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Abstract

A biclique is a complete bipartite subgraph of a graph. This paper investigates
the fractional biclique cover number, bc∗(G), and the fractional biclique partition
number, bp∗(G), of a graph G. It is observed that bc∗(G) and bp∗(G) provide lower
bounds on the biclique cover and partition numbers respectively, and conditions
for equality are given. It is also shown that bc∗(G) is a better lower bound on the
Boolean rank of a binary matrix than the maximum number of isolated ones of the
matrix. In addition, it is noted that bc∗(G) ≤ bp∗(G) ≤ β∗(G), the fractional vertex
cover number. Finally, the application of bc∗(G) and bp∗(G) to two different weak
products is discussed.

Keywords: fractional biclique covers, fractional biclique partitions, Boolean rank, weak
products

1 Introduction

Fractional graph theory is the modification of integer-valued graph parameters to allow
them to take on non-integer values. This article investigates the fractional analogues
of the minimum number of complete bipartite subgraphs (bicliques) needed to cover or
partition the edges of a graph. For more on fractional graph theory and other fractional
graph parameters, see Berge [1] or Scheinerman and Ullman [17].

To begin, some definitions are given which are used throughout. A simple graph is
denoted by G with vertex set V (G) = {1, 2, · · · , n} and edge set E(G). An edge of G
is an unordered pair of vertices {u, v}, usually written uv. For general graph theory
terminology used throughout, see [2]. A subgraph of G whose edge set forms a complete
bipartite graph is called a biclique of G. Let K(R, S) denote the biclique of G with edge
set {ij : i ∈ R, j ∈ S} where R and S are disjoint non-empty subsets of vertices of G.
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The sets of vertices R and S are called the bipartition of K(R, S). If |R| = r and |S| = s,
then K(R, S) is said to be a Kr,s. A biclique K(R, S) is a star centered at vertex v if one
of R or S contains only a single vertex v. The set of all bicliques of G is denoted B(G).

A biclique cover of a graph G is a collection B of bicliques K(Xi, Yi), 1 ≤ i ≤ k, of G
whose edge sets cover the edge set of G. That is, each edge of G is in at least one of the
bicliques in B. The biclique cover number, bc(G), of a graph G is the minimum number
of bicliques in a biclique cover of G. A biclique partition of a graph G is a collection B
of bicliques K(Xi, Yi), 1 ≤ i ≤ k, of G whose edge sets partition the edge set of G. That
is, each edge of G is in exactly one of the bicliques in B. The biclique partition number,
bp(G), is the minimum number of bicliques in a biclique partition of G. For more on
biclique covers and partitions, see [3, 8, 11, 14, 15, 16].

Sections 2 and 3 introduce the fractional biclique cover and partition numbers, re-
spectively, via linear programs that assign weights to either the bicliques or the edges of
a graph. It is observed that the fractional biclique cover (resp. partition) number is a
lower bound on bc(G) (resp. bp(G)). In addition, it is shown that the fractional biclique
cover number is a better lower bound on Boolean rank than a well known lower bound
given by Gregory and Pullman [10]. An example is given which shows that the fractional
biclique cover number may be smaller than the fractional biclique partition number. It
is well known that for any graph G, bc(G) ≤ bp(G) ≤ β(G), the vertex cover number,
and section 4 shows that the fractional analogues of these three numbers share the same
relationship. Finally, section 5 discusses the application of the fractional biclique cover
and partition numbers to weak product and weak bipartite product. In particular, it is
observed that the fractional biclique cover number of a weak bipartite product of bipartite
graphs equals the product of their fractional biclique cover numbers. A similar result is
true for weak product.

2 Fractional Biclique Covers

Another way to view a biclique cover is as a function w that assigns to each biclique
B of G either 0 or 1 so that, for each edge e ∈ E(G),

∑
w(B) ≥ 1 where the sum is

taken over all bicliques that contain e. Then, bc(G) is the minimum of
∑

B∈B(G) w(B)

over all biclique covers. Thus, bc(G) is the value of a (0, 1)-integer program and its linear
relaxation defines the fractional biclique cover number.

A fractional biclique cover is a function w that assigns to each biclique B of a graph
G a number so that w(B) ≥ 0 and, for each edge e ∈ E(G),

∑
w(B) ≥ 1 where the

sum is taken over all bicliques that contain e. Note that every biclique cover is in fact
a fractional biclique cover. To compare biclique covers and fractional biclique covers,
consider the complete graph on four vertices, K4, shown in Figure 1. A biclique cover
of K4 is given by bicliques B1 = K({1, 3}, {2, 4}) and B2 = K({1, 2}, {3, 4}). The
function w associated with this cover assigns the values w(B1) = w(B2) = 1 and 0
for all other bicliques of K4. As observed above, w is also a fractional biclique cover.
Now, consider the function w1 where w1(K({1, 3}, {2, 4})) = w1(K({1, 2}, {3, 4})) =
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w1(K({1, 4}, {2, 3})) = 1
2

and w1(B) = 0 for all other bicliques B of K4. Note that
w1 is a fractional biclique cover of K4 since each edge e of K4 is in exactly two of the
bicliques K({1, 3}, {2, 4}), K({1, 2}, {3, 4}), K({1, 4}, {2, 3}) and so

∑
{B:e∈B} w1(B) ≥ 1.
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Figure 1

The fractional biclique cover number, bc∗(G), is the infimum of
∑

B∈B(G) w(B) over all

fractional biclique covers. That is, bc∗(G) is the value of the linear program

minimize
∑

B∈B(G) w(B)

subject to
∑

{B:e∈B} w(B) ≥ 1 for each edge e of G

w(B) ≥ 0 for each biclique B of G

(1)

where each biclique B of G is assigned a weight w(B). Since the value of the fractional
biclique cover number is determined by a linear program, bc∗(G) may also be found using
the dual program. Thus, bc∗(G) is the value of the linear program

maximize
∑

e∈E(G) v(e)

subject to
∑

e∈B v(e) ≤ 1 for each biclique B of G
v(e) ≥ 0 for each edge e of G

(2)

where each edge e of G is assigned a weight v(e). Note that v(e) ≤ 1 since each edge is a
biclique. For results regarding linear programming mentioned throughout, see Chvátal [4].

An automorphism of G is a permutation of the vertices of G which maps edges to edges
and non-edges to non-edges. Let Aut G denote the automorphism group of a graph G. The
orbits of Aut G partition the edge set of G into equivalence classes. It is straightforward to
check that if v is an optimal weighting of the edges of G in (2) with bc∗(G) =

∑
e∈E(G) v(e)

and v̂(e) = 1
|Aut G|

∑
σ∈Aut G v(σ(e)) then v̂(e) also satisfies the constraints of (2) and

bc∗(G) =
∑

e∈E(G) v̂(e). Thus, in finding bc∗(G) using (2), edges in the same orbit of
Aut G may be assumed to have the same weight. In particular, if G is edge-transitive
(that is, if for each pair of edges e and f of G there exists σ ∈ Aut G with σ(e) = f) then

each edge of G may be assumed to have the same weight. Consequently, bc∗(G) = |E(G)|
ab

where Ka,b is the largest biclique of an edge-transitive graph G in terms of the number of
edges. For the proofs of these statements, see Watts [19].

The cycle Cn on n vertices is an edge-transitive graph and for n 6= 4 its largest biclique
is a K1,2. Thus, bc∗(Cn) = n

2
for n 6= 4 and bc∗(C4) = 1. Similarly, the complete graph

Kn on n vertices is edge-transitive and its largest biclique is a Kdn
2
e,bn

2
c. Consequently,

bc∗(Kn) =

{
2(n−1)

n
if n is even

2n
n+1

if n is odd
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Harary, Hsu and Miller [12] showed that bc(Kn) = dlog2 ne and so as n → ∞, bc(Kn) → ∞
while bc∗(Kn) → 2.

Consider the complement of the cycle on six vertices, C6, shown in Figure 2 below.
The orbits of Aut C6 yield the following equivalence classes: A = {13, 15, 24, 26, 35, 46}
and B = {14, 25, 36}. According to the statement given above, the edges in A may all
receive the same weight, a, and the edges in B may all receive the same weight, b. It
follows that the objective function of (2) for C6 is 6a + 3b since there are six elements in
A and three elements in B. The seven different stars centered at vertex 1 produce the
following constraints:

Biclique Constraint

K({1}, {3}) a ≤ 1
K({1}, {4}) b ≤ 1
K({1}, {5}) a ≤ 1

K({1}, {3, 5}) 2a ≤ 1
K({1}, {3, 4}) a + b ≤ 1
K({1}, {4, 5}) a + b ≤ 1

K({1}, {3, 4, 5}) 2a + b ≤ 1

Similar constraints occur for the stars centered at each vertex i. The only other bicliques in
C6 are K2,2’s, such as K({1, 2}, {4, 5}). Each K2,2 yields the same constraint: 2a+2b ≤ 1.
Then from (2), bc∗(C6) is the value of the linear program

maximize 6a + 3b
subject to 2a ≤ 1

a + b ≤ 1
2a + b ≤ 1
2a + 2b ≤ 1
a, b ≤ 1

Since 2a + b ≤ 1, it follows that 6a + 3b ≤ 3. Taking a = 1
2

and b = 0, the maximum of 3

may be attained. Therefore, bc∗(C6) = 3.
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Figure 2

Theorem 2.1 shows that the fractional biclique cover number is a lower bound for the
biclique cover number and conditions for equality are given. The proof of Theorem 2.1
first appeared in the thesis of the author [19].
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Theorem 2.1 For a graph G, bc∗(G) ≤ bc(G) with equality holding if and only if for
some (and every) minimum biclique cover B and optimal weighting v of the edges of G
for (2),

∑
e∈B v(e) = 1 for all B ∈ B,

∑
e∈B v(e) ≤ 1 for all bicliques B of G, v(e) = 0

for each edge e of G that is covered more than once by the bicliques of B and v(e) ≥ 0 for
each edge e of G.

Proof. Let B be a minimum biclique cover of G. Let v be an optimal weighting of the
edges of G for (2). Then bc∗(G) =

∑
e∈E(G) v(e) ≤∑B∈B

(∑
e∈B v(e)

) ≤∑B∈B 1 = |B| =

bc(G). Thus, bc∗(G) = bc(G) if and only if
∑

e∈B v(e) = 1 for all B ∈ B and v(e) = 0 for
each edge e of G which is covered more than once by the bicliques of B. �

The case of bipartite graphs is of special interest since bc∗(G) provides a lower bound
on Boolean rank. The Boolean rank, rB(A), of an m×n Boolean matrix A is the smallest
integer k such that A = XY T for some m × k binary matrix X and n × k binary matrix
Y . If A is an m × n (0, 1)-matrix and G is the bipartite graph with bipartite adjacency
matrix A, then bc(G) = rB(A), an observation provided by Orlin [16]. Consequently,
bc∗(G) is the fractional analogue of rB(A) and rB(A) ≥ bc∗(G). For more on Boolean
rank, see [6, 7, 8, 10, 13, 15]

As in [10], a set of ones of a binary matrix A is isolated if no pair of ones are in
an all-ones submatrix of A together. Let i(A) be the maximum number of ones in an
isolated set of A. It follows that rB(A) ≥ i(A). However, Theorem 2.2 below implies
that bc∗(G) ≥ i(A) where G is the bipartite graph with bipartite adjacency matrix A.
Consequently, fractional Boolean rank is a better lower bound for rB(A) than i(A). For
example, the 5×5 matrix I5 with zeros down the main diagonal and ones everywhere else
has rB(I5) = 4, r∗B(I5) = 10

3
and i(I5) = 3.

Theorem 2.2 For a bipartite graph G, bc∗(G) ≥ i(A), where A is the bipartite adjacency
matrix of G.

Proof. A set of isolated ones in A corresponds to a matching in G with the property
that the subgraph induced by the matching is K2,2-free. This implies that the edges of
the matching cannot be in any biclique together. Let M be the matching corresponding
to a maximum isolated set of A. Define a weighting v on the edges of G as follows:

v(e) =

{
1 if e ∈ M
0 otherwise

This weighting of the edges of G satisfies the constraints of (2) since, for any biclique B
of G,

∑
e∈B v(e) ≤ 1. Thus, bc∗(G) ≥∑e∈E(G) v(e) = |M | = i(A). �

3 Fractional Biclique Partitions

A biclique partition is a function w that assigns each biclique B of G either 0 or 1 so
that, for each edge e ∈ E(G),

∑
w(B) = 1 where the sum is taken over all bicliques
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that contain e. Then, bp(G) is the minimum of
∑

B∈B(G) w(B) over all biclique partitions.

Thus, bp(G) is the value of a (0, 1)-integer program and its linear relaxation defines the
fractional biclique partition number.

A fractional biclique partition is a function w that assigns to each biclique B of a graph
G a number so that w(B) ≥ 0 and, for each edge e ∈ E(G),

∑
w(B) = 1 where the sum

is taken over all bicliques that contain e. The fractional biclique partition number, bp∗(G),
is the infimum of

∑
B∈B(G) w(B) over all fractional biclique partitions. That is, bp∗(G) is

the value of the linear program

minimize
∑

B∈B(G) w(B)

subject to
∑

{B:e∈B} w(B) = 1 for each edge e of G

w(B) ≥ 0 for each biclique B of G

(3)

where each biclique B of G is assigned a weight w(B). As before, the dual program may
also be used. Thus, bp∗(G) is the value of the linear program

maximize
∑

e∈E(G) v(e)

subject to
∑

e∈B v(e) ≤ 1 for each biclique B of G
(4)

where each edge e of G is assigned a weight v(e). Note that in (4) edges may receive
negative weights, whereas in (2) non-negative weights are required. Similar to the case
with bc∗(G), edges in the same orbit of Aut G may receive the same weight when (4) is
used to determine bp∗(G).

In the examples immediately before Theorem 2.1, each optimal weighting of the edges
for (2) is also an optimal weighting of the edges for (4). Consequently, bc∗(Cn) = bp∗(Cn),
bc∗(Kn) = bp∗(Kn) and bc∗(C6) = bp∗(C6). As with the fractional biclique cover num-
ber, the fractional biclique partition number is a lower bound on the biclique partition
number. The proof of Theorem 3.1 is similar to the proof of Theorem 2.1 and is omitted.
Alternatively, the proof may be found in Watts [19].

Theorem 3.1 For a graph G, bp∗(G) ≤ bp(G) with equality holding if and only if for
some (and every) minimum biclique partition B and optimal weighting v of the edges of
G for (4),

∑
e∈B v(e) = 1 for all B ∈ B and

∑
e∈B v(e) ≤ 1 for all bicliques B of G.

A well-known lower bound on bp(G) is the eigenvalue bound, attributed to H.S. Wit-
senhausen by Graham and Pollak [9], which states that bp(G) ≥ max{n+(G), n−(G)},
where n+(G) (resp. n−(G)) is the number of positive (resp. negative) eigenvalues of the
adjacency matrix of G. Although Theorem 3.1 provides a lower bound for bp(G), in gen-
eral bp∗(G) is not as good a lower bound on bp(G) as max{n+(G), n−(G)}. Theorem 3.2
below shows that bp∗(G) ≤ n

2
, the proof of which first appeared in the thesis of the au-

thor [19]. Consequently, the only instances when bp∗(G) may be of interest as a lower
bound on bp(G) is when max{n+(G), n−(G)} ≤ n

2
. An example of this is C6 since it was

observed above that bp∗(C6) = bp(C6) = 3 but max{n+(C6), n−(C6)} = 2. Other graphs
which have max{n+(G), n−(G)} ≤ n

2
include all the bipartite graphs.
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Theorem 3.2 For a graph G with n vertices, bp∗(G) ≤ n
2
.

Proof. Let v be an optimal weighting of the edges of G for (4). For each vertex x
in G, let Sx be the star centered at x, containing all the edges incident to x. Then
bp∗(G) =

∑
e∈E(G) v(e) = 1

2

∑
x∈V (G)

(∑
e∈Sx

v(e)
) ≤ 1

2

∑
x∈V (G) 1 = n

2
. �

As with the fractional biclique cover number, the bipartite case is of special interest.
Not only are bipartite graphs of interest because of the eigenvalue bound mentioned
above, but also because the fractional biclique partition number gives a lower bound on
the non-negative integer rank of a binary matrix . The non-negative integer rank, rZ+(A),
of an m×n matrix A with non-negative integer entries is the smallest integer k such that
A = XY T for some m× k matrix X and n× k matrix Y , both with non-negative integer
entries. If A is an m×n (0, 1)-matrix and G is the bipartite graph with bipartite adjacency
matrix A, then bp(G) = rZ+(A), an observation provided by Orlin [16]. Consequently,
bp∗(G) is the fractional analogue of rZ+(A) and rZ+(A) ≥ bp∗(G) when G is bipartite. For
more on non-negative integer rank, see [5, 8, 15].

It is always interesting to see if known integer results have corresponding fractional
analogues. Since every biclique partition is a biclique cover, it follows that bc(G) ≤ bp(G).
The fractional analogue of this statement is given in Theorem 3.3, together with conditions
for equality. The proof of Theorem 3.3 first appeared in Watts [19].

Theorem 3.3 For a graph G, bc∗(G) ≤ bp∗(G) with equality holding if and only if for
some optimal weighting v of the edges of G for (4), v(e) ≥ 0 for all edges e of G.

Proof. It follows immediately from (2) and (4) that bc∗(G) ≤ bp∗(G) since a weighting v
of the edges of G that satisfies the constraints of (2) also satisfies the constraints of (4).
To prove the characterization for equality, suppose v is an optimal weighting of the edges
of G for (4) with v(e) ≥ 0 for all edges e of G. Then v satisfies the constraints of (2) and
so bc∗(G) ≥∑e∈E(G) v(e) = bp∗(G). It follows that bc∗(G) = bp∗(G).

Conversely, suppose that bc∗(G) = bp∗(G) and v is an optimal weighting of the edges
of G for (2). Then v satisfies the constraints of (4) and bc∗(G) =

∑
e∈E(G) v(e) = bp∗(G).

Thus v must be an optimal weighting of the edges of G for (4) with v(e) ≥ 0 for each
edge e of G. �
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Figure 3

Theorem 3.3 implies that to have a graph with bc∗(G) 6= bp∗(G), an optimal weighting
of the edges of G for (4) must have some edges that receive negative weights. The graph
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G shown in Figure 3 above is an example of a graph with bc∗(G) 6= bp∗(G). Under
the automorphism group, the orbits of Aut G yield the following equivalence classes:
X1 = {12, 15}, X2 = {13, 14}, X3 = {23, 45}, X4 = {34}. Assign each edge in Xi weight
xi for 1 ≤ i ≤ 4. Then, according to (4), bp∗(G) is the value of the linear program

maximize 2x1 + 2x2 + 2x3 + x4

subject to 2x1 + 2x2 ≤ 1
2x1 + x2 ≤ 1
x1 + x2 ≤ 1
2x1 ≤ 1
2x2 ≤ 1
x1 + 2x2 ≤ 1
x1 + x3 ≤ 1
x2 + x3 + x4 ≤ 1
x2 + x3 ≤ 1
x3 + x4 ≤ 1
x2 + x4 ≤ 1
x1 + x2 + x3 + x4 ≤ 1
x1, x2, x3, x4 ≤ 1

(5)

Solving the linear program (5) yields bp∗(G) = 9
4

with x1 = x2 = 1
4
, x3 = 3

4
and x4 = −1

4
.

Adding the additional constraints x1, x2, x3, x4 ≥ 0 to (5) gives the linear program for
bc∗(G) in (2). Solving this new linear program gives bc∗(G) = 2 with x1 = x3 = 1

2
and

x2 = x4 = 0.

4 Fractional Vertex Covers

The vertex cover number, β(G), of a graph G is the minimum number of vertices in a
vertex cover of G. As described in Berge [1], a fractional vertex cover is a function g that
assigns to each vertex v of G a number so that 0 ≤ g(v) ≤ 1 and for each edge e ∈ E(G),∑

g(v) ≥ 1 where the sum is taken over all vertices incident to e. The fractional vertex
cover number, β∗(G), is the infimum of

∑
v∈V (G) g(v) over all fractional vertex covers.

That is, β∗(G) is the value of the linear program

minimize
∑

v∈V (G) g(v)

subject to
∑

e∈v g(v) ≥ 1 for each edge e of G
0 ≤ g(v) ≤ 1 for each vertex v of G

(6)

where each vertex v of G is assigned a weight g(v). Dually, β∗(G) is the value of the linear
program

maximize
∑

e∈E(G) f(e)

subject to
∑

{e:v∈e} f(e) ≤ 1 for each vertex v of G

0 ≤ f(e) ≤ 1 for each edge e of G

(7)
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where each edge e of G is assigned a weight f(e). In fact, the dual program given in (7)
is the linear program for the fractional matching number of G. For more on fractional
vertex covers and fractional matchings, see Berge [1] or Scheinerman and Ullman [17].

A biclique partition may always be obtained by successively deleting the edge sets
of stars centered at the vertices in a vertex cover of G. This gives a biclique partition
of G consisting entirely of stars and consequently bc(G) ≤ bp(G) ≤ β(G). It follows
immediately from (2) and (7) that bc∗(G) ≤ β∗(G). In fact, Theorem 4.1 shows that
bc∗(G) ≤ bp∗(G) ≤ β∗(G).

Theorem 4.1 For any graph G, bc∗(G) ≤ bp∗(G) ≤ β∗(G).

Proof. It was observed in Theorem 3.3 that bc∗(G) ≤ bp∗(G) and so it remains to prove
bp∗(G) ≤ β∗(G). Let v be an optimal weighting of the edges of G for (4). Construct a
new weighting f for the edges of G as follows:

f(e) =

{
v(e) if v(e) ≥ 0
0 if v(e) < 0

Note that for any vertex x ∈ V (G), the edges incident to x with v(e) ≥ 0 form a star
centered at x. Since v satisfies the constraints of (4),

∑
v(e)≥0 v(e) ≤ 1. Thus, for each

x ∈ V (G),
∑

{e:x∈e} f(e) =
∑

v(e)≥0 v(e) ≤ 1. Hence, f satisfies the constraints of (7) and

bp∗(G) =
∑

e∈E(G) v(e) ≤∑v(e)≥0 v(e) =
∑

e∈E(G) f(e) ≤ β∗(G). �

5 Weak Bipartite Products and Weak Products

Let (XG, YG) be the (ordered) bipartition of a bipartite graph G. The weak bipartite
product of bipartite graphs G and H is the bipartite graph G×̃H with ordered bipartition
(XG × XH , YG × YH). Two vertices (gi, hk) and (gj, h`) in G×̃H are adjacent if and only
if gi is adjacent to gj in G and hk is adjacent to h` in H . In fact, G×̃H is one of the
components of the weak product G × H described below. Note that each edge gigj of G
and each edge hkh` of H yield only one edge of G×̃H . Further, every edge of G×̃H is the
result of a unique pair of edges of G and H .

For a bipartite graph G with ordered bipartition (XG, YG) each biclique of G may be
written as K(R, S) with R ⊆ XG and S ⊆ YG. Then, the biclique K(R, S) is called an
ordered biclique of G with ordered bipartition (R, S). All of the bicliques of G may assumed
to be ordered. Hence, the bicliques of G, H and G×̃H may all be assumed to be ordered
bicliques. Note that the weak bipartite product of an ordered biclique K(RG, SG) of G and
an ordered biclique K(RH , SH) of H yields an ordered biclique K(RG, SG)×̃K(RH , SH) =
K(RG ×RH , SG ×SH) of G×̃H with ordered bipartition (RG ×RH , SG ×SH). A biclique
of G×̃H which can be written as the weak bipartite product of an ordered biclique of G
and an ordered biclique of H is called an ordered product biclique of G×̃H . Every ordered
product biclique of G×̃H can be expressed uniquely as the weak bipartite product of an
ordered biclique from B(G) and an ordered biclique from B(H). Let B(G)×̃B(H) denote
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the set of ordered product bicliques of G×̃H . Then B(G)×̃B(H) is a subset of all the
ordered bicliques of G×̃H and |B(G)×̃B(H)| = |B(G)||B(H)|.

The weak product of two graphs G and H , not necessarily bipartite, is the graph G×H
with vertex set V (G)× V (H). Two vertices (gi, hk) and (gj, h`) are adjacent in G × H if
and only if gi is adjacent to gj in G and hk is adjacent to h` in H . Note that each edge
gigj of G and each edge hkh` of H yields two edges of G × H : the edges (gi, hk)(gj, h`)
and (gi, h`)(gj, hk). Further, every edge of G × H belongs to a unique pair of this type.

The weak product, BG × BH , of a biclique BG = K(RG, SG) of G and a biclique
BH = K(RH , SH) of H yields two disjoint bicliques of G×H : one is BG×̃BH = K(RG ×
RH , SG ×SH) defined above and the other is K(RG ×SH , SG ×RH). A biclique of G×H
which is one of the two bicliques produced from the weak product of a biclique of G and
a biclique of H is called a product biclique of G × H . Each product biclique of G × H
belongs to a unique pair of bicliques BG × BH . Let B(G) × B(H) denote the set of all
product bicliques of G × H . Then B(G) × B(H) is a subset of all the bicliques of G × H
and |B(G) × B(H)| = 2|B(G)||B(H)|.

Let AG and AH be the bipartite adjacency matrices of bipartite graphs G and H re-
spectively. Then AG⊗AH is the bipartite adjacency matrix of G×̃H , where ⊗ denotes the
Kronecker product of matrices AG and AH . A result of de Caen, Gregory and Pullman [7]
showed that rZ+(AG ⊗ AH) ≤ rZ+(AG)rZ+(AH). It follows that bp(G×̃H) ≤ bp(G)bp(H).
Also, Kratzke, Reznick and West [14] observed that bp(G × H) ≤ 2bp(G)bp(H). Theo-
rem 5.1 gives the corresponding fractional analogues, the proof of which first appeared in
the thesis of the author [19]. Note that Theorem 5.1 gives an inequality for the fractional
analogue of the non-negative integer rank of the Kronecker product of binary matrices.

Theorem 5.1 1. Let Gi, 1 ≤ i ≤ k, be bipartite graphs with ordered bipartitions
(XGi

, YGi
) respectively. Then bp∗(G1×̃ · · · ×̃Gk) ≤

∏k
i=1 bp∗(Gi).

2. Let Gi, 1 ≤ i ≤ k, be graphs. Then bp∗(G1 × · · · × Gk) ≤ 2k−1
∏k

i=1 bp∗(Gi).

Proof. The proof of 1 follows below. The proof of 2 is similar and is omitted. It suffices
to prove the result for k = 2; the general case follows directly by induction on k. Let
G = G1 and H = G2. Let wG and wH be optimal weightings of the ordered bicliques of
G and H , respectively, for (3). Construct a weighting w of the ordered bicliques of G×̃H
from the ordered bicliques of G and H . If B is an ordered product biclique of G×̃H and
B = BG×̃BH where BG ∈ B(G) and BH ∈ B(H), let w(B) = wG(BG)wH(BH). For all
other ordered bicliques B of G×̃H , let w(B) = 0.

Note that by construction w(B) ≥ 0 for each ordered biclique B of G×̃H . Let e =
(gi, hk)(gj, h`) be an edge of G×̃H with (gi, hk) ∈ XG ×XH and (gj , h`) ∈ YG ×YH . Then
gigj and hkh` are edges of G and H respectively. Note that e is an edge of an ordered
product biclique B = BG×̃BH if and only if gigj and hkh` are edges of the ordered bicliques
BG of G and BH of H respectively. Then, remembering that at each stage the bicliques
are ordered accordingly, for each such edge e,
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∑
{B:e∈B}

w(B) =
∑

{B:e∈B}
B∈B(G)×̃B(H)

w(B)

=
∑

{BG×̃BH :e∈BG×̃BH}
BG∈B(G),BH∈B(H)

wG(BG)wH(BH)

=
∑

{BG:gigj∈BG}
{BH :hkh`∈BH}

wG(BG)wH(BH)

=

( ∑
{BG:gigj∈BG}

wG(BG)

)( ∑
{BH :hkh`∈BH}

wH(BH)

)

= 1.

Thus, w satisfies the constraints of (3) and it follows that

bp∗(G×̃H) ≤
∑

B∈B(G)×̃B(H)

w(B)

=
∑

B=BG×̃BH

B∈B(G)×̃B(H)

wG(BG)wH(BH)

=
∑

BG∈B(G)
BH∈B(H)

wG(BG)wH(BH)

=

( ∑
BG∈B(G)

wG(BG)

)( ∑
BH∈B(H)

wH(BH)

)

= bp∗(G)bp∗(H). �
A result of de Caen, Gregory and Pullman [7] showed rB(AG ⊗AH) ≤ rB(AG)rB(AH)

where AG and AH are the bipartite adjacency matrices of bipartite graphs G and H
respectively. Consequently, bc(G×̃H) ≤ bc(G)bc(H). Watts [18] observed that this in-
equality can be strict. However, equality always holds for the fractional analogue, given
in Theorem 5.3. That is, bc∗(G×̃H) = bc∗(G)bc∗(H). The same can be said for the
weak product. Watts [19] observed that bc(G × H) ≤ 2bc(G)bc(H) and that equality
need not hold, while equality holds in the corresponding fractional analogue, also given
in Theorem 5.3. The proofs of Lemma 5.2 and Theorem 5.3 first appeared in [19].

Lemma 5.2 1. Let G and H be bipartite graphs with ordered bipartitions (XG, YG) and
(XH , YH) respectively. Each ordered biclique of G×̃H is a subgraph of an ordered
product biclique of G×̃H.

2. Let G and H be graphs. Each biclique of G × H is a subgraph of a product biclique
of G × H.
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Proof. The proof of 1 follows below. The proof of 2 is similar and is omitted. Let
K(R, S) be a biclique of G×̃H with ordered bipartition R ⊆ XG ×XH and S ⊆ YG ×YH .
Let

RG = {gi ∈ XG : (gi, hk) ∈ R for some hk ∈ XH}
RH = {hk ∈ XH : (gi, hk) ∈ R for some gi ∈ XG}
SG = {gj ∈ YG : (gj, h`) ∈ S for some h` ∈ YH}
SH = {h` ∈ YH : (gj, h`) ∈ S for some gj ∈ YG}.

Then R ⊆ RG × RH ⊆ XG × XH and S ⊆ SG × SH ⊆ YG × YH. Each vertex of RG

is adjacent to each vertex of SG, so K(RG, SG) is an ordered biclique of G. Similarly,
K(RH , SH) is an ordered biclique of H . Consequently, K(R, S) is a subgraph of the
ordered product biclique K(RG, SG)×̃K(RH , SH) = K(RG × RH , SG × SH). �

Theorem 5.3 1. Let Gi, 1 ≤ i ≤ k, be bipartite graphs with ordered bipartitions
(XGi

, YGi
) respectively. Then bc∗(G1×̃ · · · ×̃Gk) =

∏k
i=1 bc∗(Gi).

2. Let Gi, 1 ≤ i ≤ k, be graphs. Then bc∗(G1 × · · · × Gk) = 2k−1
∏k

i=1 bc∗(Gi).

Proof. The proof of 1 follows below. The proof of 2 is similar and is omitted. It suffices
to prove the theorem for k = 2; the general case follows directly by induction on k. Let
G = G1 and H = G2. The proof that bc∗(G×̃H) ≤ bc∗(G)bc∗(H) is similar to the proof
of Theorem 5.1 and is omitted.

To show the reverse inequality, let vG and vH be optimal weightings of the edges of
G and H , respectively, for (2). For each edge e = (gi, hk)(gj, h`) of G×̃H with (gi, hk) ∈
XG × XH and (gj , h`) ∈ YG × YH , construct a weighting v of the edges of G×̃H with
v(e) = vG(gigj)vH(hkh`).

Note that by construction v(e) ≥ 0 for each edge e of G×̃H . Let B = K(R, S) be
an ordered biclique of G×̃H with R ⊆ XG × XH and S ⊆ YG × YH. By Lemma 5.2
B is a subgraph of an ordered product biclique of G×̃H . That is, B is a subgraph of
an ordered product biclique BG×̃BH for some BG ∈ B(G) and BH ∈ B(H). Note that
e = (gi, hk)(gj, h`) is an edge of BG×̃BH if and only if gigj and hkh` are edges of BG and
BH , respectively. Then for each such ordered biclique B,∑

e∈B

v(e) ≤
∑

e∈BG×̃BH

v(e)

=
∑

(gi,hk)(gj ,h`)∈BG×̃BH

vG(gigj)vH(hkh`)

=
∑

gigj∈BG
hkh`∈BH

vG(gigj)vG(hkh`)

=

(∑
e∈BG

vG(e)

)(∑
e∈BH

vH(e)

)

≤ 1.
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Therefore, v satisfies the constraints of (2) and it follows that

bc∗(G×̃H) ≥
∑

e∈E(G×̃H)

v(e)

=
∑

(gi,hk)(gj ,h`)∈E(G×̃H)

vG(gigj)vH(hkh`)

=
∑

gigj∈E(G)
hkh`∈E(H)

vG(gigj)vH(hkh`)

=

( ∑
e∈E(G)

vG(e)

)( ∑
e∈E(H)

vH(e)

)

= bc∗(G)bc∗(H).

Consequently, bc∗(G×̃H) = bc∗(G)bc∗(H). �
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