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Abstract

We offer some new identities for a bipartition function, which has a relation

to a Hecke-type identity of Andrews. Further, we show this partition function is

lacunary, and relate it to a real quadratic field.

1. Introduction and Statement of Results

In the last two decades, several authors [2, 6] have observed certain q-series and
q-products have relations to the arithmetic of real quadratic fields. This observation
was initiated in [2], where it was discovered that certain q-series are related to the real
quadratic field Q(

√
6).

The objective of this paper is to offer a partition theoretic interpretation of a generating
function related to a Hecke-type identity given by Andrews [1]

∞∏

n=1

(1 − qn)(1 − q2n) =
∑

r≥2|n|

(−1)r+nqr(r+1)/2−n2

, (1)

which is related to the arithmetic of Q(
√

2). For the left side of (1), we find that the
product generates a bipartition π = (π1, π2) counted with weight (−1)n(π1)+n(π2), where
π1 is a partition into distinct parts, and π2 is a partition into distinct even parts. Here
we let n(π1) denote the number of parts taken from π1.

For relevant material, and an introduction to partition theory, we refer the reader to
[4]. Also, we shall use standard notation throughout [7, 8]

(a; q)n = (a)n := (1 − a)(1 − aq) · · · (1 − aqn−1),

(a; q)∞ :=
∞∏

n=0

(1 − aqn).
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Definition 1.1. Let φm,k(l, n) be the number of bipartitions σ = (µ, λ) of n where µ

is a partition into distinct parts with minimal part k, and λ is a partition into distinct

even parts where all parts are > m plus twice the minimal part of µ, counted with weight

(−1)n(µ). Moreover, l keeps track of the number of parts from λ.

We note here that m is taken to be a positive even integer. The generating function
for φm,k(l, n) will be given in the next section in the proof of Theorem 1.3.

Definition 1.2. We define

Φm(l, n) :=
∑

k≥0

φm,k(l, n).

Theorem 1.3. Let Φ0(l, n) be the m = 0 case of Definition 1.2. Then Φ0(l, n) equals

the sum of (−1)r+j over all pairs (r, j) such that n = 2r2 + r − j2, |j| ≤ r, r = l.

Before proceeding to the next theorem, we mention in passing that

Φm(n) :=
∑

k,l≥0

φm,k(l, n),

and
χm(n) :=

∑

k,l≥0

(−1)lφm,k(l, n).

Theorem 1.4. We have that χ0(n) − χ2(n − 1) is equal to the number of inequivalent

solutions of x2 − 2y2 = k with norm 8k + 1 in which x + y ≡ 1 (mod 4) over the number

in which x + y ≡ 3 (mod 4).

We mention that the generating function for χ0(n)−χ2(n− 1) is equal to (1). A brief
outline of an analytic proof of this is given at the end of the proof of this theorem. Also,
the weight for this partition function should be easily recognized to be (−1)n(µ)+n(λ).

Corollary 1.5. χ0(n) = χ2(n − 1) for almost all natural n.

Theorem 1.6. Φ0(n) − Φ2(n − 1) is equal to the excess of the number of inequivalent

solutions of x2 − 2y2 = k with norm 8k + 1 in which x + 2y ≡ 1 (mod 8) or x + 2y ≡ 7
(mod 8) over the number in which x + 2y ≡ 3 (mod 8) or x + 2y ≡ 5 (mod 8).

Corollary 1.7. Φ0(n) = Φ2(n − 1) for almost all natural n.

Theorem 1.8. Φ0(n) + Φ2(n − 1) is equal to the excess of the number of inequivalent

solutions of x2 − 2y2 = k with norm 8k + 1 in which x + 2y ≡ 1 (mod 8) or x + 2y ≡ 3
(mod 8) over the number in which x + 2y ≡ 5 (mod 8) or x + 2y ≡ 7 (mod 8).

Corollary 1.9. Φ0(n) + Φ2(n − 1) = 0 for almost all natural n.
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2. Proofs of Theorems

In this section we will use a lemma given by Lovejoy [8] to prove the q-series identities
that generate the desired partition functions. However, first we need to obtain a new
Bailey pair by appealing to a result found in [5].

Lemma 2.1. If n ≥ 0 and

βn(a, q) =

n∑

r=0

αn(a, q)

(aq)n+r(q)n−r
, (2)

then (α′
n(a, q), β ′

n(a, q)) forms a Bailey pair with respect to a where

α′
n(a, q) = αn(a2, q2),

and

β ′
n(a, q) =

n∑

k=0

(−aq)2kq
n−k

(q2; q2)n−k
βk(a

2, q2).

From here we can change the base of a known pair from q2 to q to obtain the following
new Bailey pair:

Lemma 2.2. The pair of sequences (αn, βn) form a Bailey pair with respect to q where

αn = q2n2+n(1 − q2n+1)
n∑

j=−n

(−1)jq−j2

,

and

βn =

n∑

k=0

qn−k

(q2; q2)n−k
.

Proof of Lemma 2.2: Take the Bailey pair with respect to q2 (with q replaced by q2 in
the definition) from [3], given by

αn = q2n2+n(1 − q2n+1)

n∑

j=−n

(−1)jq−j2

,

and

βn =
1

(−q2)2n
,

and insert it in Lemma 2.1 (with a = q).
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Our last lemma is the b = q case of the lemma given in [9].

Lemma 2.3. If the pair of sequences (αn, βn) form a Bailey pair with respect to q then

(1 − q)
∞∑

n=0

αnzn

1 − q2n+1
= (z, q; q)∞

∞∑

j,n=0

qn+2jnzjβj

(z)n(q)n

. (3)

Proof of Theorem 1.3: Inserting the pair given in Lemma 2.2 into Lemma 2.3 gives

∑

n≥0

znq2n2+n
n∑

j=−n

(−1)jq−j2

=
∞∑

n=0

qn(zq2n+2; q2)∞(qn+1; q)∞, (4)

since
∞∑

n=0

βnzn =
1

(1 − z)(zq; q2)∞
,

and
∞∑

n=0

qn(zqn; q)∞(qn+1; q)∞
(1 − zq2n)(zq2n+1; q2)∞

=

∞∑

n=0

qn(zq2n+2; q2)∞(qn+1; q)∞.

Now we consider the right hand side of the series above. First, recall [7, p.56] that
qk(1 + qk+1)(1 + qk+2) · · · generates a partition into distinct parts with minimal part k.

Also, (zq2k+2; q2)∞ generates a partition into distinct even parts ≥ 2k + 2, and z keeps
track of the number of parts. Thus, replacing z by −z we find

qk(−zq2k+2; q2)∞(qk+1; q)∞ (5)

generates a bipartition (µ, λ) where µ is a partition into distinct parts with minimal part
k, and λ is a partition into distinct even parts where all parts are > twice the minimal
part of µ, with weight (−1)n(µ), and z still keeping track of the number of even parts from
λ. The generating function for definition 1.1 should be clear after replacing z by zqm in
(5), where m is taken to be a positive even integer. Summing over all k in (5) (with z

replaced by zqm) gives the generating function for Φm(l, n), where l is the number of parts
of λ.

Proof of Theorem 1.4: Recall the ring of integers Z[
√

2] has its norm function equal
to x2 − 2y2. In [10] it was shown that

∞∑

n≥0
|j|≤n

(−1)j(q(4n+1)2−2(2j)2 − q(4n+3)2−2(2j)2), (6)

generates the number of inequivalent solutions of x2 − 2y2 = k with norm 8k +1 in which
x + y ≡ 1 (mod 4) over the number in which x + y ≡ 3 (mod 4). So the remainder of the
proof requires us to show the generating function for χ0(n)−χ2(n− 1) is equal to (6). To
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see this, add (5) to itself when z is replaced by zq2 and multiplied by −q, after summing
over k, to get

∞∑

n=0

qn(zq2n+2; q2)∞(qn+1; q)∞ − q

∞∑

n=0

qn(zq2n+4; q2)∞(qn+1; q)∞

= q−1/8

∞∑

n≥0
|j|≤n

zn(−1)j(q[(4n+1)2−2(2j)2]/8 − q[(4n+3)2−2(2j)2]/8). (7)

After setting z = 1, the first sum on the left hand side is easily seen to be the generating
function for χ0(n). The weight here being −1 raised to the number of parts of λ plus the
number of parts of µ. Now the next sum is the generating function for χ2(n) multiplied
by q. This is clear to see since the number of parts of λ are all even and > 2 plus twice
the minimal part of µ.

Before proceeding to the next proof, we mention that the corollaries easily follow from
the lacunarity of the series involving indefinite quadratic forms. Further, it has been
noted in [10] that (6) is equivalent to the right side of (1) when q is replaced by q8 and
multiplied by q. Thus, our claim following Theorem 1.4 is easily established analytically.

Proof of Theorem 1.6: The generating function for the number of inequivalent solutions
of x2 − 2y2 = k with norm 8k + 1 in which x + 2y ≡ 1 (mod 8) or x + 2y ≡ 7 (mod 8)
over the number in which x + 2y ≡ 3 (mod 8) or x + 2y ≡ 5 (mod 8) was given in [6]:

∞∑

n≥0
|j|≤n

(−1)n+j(q(4n+1)2−2(2j)2 − q(4n+3)2−2(2j)2),

and follows from the special case z = −1 of (8). This time, the generating functions for
the first two sums in (8) only have weight (−1)n(µ).

Proof of Theorem 1.8: The proof is identical to the proof of Theorem 1.4, except now
we add (5) to itself when z is replaced by zq2 and multiplied by q to get

∞∑

n=0

qn(zq2n+2; q2)∞(qn+1; q)∞ + q

∞∑

n=0

qn(zq2n+4; q2)∞(qn+1; q)∞

= q−1/8

∞∑

n≥0
|j|≤n

zn(−1)j(q[(4n+1)2−2(2j)2 ]/8 + q[(4n+3)2−2(2j)2 ]/8). (8)

Now the last sum is similar to the last sum in (8), but with a different weight function.
In particular, taking z = −1 we see that the sum generates the number of inequivalent
solutions of x2 − 2y2 = k with norm 8k + 1 in which x + 2y ≡ 1 (mod 8) or x + 2y ≡ 3
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(mod 8) over the number in which x + 2y ≡ 5 (mod 8) or x + 2y ≡ 7 (mod 8). To see
this, we only need to inspect when (−1)n+j is +1 and when it is −1. We leave the details
to the reader.

3. Conclusions

The partition functions contained in this paper are rather curious in that they are
all intimately related to the arithmetic of Z[

√
2]. Unfortunately we have little information

on the combinatorial behavior of these functions. We also mention that we may easily
manipulate (5) to obtain more of the type of results offered by Lovejoy [9]. For example,
replacing q by q2 and setting z = −a

q
in (5) gives the function

∞∑

n=0

q2n(−aq4n+3; q4)∞(q2n+2; q2)∞,

which generates a partition into distinct parts, where odd parts are ≡ 3 (mod 4), minimal
part even, and a keeps track of the number of parts ≡ 3 (mod 4).
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