word is fixed under reflection about l1 and l2, where l1 6= l2, it is

also fixed under the nonidentity rotation l1 ◦ l2. Since it is fixed under some nonidentity
rotation, the word itself must be fixed under some cyclic shift φi(ω) where i 6= k. But
since it is fixed under some such cyclic shift, it must have some subperiod such that d|k
and d 6= k. Thus it is not primitive. This contradiction proves the lemma.

Lemma 3. Every word ω such that σ(ω) ∈ ω takes the form ω1ω2 where ω1 and ω2 are
palindromes. Call such a word doubly palindromic.

Proof. Assume without loss of generality that ω = a1a2 · · ·ak−1ak and let
σ(ω) = auau+1 · · ·ak−1aka1a2 · · ·au−1.
But then auau+1 · · ·ak−1aka1a2 · · ·au−2au−1 = akak−1 · · ·au+1auau−1au−2 · · ·a2a1.
Clearly auau+1 · · ·ak−1ak and a1a2 · · ·au−2au−1 are palindromes.
Thus, the word takes the desired form, which completes our proof.

Lemma 4. If ω1 = ω2 where ω1 = a1a2a3 · · ·ag · · ·a3a2a1b1b2b3 · · · bh · · · b3b2b1 and
ω2 = c1c2c3 · · · cv · · · c3c2c1d1d2d3 · · ·dw · · ·d3d2d1, then ω1 and ω2 have subperiod of length
gcd(|i− j|, k) where i = 2g − 1 and j = 2v − 1.

Proof. Consider a bijective circle as in Lemma 2, shown in Figure 2.
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By construction, both words ω1 and ω2 are fixed under reflection about l1 = agbn and
l2 = cvdw, so they are fixed about the rotation l1 ◦ l2 which rotates each letter by twice
the angle of the intersection of l1 and l2. That is, each letter rotates by 2(g − v) = i− j.
Thus any two letters separated by i − j will be equal. This rotation generates the same
subgroup of Dk as does rotation by gcd(|i − j|, k). Therefore the subperiod is of the
desired length.

2.1.2 Results for specific k

Theorem 1. Wr(2, n) = 0 for all n

Proof. We prove by contradiction. Assume Wr(2, n) > 0. Let Fn = a1a2 · · ·an be an
n-letter alphabet. Suppose there exists a word in our dictionary, Dr.

Without loss of generality, ω1 ∈ Dr where ω1 = a1a2. Then σ(ω1) ∈ Dr so a2a1 ∈ Dr.
But a2a1 is a cyclic shift of a1a2 which cannot be part of a comma-free dictionary

according to Crick, Griffith and Orgel [2]. This is a contradiction which completes our
proof.

Theorem 2. Wr(3, n) ≤ 2n3−3n2+n
6

;

Proof. We use bound (1) which counts the number of equivalence classes with subperiod
k

W (k, n) ≤
1

k

∑

d|k

µ(d)nk/d.

This gives us W (3, n) ≤ 1
3
(n3 − n).

But this includes the equivalence classes abb and aba. We cannot have both aba and
bab in our comma-free dictionary, so for each pair of letters, there is either a counted
word of the form abb or bba or of aab or baa. Without loss of generality, assume we have
abb and bba. (In a self-reflective dictionary, both or neither must appear.) Since they
are members of the same equivalence class, neither can appear, so we can subtract the
equivalence class from our upper bound. There is one such equivalence class for every two
letters which we can eliminate, for a total of

(

n
2

)

total. We subtract to get

Wr(3, n) ≤
2n3 − 3n2 + n

6
.

Theorem 3. Wr(3, n) = 2n3−3n2+n
6

.

Proof. We use the construction given by Crick, Griffith, and Orgel [2] for n letters, re-
moving those of the form ABB. Use the numbers 1 through n to represent an n-letter

comma-free alphabet, giving a well-ordered set. In this description, AB
A
B

represents

ABA and ABB.
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1 2 1
1
2

3
1
2

. . .

1
2
3
.
.
.

n− 2
n− 1

n

1
2
3
.
.
.

n− 2
n− 1

This is a comma-free code which has 12 + 22 + 32 + · · ·n2 = 2n3+3n2+n
6

members. It is
also self-reflective, because for all words abc, cba must also be a member. This proves the
bound from Theorem 2 is tight.

2.1.3 Results for k odd

Theorem 4. For odd k, Wr(k, n) ≤ 1
k

∑

d|k

µ(d)nk/d −

(

n

2

)

.

Proof. Consider equivalence classes ababab · · · aba and bbababa · · · ba. Take words ω1 and
ω2 in our dictionary from each respective equivalence class. Both σ(ω1) = ω1 and
σ(ω2) = ω2 cannot be true. This is because then both abab· · · aba and baba· · · bab would
necessarily be ω1 and ω2. This is not comma-free, because (abab· · · aba)(baba· · · bab)
would then have ω1 and ω2 as an overlap. Thus, at least one word from one of the two
equivalence classes must not reflect to itself. However, a reflection of either one of the
equivalence classes yields a cyclic shift of that equivalence class, which is not allowed in
a comma-free dictionary. Thus we subtract at least one of these two equivalence classes
from bound (1). We subtract an equivalence class for each two letters, so there are a total
of
(

n
2

)

eliminated, giving us our desired bound.

2.1.4 Results for k even

Theorem 5. For k = 2 (mod 4),

Wr(k, n) ≤
1

k

∑

d|k

µ(d)nk/d −

(

n(k+2)/4

2

)

+
∑

d| k
2
,d6= k

2

(

n(d+1)/2

2

)

.

Proof. Consider a word

ω = a1a2 · · ·as−1asas−1 · · ·a1b1b2 · · · bs−1bsbs−1 · · · b2b1.

We call such a word fixed doubly palindromic. Now let ω1 ∈ ω. Since σ(ω) = φk/2(ω), by
Lemma 1, all ω1 will have property σ(ω1) ∈ ω. Furthermore, assume

a1a2 · · ·as−1asas−1 · · ·a1a1 6= b1b2 · · · bs−1bsbs−1 · · · b2b1.
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Then ω and subsequently ω1 cannot have an even subperiod. By Lemma 2, any such
word which is a palindrome must have a subperiod. If a fixed doubly palindromic word
is not a palindrome, we can remove its equivalence class from our bound, as reflection of
that word would yield a nonidentity cyclic shift of that word. We count the number of
non-palindromic classes by counting all fixed doubly palindromic classes and subtracting
the fixed doubly palindromic classes with subperiod d 6= k. The number of fixed doubly
palindromic equivalence classes is established by first counting the number of possible
palindromes a1a2 · · ·as−1asas−1 · · ·a1. We know s = k+2

4
. Thus the number of such palin-

dromes is n(k+2)/4. We then choose two distinct such palindromes to form our equivalence

class, giving the total number of equivalence classes as
(

n(k+2)/4

2

)

. To count the number
of equivalence classes with nontrivial subperiods, we first note that all odd subperiods of
length d have the property that d| k

2
. Furthermore, since the equivalence classes with sub-

period we are counting form a palindrome, the subperiod word itself must be palindromic.

Therefore, the number of possible different subperiods of length d is
(

n(d+1)/2

2

)

. The total

number of equivalence classes with subperiod, therefore, is
∑

d|k/2,d6= k
2

(

n(d+1)/2

2

)

.

Thus, the number of primitive equivalence classes of form ω is
(

n(k+2)/4

2

)

−
∑

d| k
2
,d6= k

2

(

n(d+1)/2

2

)

.

Subtracting from the original bound (1), we complete our proof.

Theorem 6. For k even:

Wr(k, n) ≤

(

1

k

∑

d|k

µ(d)nk/d

)

−
kn(k+2)/2

4
+

∑

i,j≤ k
2
, i,j odd

gcd(|i− j|, k)n
gcd(|i−j|,k)+2

2

4
.

Proof. Consider a word ω = a1a2 · · ·av · · ·a2a1b1b2 · · · bw · · · b2b1. Note that such a word
is doubly palindromic. Clearly σ(ω) ∈ ω. Now consider the equivalence class ω. We begin
by counting those equivalence classes. We initially observe v+w = k+2

2
. There are a total

of k
2

possible values for v (and subsequently w), since the length of both palindromes
a1a2 · · ·av · · ·a2a1 and b1b2 · · · bw · · · b2b1 must be odd. This gives kn(k+2)/2. However, this
will count both ω and φ2v−1(ω). Therefore, we divide by two to find our total number of

equivalence classes. Thus the total number of such equivalence classes is kn(k+2)/2

4
.

However if ω1 = ω2, where

ω1 = a1a2a3 · · ·ag · · ·a3a2a1b1b2b3 · · · bh · · · b3b2b1

ω2 = c1c2c3 · · · cv · · · c3c2c1d1d2d3 · · ·dw · · ·d3d2d1,

there is overcounting. By Lemma 4, such a situation forces ω1 and ω2 to have a sub-
period of length gcd(|i − j|, k) where i = 2g − 1 and j = 2v − 1. To count these
equivalence classes, we assume without loss of generality that each i and j is at most
k
2
. Furthermore, we note that since we have a word such that σ(ω1) ∈ ω1, the subpe-

riod must have the same property. By Lemma 3, this means the subperiod must take
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the form g1g2 · · · gr · · · g2g1h1h2 · · ·ht · · ·h2h1. We proceed to count all such subperiods
using a method similar to that used to count all doubly palindromic words. This yields
∑

i,j≤ k
2

gcd(|i− j|, k)n
gcd(|i−j|,k)+2

2

4
. Furthermore, by Lemma 4, this also counts the total

number of words with subperiod in our original count.

We subtract to yield kn(k+2)/2

4
−
∑

i,j≤ k
2

gcd(|i− j|, k)n
gcd(|i−j|,k)+2

2

4
as the total number of

doubly palindromic equivalence classes without subperiods or overcounts. Since each of
these classes produces a word whose reflection is also a cyclic shift, none can be contained
in a self-reflective comma-free dictionary. Thus we can subtract this number ω from the
original bound (1) to gain our desired result.

2.2 Applications

Despite the youth of self-reflective comma-free codes many applications have surfaced.
The problem which inspired self-reflective coding is that of efficient use of a receiver. The
receiver needs to know fewer words, as it can compare both a string of letters and the
reflection of that string to synchronize the code. This is especially useful when a receiver
needs to be particularly space-efficient. Furthermore, self-reflective comma-free codes
can be used as bijections to a variety of palindromic problems. Apart from the obvious
applications for combinatorial problems regarding palindromes, there are a variety of other
ramifications. A tight bound on the size of a self-reflective comma-free dictionary when k
is even would give a lower bound on the size of a standard comma-free dictionary for even
k. This is particularly useful, because it bounds a quantity from below which is already
bounded from above, and has ramifications for the applications of standard comma-free
codes.

3 Self-swappable comma-free dictionaries

We define a dictionary Ds to be self-swappable if it is fixed under the permutation f(ω) =
(a1a2)(a3a4) · · · (an−1an) where all ai are members of an n-letter alphabet where n is even.
We denote the maximum number of words a self-swappable comma-free dictionary can
contain given k-letter words and an n-letter alphabet as Ws(k, n).

Lemma 5. If ω ∈ Ds and f(ω) ∈ ω, either f(ω) = φk/2(ω) or ω has subperiod d 6= k.

Proof. We know the permutation f(ω) has order 2. Thus if f(ω) = φm(ω), then ω =
φ2m(ω). In other words, such a word must be fixed under a cyclic shift of size 2m. It
follows that either k = 2m or the word has some subperiod d 6= k (as any word fixed under
a nonidentity cyclic shift is not primitive). This observation completes the proof.
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Theorem 7. For n and k even,

Ws(k, n) ≤
1

k

∑

d|k

µ(d)nk/d −
1

k

(

nk/2 −
∑

d|k, k/d odd

nd/2

)

Proof. To determine this bound, we remove the number of equivalence classes ω satisfying
f(ω) ∈ ω from bound (1). We remove these, because for all words ω ∈ Ds, f(ω) ∈
Ds. Since f(ω) is a cyclic shift of ω, we remove the equivalence class. We count the
size of the equivalence class by first counting the number of words ω1 which have the
property that f(ω1) = φk/2(ω1). This number is found by constructing words ω1 =
a1a2a3 · · ·ak/2b1b2b3 · · · bk/2 where permutation f takes all ai to all respective bi. The
number of such words is nk/2. We then subtract the number of words ω1 which have
subperiod d 6= k. We know k/d cannot be even, because that would require all ai and bi

be equal, which is never true. This means k/d is odd. Furthermore, since k/d is odd, the
subperiod must take the form ak/2−d · · ·ak/2−1ak/2b1b2 · · · bd. Furthermore, the first half of
the subperiod in this section must be the same as the first half of the subperiod starting
the word. Thus the subperiod must take the form a1a2 · · ·adb1b2 · · · bd. This means we

can count the subperiod by
∑

d|k, k/d odd

nd/2. We then subtract this from our count of all

words of form ω1 and divide by k to count the number of equivalence classes. Subtracting
from the original inequality gives our desired bound.

3.1 A construction for self-swappable comma-free dictionaries

of word-length three

We consider the original construction for dictionaries of word-length 3 given by Crick,
Griffith, and Orgel [2]. We slightly modify this original construction to create a self-

swappable dictionary. In this construction, AB
A
B

represents ABA and ABB and the

numbers 1 through n represent an n-letter alphabet.

1
2

3
4

1
2
3
4

1
2
3
4

5
6

1
2
3
4
5
6

. . .

1
2
3
4
.
.
.

n− 3
n− 2

n− 1
n

1
2
3
4
.
.
.

n− 3
n− 2
n− 1

n

This construction is comma-free and self-swappable. It gives a total of n3−4n
3

words
over an n-letter dictionary. This differs by the bound for standard comma-free code
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dictionaries of size 3 by exactly n from bound (1) which for k = 3 is n3−n
3

. An improved
construction or proof of tighter bound is an open problem.

4 Comma-free matrices and q-dimensional comma-

free codes

Now consider a new type of problem in which we define a comma-free matrix dictionary
D2 as a set containing matrices with dimensions k1 by k2 which have the property that
for any arrangement of matrices from D2 on a plane, any “overlaps” are not in D2. That
is to say, any k1 by k2 array chosen in a plane of letters created by words from D2 is
not in D2. We extend the problem to any q-dimensional array of letters. We denote
a q-dimensional comma-free dictionary as Dq. The maximum number of words such a
dictionary can contain over n letters and with word-size of k1 × k2 × · · · × kq is denoted
as Q(k1, k2, . . . , kq, n).

4.0.1 Möbius inversion for multivariant expressions

Before establishing bounds for comma-free dictionaries in multiple dimensions, we must
establish Möbius inversion for multivariant expressions. Note that summing over multiple
variables in the Möbius inversion formula

Lemma 6.
∑

di|ki

f(d1, d2, . . . , dq) = g(k1, k2, . . . , kq) is equivalent to

f(k1, k2, . . . , kq) =
∑

di|ki

[(

q
∏

i=1

µ(ki/di)

)

g(d1, d2, . . . , dk)

]

Now that we have this formulation, we can proceed to our general bound for comma-
free codes in multiple dimensions.

Theorem 8.

Q(k1, k2, . . . , kq, n) ≤

∑

di|ki

[(

q
∏

i=1

µ(ki/di)

)(

q
∏

i=1

di

)]

∏

ki

Proof. We define a word with subperiod of size d1 × d2 × · · · × dq as a word formed by
repeating a word of size d1 × d2 × · · · × dq to form a word of size k1 × k2 × · · · × kq. We
note that a word must have a subperiod of size k1 × k2 × · · · × kq to be in a comma-free
dictionary. Otherwise, placing the word next to 2q copies of itself yields the original word
as an overlap.
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Let f(d1, d2, . . . , dq) be the number of words with subperiod of size d1 × d2× · · · × dq.
All words of size k1 × k2 × · · · × kq must have some subperiod of size d1 × d2 × · · · × dq

where di|ki for all i. The total number of words of size k1 × k2 × · · · × kq is

q
∏

i=1

ki. Thus,

∑

di|ki

f(d1, d2, . . . , dq) =

q
∏

i=1

ki.

Using our formula for Möbius inversion for multivariant functions,

f(k1, k2, . . . , kq) =
∑

di|ki

[(

q
∏

i=1

µ(ki/di)

)(

q
∏

i=1

di

)]

.

Furthermore, we create equivalence classes of words which are equivalent under one or
more cyclic shifts along any dimension. No two equivalent words can be in a comma-free
dictionary, as repeating one word yields all equivalent words as an overlap. There are

q
∏

i=1

ki words in each equivalence class. Thus we can divide by

q
∏

i=1

ki to yield the maximum

number of such words that can inhabit a comma-free dictionary. This gives us our desired
result.

4.1 Possible additional bounds

The bounds determined for q dimensions are not always tight. Indeed, there are several
other cases which can be eliminated, though they are more difficult to classify. Specifically,
it is possible to eliminate all words which are fixed under some nonidentity cyclic shift over
q dimensions. This includes but is not limited to cyclic shifts along a single dimension.
Subperiods can take place over multiple dimensions. For instance, in two dimensions,
cyclic shifts of a repeated block of letters can yield a subperiod in two dimensions, as

in the following example:
a1 a2 a3 a4

a3 a4 a1 a2
. Since such matrices cannot be comma-free,

they can improve existing bounds; however, their properties are inconsistent. This makes
a tight bound difficult. For this reason, we have not utilized this observation to improve
our bounds.

4.2 Self-reflectivity in multiple dimensions: implications and

applications

Now we combine two original concepts in this paper: self-reflective comma-freeness and
comma-free codes in multiple dimensions. We expand our definition of words in multiple
dimensions to include arrays on a multidimensional lattice of size k1 × k2 × · · · × kq

with orientation along any dimensional axis. We define a Multiorientational Comma-Free
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Dictionary by requiring that if a multidimensional word ω is in our dictionary, so too must
be all dimensional orientations of ω. Since there are q dimensions, there are thus 2q words
which are all possible orientations of any word. Since standard self-reflective comma-free
codes are in one dimension, there are two orientations of any word: forward and backward.
In other words, for each word in a multiorientational dictionary, its reflection must also
be in that dictionary. Thus self-reflective comma-free dictionaries are the special case of
multiorientational comma-free dictionaries for one dimension.

The implications of multiorientational comma-free dictionaries are staggering. By
utilizing a single dimension for a standard word and filling the rest of a multidimensional
word with a uniform extra character, it is possible to create a variable-size comma-free
dictionary, as the size of a word in each dimension can contain as many as q different
lengths in q directions. Variable-size comma-free dictionaries have even more surprising
applications. Variable-size comma-free dictionaries have direct implications to the NP-
complete Post Correspondence problem. If all words in the Post Correspondence problem
were members of some variable-size comma-free dictionary, the problem would have no
solutions. As this has implications to an undecidable decision problem, variable-size
comma-free dictionaries have enormous implications in theoretical math. Comma-free
codes in multiple dimensions also display potential for future coding and cryptographic
techniques.

5 Conclusion

This work addresses the new problem of self-reflective comma-free codes. These codes
address the critical problem of efficient use of stamp printing by a receiver. This work
attempts to gain bounds on the size of self-reflective comma-free dictionaries given variable
word-length and alphabet size. This work also discusses the new problem of self-swappable
comma-free codes and the generalization to comma-free codes in multiple dimensions.

We achieve tight bounds for specific word-length and variable alphabet length, as well
as general bounds for general word-length. The results are limited in scope to construc-
tions under which a reflection is equivalent to a cyclic shift. We proceed to address other
classes of comma-free codes including self-swappable codes and comma-free codes over
q dimensions. We prove general bounds for these classes, but they contain many open
problems. Future extensions of this project could include attempts at tight bounds for
general word-length as well as efficient methods of construction for self-reflective comma-
free codes. Improved bounds on comma-free codes in multiple dimensions should also be
attempted.
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Appendices

A Constructions for self-reflective comma-free codes

A.1 Self-reflective comma-free codes of word-length 4

We construct a self-reflective comma-free dictionary for k = 4 by including all words ABCD
such that A > B > C ≤ D or A ≥ B < C < D. This construction is self-reflective
and comma-free. The size of the dictionary created by the construction over an n-letter
alphabet is n4−2n3−n2+2n

4
. The bound from theorem 6 on the size of such a dictionary is

n4−2n3+n2

4
. This differs from the size of the construction by

(

n
2

)

. It is interesting to note
the size of the construction for n = 4. According to Levenshtein [6], the maximum size of
a comma-free dictionary with k = 4 and n = 4 is 57. This is 3 less than bound (1) would
predict. The size for a self-reflective comma-free dictionary under this construction for
n = 4 is 30. This is 6 less than the bound from Theorem 6 would predict. It is possible
that for each of the three words which could not fit into the 60-member dictionary, those
words and their reflections must be eliminated from a self-reflective dictionary, yielding
30 words.

A.2 Self-reflective comma-free codes of odd word length

We construct a self-reflective comma-free dictionary for odd k by including all words
a1a2 · · ·ak such that

a1 > a2 > · · · > at < at+1 < · · · < ak

This construction is self-reflective and comma-free, but it is not a maximal construction
for all k. Despite this, it is a convenient and consistent method of construction for self-
reflective comma-free dictionaries.
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B Other comma-free conjectures

B.1 Creating new dictionaries from existing dictionaries

One conjecture we addressed was the potential that for every comma-free dictionary D =
ω1, ω2, . . . , ωx, there exists another comma-free dictionary D′ = φ(ω1), φ(ω2), . . . , φ(ωx)
created by taking a cyclic shift of each word in the dictionary. This is not necessarily
true.

Without loss of generality, let a1a2 · · ·ak ∈ D and b1b2 · · · bk ∈ D. Now D′ must contain
a2a3 · · ·aka1 and b2b3 · · · bkb1, so D′ cannot contain any of a3a4 · · ·aka1b2, a4a5 · · ·aka1b2b3,
. . . , a1b2b3 · · · bk.

Thus D could not have contained any of b2a3a4 · · ·aka1, b3a4a5 · · ·aka1b2, and so on.
But it may be feasible to include some of these words in D, since they are not necessarily

overlaps of the original two words. Thus if D is comma-free, D′ is not necessarily comma-
free.

B.2 Creating new dictionaries from existing dictionaries using

half-shifts

While it is not possible to create new dictionaries from any cyclic shift of every word in
the dictionary, it is possible to create new dictionaries using cyclic shifts of k

2
provided

k is even. This is clear, because it is possible to consider each string of k
2

letters as a
single letter over an alphabet of size nk/2. Then a half-shift is equivalent to a reflection
over that alphabet. If the original dictionary was comma-free, then this reflection will be
comma-free, as the letters formed by words will remain comma-free.
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