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The search for codes of covering radius 1 led Österg̊ard, Quistorff and Wasser-
mann to the OQW method of associating a unique graph to each code [9].
We present results on the structure and existence of OQW-associated graphs.
These are used to find an upper bound on the size of a ball of radius 1 around
a code of length 3 and minimum distance 2. OQW-associated graphs and
non-extendable partial Latin squares are used to catalogue codes of length 3
over 4 symbols with covering radius 1 and minimum distance 2.

1 Introduction

The search for the minimum or maximum cardinality of an object with a set of properties
is one of the classical problems in combinatorics. An (n, V, d)qR code, C, is a code of
length n over q symbols with V codewords, a minimum Hamming distance of d and
covering radius of R. (n, V, d)q or (n, V )qR are used if the covering radius or minimum
distance are not specified.

Let Kq(n, R) be the minimum V such that an (n, V )qR code exists, and Aq(n, d) be
the maximum V such that an (n, V, d)q code exists. The problems of finding Kq(n, R)
and Aq(n, d) are well studied. The Delsarte bound [4] and the Hamming bound [7] are
some well know early results. For more recent studies see [2, 8].

The study of codes with both specified covering radius and minimum distance is more
recent and has mostly been studied using covering radius 1 and minimum distance 2
[10, 9, 1, 5]. (n, V, 2)q1 codes are also of interest as they are equivalent to non-extendable
partial Latin hypercubes [5].
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Figure 1: A graph which has no OQW-associated code.

This article provides a summary and extension of the author’s thesis [6].
Let Kq(n, R, d) (Aq(n, R, d)) be the minimum (maximum) V such that an (n, V, d)qR

code exists. Kq(n, R) ≤ Kq(n, R, d) and Aq(n, d) ≥ Aq(n, R, d); it is an open problem to
determine for which parameters these inequalities are strict.

For n ≤ 3, Kq(n, 1, 2) = Kq(n, 1) [10]. Using the sphere covering bound K2(4, 1) =
K2(4, 1, 2) = 4 and K3(4, 1) = K3(4, 1, 2) = 9 [9]. K4(4, 1) = 24 [12]. [9] shows
K4(4, 1, 2) ≥ 25 by associating a unique graph to each code.

Definition 1. [9] A graph G and a code C are OQW-associated if, and only if, each vertex
of G represents a codeword of C, and an edge of colour α connects two vertices of G if,
and only if, the two codewords of C represented have the same symbol in the αth position.

In section 2 we give general properties of OQW-associated graphs. In section 3 OQW-
associated graphs are used to find an upper bound on the size of a ball of radius 1 around
(3, V, 2)q codes. In section 4 we find properties of codes which meet the bound. In section
5 we almost completely catalogue (3, V, 2)41 codes.

2 OQW-Association Method

Let Gα be the subgraph of G containing all the vertices of G but only the edges of colour
α. We are only interested in the structure of colours within the graph; permuting colours
will create an equivalent graph.

Every code (up to equivalence) has a unique (up to equivalence) OQW-associated
graph. (We ignore codes where every codeword has the same symbol in position α.) Not
every graph has an OQW-associated code, e.g. figure 1.

Theorem 2. [6, Thm 2.6] A graph G is OQW-associated with C, an (n, V, d)q code if,
and only if, it satisfies the following five properties.

P1 G has V vertices.

P2 n is greater than or equal to the number of colours of edges of G.

P3 There are no more than n − d edges between any two vertices.

P4 Any connected subgraph of any Gα is complete, and qn−d is greater than or equal to
the number of vertices in the largest single coloured connected subgraph.
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P5 q is greater than or equal to the number of connected components of any Gα, α ∈
{1, . . . , n}.

Before proving this result we need a few preliminary lemmas.

Lemma 3. [6, Lem 2.8] Let G be a graph OQW-associated with an (n, V, d)q code, C.
Suppose we add a vertex v and some edges incident with v (of any colour) to form G ′.
If for each α, any connected subgraph of G ′

α is a complete graph, then G ′ will have an
OQW-associated code C ′.

Proof. Adding vertex v to G adds a word to C to form C ′. As every connected component
of each G ′

α is a complete graph, the word is uniquely determined by the edges incident
with v. C ′ is an (n′, V + 1, d′)q′ code with q′ ≥ q, d′ ≤ d and n′ ≥ n.

Lemma 4. [6, Lem 2.7] Let G be a graph on V vertices that satisfies P1-P5. Suppose
we remove a vertex v and any edges incident with v to form G ′, then G ′ will also satisfy
P1-P5.

Proof. P1, P2 are obvious. P3, P4, P5: G ′ is a subgraph of G, thus the number of colours
of G ′ and the size and number of connected components of G ′

α cannot be any larger than
that of G or Gα.

Now we are ready for the proof of Theorem 2.
P1. The vertices of G and words of C are in a bijective correspondence.
P2. Each colour of edges represents a specific position in the code. Therefore the

length of the code can be no less than the number of colours.
P3. Any two codewords can have the same symbol in at most n − d positions. Thus

there can be at most n − d edges between any two vertices.
P4. The relationship expressed by edges is transitive; any vertices connected by a

single coloured path, must be connected by an edge of that colour. Any two codewords
must differ in at least d places, so there can be at most qn−d codewords with the same
symbol in position α.

P5. Each of the connected components of Gα are complete graphs which represent the
set of codewords with the same symbol in the αth position. Each component must have
a different symbol.

We have shown that P1-P5 are necessary. We proceed by induction on V to show they
are sufficient.

Begin with V = 1: K1, the complete graph on 1 vertex, satisfies P1-P5 and has an
OQW-associated code. Suppose every graph G which satisfies P1-P5 with V ≤ m vertices
has an OQW-associated code.

Take a graph G with m + 1 vertices that satisfies P1-P5. Let G ′ be a graph obtained
by removing a vertex and its incident edges from G. From Lemma 4 we know that G ′ will
also satisfy P1-P5. By the inductive hypothesis G ′ has an OQW-associated code.

Using Lemma 3 we can add back the vertex and edges to form G, which must have
an OQW-associated code. Thus by induction every graph which satisfies P1-P5 has an
OQW-associated code. �

We name the class of graphs which can be OQW-associated with a code OQW-graphs.
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Figure 2: Edge (a, b) in three multicoloured triangles requires a double edge.

3 Bound on |B1(C)|

We now know the defining characteristics of the OQW-graphs, and can use them in the
search for Kq(n, R, d) and Aq(n, R, d). BR(C), the ball of radius R around a code is the
union of balls of radius R around the codewords. We look for a bound on |BR(C)|.

A multicoloured triangle has more than one colour of edges. Because the relationship
expressed by edges is transitive, all triangles in an OQW-graph are single coloured or have
three different coloured edges. The following result is a simple application of inclusion-
exclusion.

Theorem 5. [9, Theorem 3] Let C be a (3, V, 2)q code with G, its OQW-associated graph
having V vertices and E edges. Let T be the number of multicoloured triangles in G, then

|B1(C)| = (1 + 3(q − 1))V − 2E + T (1)

Next we find a bound on the number of multicoloured triangles and edges in a graph,
then a bound on |B1(C)|. This bound is sharp.

Lemma 6. [6, Lem 3.4, with Brendan McKay] Let G be a graph with E edges that is
OQW-associated with a (3, V, 2)q code. Then T ≤ 2

3
E.

Proof. Let an edge (a, b) be in two multicoloured triangles. Then there are two vertices
c, d each forming the third vertex of a triangle. To this we add another vertex e to form
a multicoloured triangle with edge (a, b) as in figure 2.

Edges represent a transitive relationship, so a double edge is required to form single
coloured triangles with vertex c. This contradicts P3. Thus each edge can be in at most
two multicoloured triangles.

Note this only holds for n = 3. For a more general result see [6, §4].
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Figure 3: Minimum number of edges of Ga for a (3, 13, 2)4 code.

Lemma 7. [6, Cor 2.9] G is a graph OQW-associated with an (n, V, n − 1)q code. Let
V = zq + w where z ≥ 0 and 0 ≤ w < q. Then G has at least

q

2
(z − 1)z + wz (2)

edges of each colour.

Proof. The minimum number of edges occurs when Gα consists of complete graphs of
lowest degree. There are q connected components of Gα. Each component has at least z

vertices, with w of the components having z + 1 vertices. E.g. figure 3. There are q Kzs
each having 1

2
(z − 1)z edges. There are w of the components with an extra vertex, and

hence an extra z edges.

Theorem 8. [6, Thm 3.7] Let C be a (3, V, 2)q code. Let V = zq + w with z ≥ 0 and
0 ≤ w < q then

|B1(C)| ≤ (1 + 3(q − 1))V −
4

3

(

3q

2
(z − 1) z + zw

)

. (3)

Proof. From Lemma 6 and Theorem 5 we find that

|B1(C)| ≤ (1 + 3(q − 1))V −
4

3
E. (4)

We then use Lemma 7, to obtain inequality (3).

For V ≥ 1
2
q2 inequality 3 becomes larger than q3 which is the size of the Hamming

space. Thus Theorem 8 is only relevant for V ≤ 1
2
q2.

4 Codes which Meet the Upper Bound

Inequality (3) gives us a good bound on |B1(C)| for (3, V, 2)q codes where V ≤ 1
2
q2 (For

V ≥ 1
2
q2 inequality (3) becomes larger than the size of the Hamming space.). This bound

can only be achieved if every edge in G is in two multicoloured triangles and there is a
minimum number of edges. We now look at other properties the graph must have in order
to meet the bound of inequality (3).

Theorem 9. If G is a graph OQW-associated with a (3, V, 2)q code, such that every edge
is in two multicoloured triangles then the following hold:
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Figure 4: Edge (a, b) links different (j + 1)−cliques of colour β.

M1 [6, Thm 3.9-1] Each connected component of G is 3j−regular, for some integer j.

M2 [6, Thm 3.9-2] The number of vertices of each connected component of G must be
exactly (j + 1)2.

M3 [6, Thm 3.9-3] Any two adjacent vertices of G are mutually adjacent to j + 1 other
vertices.

M4 Any two non-adjacent vertices of a connected component of G are mutually adjacent
to six other vertices.

Proof. M1. Let edge (a, b) of colour α be in two multicoloured triangles. Vertices a and
b must each be incident with an edge of each of colours β and γ. Let another edge (a, e)
of colour β be added. If no further edges of colours α and γ are incident with a, then
in order for edge (a, e) to be in two multicoloured triangles, edge (a, b) must be included
in one of them. This however requires a double edge, (figure 2). Thus another edge of
colour α incident with vertex a must be added. Repeating this process for each edge we
conclude that each vertex must be incident with the same number of edges of each colour.

If a vertex a has x edges of colour α incident with it, then by P4 every vertex adjacent
to a by an edge of colour α will also have x edges of colour α incident with it. Thus all
vertices in any connected component must be incident with an equal number of edges of
each colour.

M2. Each Gα is a collection of disjoint K(j+1)s. Hence the number of vertices must be
a multiple of (j + 1).

Choose an edge (a, b) of colour α that is in a multicoloured triangle. This edge connects
two vertices which are in different (j + 1)−cliques of colour β (K(j+1)(1), K(j+1)(2)), and
is adjacent to an edge (b, c) of colour γ which also connects K(j+1)(1) and K(j+1)(2). E.g.
figure 4.

An edge of colour γ must include either a or b to be in a multicoloured triangle with
(a, b). Without loss of generality we choose edge (a, d). All edges of colour β adjacent to
(a, b) are in K(j+1)(1) or K(j+1)(2), and all edges that are incident with a are in K(j+1)(1).
Thus to complete the multicoloured triangle without creating a double edge, d must be
in K(j+1)(2).
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Thus every (j + 1)−clique must be adjacent to every other (j + 1)−clique; there must
be j + 1 (j + 1)−cliques of each colour.

M3. If two vertices a and b are adjacent, and we count the number of mutually
adjacent vertices, then we are counting the number of triangles which involve a and b.
Every edge is in two multicoloured triangles, thus has two mutually adjacent vertices
through multicoloured triangles. Any two vertices are in a single coloured (j + 1)-clique
and therefore have j − 1 mutually adjacent vertices through single coloured triangles.

M4. Assume edge (a, b) of colour α is in two multicoloured triangles involving vertices
c and d. If vertices c and d are non-adjacent, they are mutually adjacent to vertex a

through a path of colours βγ and vertex b through a path colours of γβ. There are six
connecting path colours: αβ, αγ, βα, βγ, γα, γβ. Edge (a, c) is in two multicoloured
triangles involving vertices b and f . a and c are mutually adjacent to f through a path
of colour αγ. Continuing in the same manner all of the path colours appear. There can
be no paths which share the same colours, otherwise a double edge would be required as
in the paths from vertices a and b in figure 2.

These four individual properties combine to the following result.

Theorem 10. If G is a graph OQW-associated with a (3, V, 2)q code, such that every edge
is in two multicoloured triangles then each connected component of G is a ((j +1)2, 3j, j +
1, 6) strongly regular graph.

Strongly regular graphs have been completely catalogued for many small sizes [11].
The graphs must be checked for an appropriate colouring.

5 A catalogue of (3, V, 2)41 codes

We use OQW-graphs and non-extendable partial Latin squares to almost completely
catalogue (3, V, 2)41 codes.

Definition 11. A partial Latin square is an n × n array in which each cell contains an
element of the symbol set {0, 1, . . . , n−1} or is empty, so that each symbol occurs at most
once in each row and column. A partial Latin square is non-extendable if for each empty
cell, every element of the symbol set appears in the row or column of that cell.

We mark empty cells with an X. If there are no empty cells then the array may be
called a Latin square. If a partial Latin square has an empty row or column, then it is
extendable.

A (3, V, 2)41 code is equivalent to a non-extendable partial Latin square of side length
4 with 16 − V blank cells [5]. E.g. figure 5.

Let L be the partial Latin square equivalent to the code C. A 2 × 2 Latin subsquare
in L is equivalent to a multicoloured 4-clique in G the OQW-associated graph. Main
class equivalence [3] of Latin squares corresponds to equivalence in codes: permutation
of the rows, the columns and the symbols in L corresponds to permuting the symbols in
each of the 3 positions in C; permutation on the set {row, column, symbol} corresponds
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0 1 2 X
1 0 X 3
2 3 1 0
3 X 0 2

Figure 5: The partial Latin square equivalent to the code
{000, 011, 022, 101, 110, 133, 202, 213, 221, 230, 303, 320, 332}.

Figure 6: Graph associated with the (3, 8, 2)41 code.

to permuting the positions in C, or equivalently the colours of G. We use R,C,S to label
row, column and symbol permutations.

K4(3, 1, 2) = 8 [10] and using the Singleton bound A4(3, 1, 2) = 16. We completely
catalogue (3, V, 2)41 codes where V = 8, 9, 10, 11, 13, 14, 15, 16 and provide some examples
for V = 12.

Theorem 12. [6, Thm 3.14] There is a unique (3, 8, 2)41 code.

Proof. Figure 6 gives an example of an OQW-associated graph that meets K4(3, 1, 2) = 8.
Using Theorem 9 this is unique.

Theorem 13. [6, Thm 3.16] No (3, 9, 2)41 code exists.

Proof. From Lemma 7 we know that G, the OQW-associated graph, must have one triangle
and 3 isolated edges of each colour. L, the equivalent Latin square, must have at least
one empty cell in each row and column, with 3 of the rows and columns having 2 empty
cells. There are three possible structures of L depending on if we allow a vertex of order
6 in G (figure 7).

We can begin by filling in row 3 and column 1. For LA and LB: to ensure cell (2,1)
cannot be filled, row 2 may be filled uniquely. From this row 2 and column 2 cannot
possibly contain all symbols unless one of the cells marked with an X is filled.

LA

X
X X

X X
X X

LB

X
X X

X X
X X

LC

X X
X X

X
X X

Figure 7: The three structures of L equivalent to an (3, 9, 2)41 code.
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LA

0 X
1 X X

3 X X 2
X X 2 3

LB

0 X
X 1 X
3 X X 2
X X 2 3

LC

1 0 X X
0 1 X X
X X 3 2
X X 2 3

Figure 8: These partial Latin squares cannot be completed while retaining non-
extendability.

0 1 X X
X

X 2
X 3

0 1 X X
X

X X 2
X 3

0 1 X X
1 X
X X 2 3
X 3

Figure 9: The features of L equivalent to a (3, 10, 2)41 code.

For LC to ensure cells (1,2) and (1,3) cannot be filled cells (2,2) and (2,3) may be
filled uniquely. From this row 2 and column 0 already contain all the symbols, thus cell
(0,2) must be empty.

Hence the non-extendable partial Latin squares LA, LB and LC cannot be completed.
There is no non-extendable partial Latin square with seven empty cells, hence there is no
(3, 9, 2)41 code.

Theorem 14. There are four non-equivalent (3, 10, 2)41 codes.

Proof. Using Lemma 7 we know there must be two triangles and two isolated lines of
each colour of the associated graph, G. L, the equivalent Latin square must have at least
one empty cell in each row and column with two of the rows and columns having two
empty cells. Without loss of generality we can choose row 0, column 2, which can then
be completed. If we choose the other empty cell in row 1 or column 3, then the non-
extendable partial Latin square cannot be completed. Thus we must choose the other
empty cell in row 2 or 3, column 0 or 1. Without loss of generality choose row 2, column
0, which can then be uniquely completed (figure 9).

There are now four cells left to fill in. There are four possible ways to do this (figure
10).

LA

0 1 X X
1 0 X 2
X X 2 3
X 2 3 0

LB

0 1 X X
1 0 X 2
X X 2 3
X 2 3 1

LC

0 1 X X
1 2 X 0
X X 2 3
X 0 3 2

LD

0 1 X X
1 3 X 0
X X 2 3
X 0 3 2

Figure 10: The four non-equivalent non-extendable partial Latin squares which are equiv-
alent to (3, 10, 2)41 codes.
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0 X
1 X
X X 2 3
X

Figure 11: The features of L equivalent to a (3, 11, 2)41 code.

0 1 X X
1 X
X X 2 3
X 0 3 2

0 X
1 0 X X

X X 2 3
X 1 3 2

0 1 X X
1 0 X
X X 2 3
X 2 3

0 1 X
1 0 X X

X X 2 3
X 3 2

Figure 12: Each option of filling in cell (3, 1) requires another empty cell in L

LA has two Latin subsquares, LB and LC have one Latin subsquare and LD has no
Latin subsquares. Let GB and GC be the OQW graphs associated with LB and LC. GC

has four vertices of degree six, 112, 130, 332, 310, GB has only three vertices of degree six,
132, 331, 312. LA, LB, LC and LD are non-equivalent. There are four non-equivalent
(3, 10, 2)41 codes.

Theorem 15. No (3, 11, 2)41 code exists.

Proof. Using Lemma 7 we know there must be three triangles and one isolated line in
each colour of G. L the equivalent Latin square must have at least one empty cell in each
row and column with one of the rows and columns having two empty cells. Without loss
of generality we choose row 2, column 0, which can then be completed (figure 11).

We now try to fill in the remaining cells of the partial Latin square beginning with cell
(3, 1). Each choice of entry for cell (3, 1) creates the need for another empty cell (figure
12).

There are no nonextendable partial Latin squares of side length three with five empty
cells, thus there are no (3, 11, 2)41 codes.

Example 16. There are many (3, 12, 2)41 codes.

From Lemma 7, for each colour in the OQW-associated graph G, there may be four
triangles, or one 4-clique, two triangles and one isolated edge, or two 4-cliques and 2
isolated edges. This is too many structures for hand calculation. In figure 13 there are
partial Latin squares equivalent to three (3, 12, 2)41 codes, each of their OQW-associated
graphs having a different number of triangles and 4-cliques.

Theorem 17. There are three non-equivalent (3, 13, 2)41 codes.

Proof. Using Lemma 7 we know there may be three triangles and one 4-clique of each
colour or two 4-cliques, one triangle and one isolated edge in G. If there is one isolated
edge then at least 4 empty cells are required (figure 14). In the equivalent partial Latin
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0 1 2 X
1 0 X 3
2 X 0 1
X 3 1 0

0 1 2 X
1 3 X 0
2 X 0 3
X 0 3 2

0 1 2 X
1 2 X 3
2 X 3 0
X 3 0 1

Figure 13: Three partial Latin squares which are equivalent to (3, 12, 2)41 codes.

0 1 X
1 0 X

2
3

3 0 1 X
1 2 0 X
1 3 X 2
2 0 X 3

Figure 14: At least 4 empty cells are required.

square L we can fix column 0, and have seven of the cells allocated. L has the structure
of figure 15.

With the permutation R(12) C(12) S(12) squares with row 0 of 032X and 023X are
equivalent to squares with row 0 of 013X and 031X. Thus only squares with row 0 of
012X, 021X, 013X, or 031X are considered (figure 16).

• The following are equivalent to LA:

– LB using the permutation: (CS) R(01) C(01)(23) S(23).

– LD using the permutation: (CS) R(01) C(01)(23) S(123).

– LG using the permutation: (CS) C(23).

– LH using the permutation: R(01) C(01) S(01).

– LI using the permutation: (CSR) R(03)(12) C(0213) S(13).

– LL using the permutation: (RC) R(03)(12) C(03)(12) S(01).

– LM using the permutation: (RSC) R(0312) C(0312) S(2130).

• The following are equivalent to LJ :

– LK using the permutation: (CS) R(021) C(03)(21) S(031).

– LO using the permutation: (RC) R(03)(12) C(03)(12) S(012).

• The following are equivalent to LE:

0 X
1 X
2 X
3

Figure 15: The structure of L equivalent to a (3, 13, 2)41 code.
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LA

0 1 2 X
1 0 X 3
2 X 3 0
3 2 0 1

LB

0 1 2 X
1 0 X 3
2 X 3 1
3 2 1 0

LC

0 1 2 X
1 3 X 0
2 X 0 3
3 0 1 2

LD

0 1 2 X
1 3 X 2
2 X 0 3
3 2 1 0

LE

0 2 1 X
1 0 X 3
2 X 3 1
3 1 2 0

LF

0 2 1 X
1 3 X 2
2 X 0 3
3 1 2 0

LG

0 1 3 X
1 0 X 2
2 X 0 3
3 2 1 0

LH

0 1 3 X
1 0 X 2
2 X 1 3
3 2 0 1

LI

0 1 3 X
1 2 X 0
2 X 0 3
3 0 1 2

LJ

0 1 3 X
1 3 X 2
2 X 0 3
3 0 2 1

LK

0 1 3 X
1 3 X 2
2 X 0 3
3 2 1 0

LL

0 1 3 X
1 3 X 2
2 X 1 0
3 2 0 1

LM

0 1 3 X
1 3 X 2
2 X 0 1
3 2 1 0

LN

0 3 1 X
1 0 X 2
2 X 3 1
3 1 2 0

LO

0 3 1 X
1 2 X 3
2 X 3 0
3 1 0 2

Figure 16: The fifteen non-extendable partial Latin squares equivalent to (3, 13, 2)41 codes.

0 X
1 X
2
3

Figure 17: The structure of L equivalent to a (3, 14, 2)41 code.

– LC using the permutation: (RC) R(032) C(013) S(01).

– LF using the permutation: R(12) C(12) S(12).

– LN using the permutation: (RC) R(03) C(03).

LA has one Latin subsquare. LE and LJ have no Latin subsquares. The graph GJ

of the code equivalent to LJ has one vertex, 303, of degree nine. The graph GE has no
vertices of degree nine. LA, LE and LJ are non-equivalent; there are three non-equivalent
(3, 13, 2)41 codes.

Theorem 18. There are six non-equivalent (3, 14, 2)41 codes.

Proof. Using Lemma 7 we know there must be two triangles and two 4-cliques of each
colour in G. We can fix the first column, in that way have six of the sixteen cells allocated.
The equivalent Latin square L must have the structure of figure 17.

Using the permutation R(23) S(23) squares with row 0 of 012X, 021X and 023X are
equivalent to squares with row 0 of 013X, 031X and 032X respectively. Thus only non-
extendable partial Latin squares with row 0 of 012X, 021X and 023X are considered (figure
18).
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LA

0 1 2 X
1 0 X 3
2 3 1 0
3 2 0 1

LB

0 1 2 X
1 0 X 3
2 3 0 1
3 2 1 0

LC

0 1 2 X
1 2 X 3
2 3 0 1
3 0 1 2

LD

0 1 2 X
1 3 X 0
2 0 1 3
3 2 0 1

LE

0 1 2 X
1 3 X 2
2 0 1 3
3 2 0 1

LF

0 2 1 X
1 0 X 3
2 3 0 1
3 1 2 0

LG

0 2 1 X
1 3 X 0
2 1 0 3
3 0 2 1

LH

0 2 1 X
1 3 X 0
2 0 3 1
3 1 0 2

LI

0 2 1 X
1 3 X 2
2 0 3 1
3 1 2 0

LJ

0 2 1 X
1 3 X 2
2 1 0 3
3 0 2 1

LK

0 2 3 X
1 0 X 2
2 3 0 1
3 1 2 0

LL

0 2 3 X
1 0 X 3
2 3 0 1
3 1 2 0

LM

0 2 3 X
1 0 X 3
2 3 1 0
3 1 0 2

LN

0 2 3 X
1 3 X 0
2 1 0 3
3 0 2 1

LO

0 2 3 X
1 3 X 2
2 1 0 3
3 0 2 1

Figure 18: The fifteen different non-extendable partial Latin squares which are equivalent
to (3, 14, 2)41 codes.

• LA ≡ LB using the permutation: R(01)(23) C(32) S(01)(32).

• LF ≡ LC using the permutation: (RC) R(1203) C(0213) S(012).

• LK ≡ LD using the permutation: C(01) S(0132).

• The following are equivalent to LE:

– LG using the permutation: (CS) C(01) S(012).

– LJ using the permutation: (RS) R(13) S(13).

– LL using the permutation: C(01) S(0132).

– LN using the permutation: (RS) R(12) C(12) S(321).

– LO using the permutation: (CS) R(23) C(03)(12) S(02).

• LM ≡ LH using the permutation: (CS) C(13) R(23).

LA has three Latin subsquares, LD,LH and LI have one Latin subsquare, LE and
LC have no Latin subsquares. GC the graph OQW-associated with LC has one vertex
of degree nine, 202; GE has two vertices of degree nine, 202, 312. GH has two adjacent
vertices of degree nine, 211, 310; GI has two non-adjacent vertices of degree nine, 202, 311;
GD has one vertex of degree nine, 210. Thus LB, LC, LE, LD, LH and LI are non-
equivalent; there are six non-equivalent (3, 14, 2)41 codes.

Theorem 19. No (3, 15, 2)41 code exists.
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Proof. Assume C is a (3, 15, 2)41 code. From Lemma 7 we know that G, the OQW-
associated graph, has three 4-cliques and one triangle of each colour, 63 edges in all.
Using equation (1) we require 40 multicoloured triangles in G.

If every edge of an α-coloured 4-clique is in two multicoloured triangles then G has
four 4-cliques of colours β and γ. This requires sixteen vertices, so every single coloured
4-clique must have at least one edge in less than two multicoloured triangles. The number
of multicoloured triangles in G,
T ≤ 2

3
(63 − 9) + 1

3
9 = 39. C is not a (3, 15, 2)41 code.

Theorem 20. There are two non-equivalent (3, 16, 2)41 codes.

Proof. There are two non-equivalent (16, 9, 4, 6) strongly regular graphs [11]. Both may
be coloured such that every edge is in two multicoloured triangles. There are two non-
equivalent Latin squares of side length 4 [3].
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