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In [DO95], Ding and Oporawski proved thatfor every k, andd, thereexists a constanicy, 4, suchthatevery graph
with treawidth at mostk andmaximumdegreeat mostd hasdominotreevidth at mostcy 4. This notegivesanew
simpleproof of this fact,with a betterboundfor ¢ 4, namely(9% + 7)d(d + 1) — 1.

It is alsoshawn that a lower boundof (kd) holds: thereare graphswith dominotreewidth at least ;5kd — 1,
treawidth at mostk, andmaximumdegreeat mostd, for mary valuesk andd. Thedominotreevidth of atreeis at
mostits maximumdegree.
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1 Introduction

In [DO95], Ding and Oporawski proved that for every k and d, every graphG = (V,E) with
treavidth at mostk and with maximumdegreeat mostd hasa tree decompositiorof width at most
max(600k%d®,5400d%), suchthatevery vertex v € V belongsto at mosttwo of the setsassociatedo
thenodesin the treedecomposition Sucha treedecompositiorwascalleda domino tree decomposition
by BodlaendeandEngelfrietin [BE97], wherethey independenthgave a similar result,but with amore
complicatedoroof andwith a muchhigherconstantwhich wasexponentialbothin k& andin d.

In this note, a new and easyto understandoroof for the resultis given. Additionally, the constant
factorarisingfrom the proof givenhereis smaller:it is shavn thatgraphswith treevidth at mostk and
maximumdegreeat mostd have dominotreevidth atmost(9% + 7)d(d + 1) — 1.

The proof usesamongstothersa techniquefrom [BGHK95] (inspiredby a techniquefrom [RS95),
andsomeotherideas.The proofis givenin Section3.

In Sectiond, it is shavn thata lower boundof 2(kd) holds: therearegraphswith dominotreewidth at
Ieast11—2kd — 1, treawidth at mostk, andmaximumdegreeat mostd, for mary valuesk andd.

Somefinal remarksaremadein Section5, andit is shavn thatthedominotreenidth of atreeis atmost
its maximumdegree.

fThis researchwas partially supportecby ESPRITLong Term ResearctProject20244(project ALCOM IT: Algorithms and
Complexity in Information Technology).
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2 Definitions and Preliminary Results

Definition. A treedecompositiorof a graphG = (V, E) isapair ({X; | i € I},T = (I,F)) with
{X; | i € I'} acollectionof subset®f V', andT = (I, F') atree,suchthat

° UieI X, =V
e for all edgeqv,w) € E thereisani € I withv,w € X;
e foralli,j,k € I if jisonthepathfromitokin T, thenX; N X, C X;.

Thewidth of a treedecomposition({X; | i € I},T = (I, F)) is max;er | X;| — 1. Thetreewnidth of a
graphG = (V, E) is the minimumwidth over all treedecompositionsf G.

In somecasesT will beconsideredarooted tree;a specificnodeof T' is consideredo betheroot. A
treedecomposition(X', T') with T' arootedtreeis calleda rooted tree decomposition. For anodei € I,
we call thesetX; thebag of 4.

Definition. A treedecomposition({X; |i € I},T = (I, F)) of G = (V, E) is adomino tree decom-
position, if for eachvertex v € V, thereareat mosttwo nodes; € I with v € X;. Thedomino treewidth
of agraphG = (V, E) is theminimumwidth overall dominotreedecompositionsf G.

Theopenneighbourhooaf a setof verticesW C V in agraphG = (V, E) is
NW)={veV-W|3weW:{v,w}€E}
ForagraphG = (V, E), andW C V, thesubgraptof G, inducedby W is denotedas
GW]=W,{{v,w} € E|v,w e W})
Lemma2.1l LetT = (I, F) beatree. Let J; C I. Thenthereexistsa set J» C I with
o || <2-|Jy| -1
o J; C Js.

e Everysubtree of T'[I — J»] isadjacent to at most two nodesin .J,.

Proof:  Chooseanarbitraryrootr in T

LetJ, = J1 U {j € I|jisthelowestcommonancestoof two nodesin .J; }. We claim thatthis set.J,
fulfils the conditions.Clearly, J; C Js.

LetT' beasubtreeof T[I — J5]. If ip € J» is adjacento anodein 7", thentherearetwo cases:

e iy isanancestoof anodein T". Theni, is theuniqueparentof theroot of 7".

e ig is achild of anodein T'. We claim thattherecanbe only onenodefulfilling this case(for this
treeT'): supposey € J, andi; € J, arechildrenof nodesin 7'. Then,the lowestcommon
ancestori, of g andi; belongsto T”. However, iq andi;, belongto J; or areancestoiof a node
in J;. So,i, is the lowestcommonancestorof two nodesin J;, which is a contractionwith the
obsenationthatit belongsto 7".
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As for T, eachcasecanappeaionly once,T" is adjacento at mosttwo nodesn Js.

To show that|J>| < 2 - |Ji| — 1, build atree7 in thefollowing way: J» is the setof nodesin 7. If
j € J2 hasanancestothatalsobelongsto J, thentake anedgefrom j to the closestancestothatalso
belongsto J.. Onecanobserethat7 is indeedatree. Every nodej € J, — J; musthave at leasttwo
children. So T is atreewith at most|.J;| leaves,andwithout nodeswith onechild. A well know fact
abouttreestellsusthat7 hasatmost2|.J;| — 1 nodeshence|J,| < 2-|J;| — 1.0

Lemma2.2 Let ({X; |i € I},T = (I, F)) be a tree decomposition of G = (V, E). Lee W C V,
[W|=r.Lets<r.

1. There exists a set of |r/(s + 1)] nodes.J; C I, such that each connected component of G[V —
U, Xi] containsat most s vertices from .

2. There exists a set of 2|r/(s + 1)] — 1 nodes J, C I, such that each connected component Z
of GV — U, ¢, Xi] contains at most s vertices from W, and for each connected component of
G[V = Uje,, Xi] thereare nodes iy, 12 € J>, such that every vertex v that is adjacent to a vertex
in Z belongsto Z U X;, U X;,.

Proof: 1. First, obserethatfor ary J C I, G[V — U, X;] consistsof a numberof connected
componentssuchthatfor ary connectecomponentZ of G[V' — U, ; Xi], we have asubtree/ of the
forestT[I — J] with Z C U, X;, i-e.,removing J from I splitsT' in anumberof disjointtrees,and
eachconnectedomponenhasits verticesin thebagsof thenodesn only oneof thesesubtrees.

Chooseanarbitraryrootr € I, andview T" asarootedtree.We will procesd” in abottom-uporder:a
nodeis processeafterall its childrenareprocessedWhile processingerticeswe maintainaset.J; C I,
whichisinitially empty andasetW’ C W, for whichinitially W' = W. Theideais thatnodesareadded
to J; until finally therequestedetis found,andthat?W’ givesthoseverticesin W thatstill canbelongto
aconnectedcomponentvith too mary verticesin W in it.

Foranodei € I, letV; = U].EL, X;, with I; thesetcontainingi andall its descendants 7.

While processinga nodei, computeY; = V; N W'. If |Y;| > s, puti in Ji, andsetW’ = W - Y,.
Otherwise nhothingis donewhenprocessingiodei.

We now claim thatthe set.J; which is obtainedafter processingoot noder fulfils the requirements
of the lemma. Considera connecteccomponentZ of G[V' — |, ;, Xi]. Letiz bethe highestnode
in T whosebagcontainsa vertex in Z. Clearly, iz ¢ Ji,asZ C V — UJ.EJ1 X;. Hence,wheniy
wasprocessed|Y;,| < s. Now wenotethatZNW C Y;,: supposey € Z N W. By choiceof iz,
v € V. Ifv € W — W’ thenv belongsto a bagthatis belov a nodein J; orin J;, and hence
eitherv belongsto LJ].GJ1 X; oris separatedrom Z by UjeJ1 X;. This contradicts¢hatv € Z, hence
ZNW CZNnW' CY;,,andwehave|ZNW| <Y;,| <s.

To eachnodei € J;, we canassociatehes + 1 or moreverticesthatareremovedfrom W' wheni was
addedo J;. As eachvertexin W is associateavith atmostonei € J;, wehave|J;| < |r/(s + 1)].

2. First,obtaina set.J; asabove. Asin Lemma2.1ontheprecedingpage createset.J», suchthat

o [B] <2lr/(s+1)] — 1
L] Jl Q Jl.

¢ Everysubtreeof T'[I — .J,] is adjacento at mosttwo nodesin Js.
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Now, let Z bea connecteccomponenbf G[V — [_JJ.EJ2 X;]. By thepropertiesof treedecompositions,
it follows thatthereis a subtreel’; of T[I — J»], suchthatall verticesof Z only belongto bagsof nodes
in Tz. Thus,the verticesthat neighboura vertex in Z but do not belongto Z mustbelongto a bag X;,
with ¢ € J, oneof theat mosttwo nodesn .J; thatareadjacento Tz. O

Corollary 2.3 Let G = (V, E) have treewidth at most & and maximum degree at most d. Let W C V,
[W| <r.Lets <r. ThereexistsasetS C V ofatmost (k+1)- (2|r/(s+1)] — 1) vertices, such every
connected component Z in G[V — S] contains at most s vertices from W and at most (2k + 2)d vertices
that are adjacent to a vertexin S. If k isa constant, such a set S can be found in linear time.

Proof:  Thenon-algorithmicresultfollows directly from the previous lemma. (Note thatfor sucha
componenf¥, thereareat most2k + 2 verticesin S adjacento verticesin W (namelythe verticesin
at mosttwo bagsof the treedecomposition)henceat most(2k + 2)d verticesin W thatareadjacento
avertex in S.) To effectively obtainthe setS, first apply thealgorithmin [Bod9€ to obtainanarbitrary
treedecompositiorof width atmostk. It is nothardto seethatthe proofsgivenabove thencanbecarried
outin lineartime. O

3 The domino treewidth theorem

In this section,we prove the mainresultof this section. The techniqueis inspiredby a techniquefrom
[BGHK95], which wasagaininspiredby atechniquefrom [RS99.

Theorem3.1 Let G = (V, E) be a graph with treewidth at most £ and maximum degree at most d. Then
the domino treewidth of G isat most (9% + 7)d(d + 1) — 1.

Proof:

We first give a recursve procedure,called MAKEDEC, called with two arguments:a graphH =
(Vu, Ex) (which is always an inducedsubgraphof G, andis assumedo have treewidth at most k,
andmaximumdegreeat mostd), anda setof verticesW C Vg. The procedureoutputsa rooteddomino
treedecompositiorof H, ({X/ |i € I'},T' = (I, F")) of width atmost(9k + 7)d(d + 1) — 1, suchthat
theverticesin W only belongto the bagof theroot nodeof the dominotreedecomposition.

ProcedurenAKEDEC (graphH = (Vg, Eg), vertex setiW) hasthefollowing steps:

1. ObtainasetS C Vg, suchthatevery connecteccomponendf H[Vy — S] containsat most4k + 2
verticesfrom W andat most(2k + 2)d verticesthat are adjacento a vertex in S, (asin Corol-
lary 2.3.)

. SetR=N(SUW).
. Computetheconnectedcomponentd?; = (Vi, E1), ..., Hy = (V,, E;) of H[Vg — S — W].

. Foreachi, 1 <i < s, call MAKEDEC(H;, V; N R).

ga b W DN

. Combinethe treedecomposition®btainedin the previous stepin the following way: Take a new
noder with X,, = RU S U W. Thisis theroot of the new treedecompositionMake r adjacento
therootsof eachof thetreedecompositionspbtainedn the previous step. Theresultis the output
of theprocedure.
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AssumethatthesetS foundin Stepl is atmostof the size,guaranteedbo exist by Corollary2.3onthe

precedingpage;.e.,we have:
r

-1
s+ 1J )
Claim 3.1.1 Let H = (Vy, Ex) be a connected graph, and W C Vg, W # (. When MAKEDEC(H, W)

is called, the procedure outputs a rooted domino tree decomposition of H, such that verticesin W only
belong to the root bag of the domino tree decomposition.

S| < (k+1)- (2L

Proof:  First, obsene thatthefirst parametepf a recursie call to MAKEDEC alwaysis a connected
graph,andthe secondparametenf every recursve call to MAKEDEC is alwaysa non-emptyset: every
connecteccomponendf H[Vy — S — W] mustcontainverticesadjacento S U W. Thus,therecursve
callsdoneto MAKEDEC involve graphswith fewer vertices hencethe procedurg¢erminates.

Let{u,v} € Eg. If {u,v} N (SUW) # 0, thenu andv belongbothto therootbagX,. Otherwise,
z andy belongto thesameconnectedomponent; of H[Vy — S — W], andby induction,therewill be
a bagcontainingbothz andy. In both casesthereis abagin the resultingdecompositiorthat contains
bothz andy.

Letv € V. Therearethreecases.

If v € SUW, thenv doesnotbelongto ary connecteccomponentf H[Vyg — S — W], hencev only
belonggto bag X,., andno otherbagof the decomposition.

If v € R, thenv belongsto X,.. In addition,v belongsto exactly one connecteccomponentH; of
H[Vg — S — W]. By induction,v belongsto theroot bagof the dominotreedecompositioryieldedby
thecall of MAKEDEC(H;,V; N R) andno otherbag. Thus,v belonggo exactly two bagsthatareadjacent.

If v ¢ RUS UW, thenv belongsto exactly one connecteccomponentH; of H[Vyg — S — W],
and by induction to one or two adjacentbagsin the decompositionmade by the recursve call to
MAKEDEC(H;,V; N R). v doesnot belongto ary otherbag.

Hence theclaimfollows. O

Claim 3.1.2 If MAKEDEC(H, W) is called with H = (Vg, Eg) a connected graph of maximum degree
d and treewidth at most k, and W C Vp a set of vertices of size at most (6k + 4)d, then the resulting
domino tree decomposition has width at most (9% + 7)d(d + 1) — 1.

Proof:  First, we estimatethe size of the root bagof the resultingdominotreedecomposition.We
have |WW| < (6k + 4)d. By Corollary2.3onthe pagebefore,we cantake:

1S] < (k + 1)(2|(6k + 4)d/(4k + 3)| — 1) < 3(k + 1)d

Now
R < d-[SUW|
< d-((6k+4)d+ 3(k+1)d)
= (9k+7)d(d+1)
So,

[RUSUW| < (9% + 7)d(d + 1)
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Secondlywe estimatehesizeof asetV; N R in arecursve call MAKEDEC(H;,V; N R). Write
VinR = (V;NN(S9)) U (V;nNW))

Eachconnectedomponenti; of H[Vy — S — W] is containedn aconnectecomponen#; of H[Vy —
S]. H] containsat most4k + 2 verticesfrom W, henceat most(4k + 2)d verticesof N (W). Also, by
constructiorof S, H] containsatmost(2k + 2)d verticesin N(S). As aconsequence,

Vi N R| < (4k + 2)d + (2k + 2)d = (6k + 4)d

Now, we canuseinduction: eachrecursve call of MAKEDEC is calledwith assecondbarametea setof
sizeatmost(6k + 4)d, hencetherecursve callsgive treedecompositionsf width atmost(9k + 7)d(d +
1) — 1, which provestheclaim. O

So, from thesetwo claimsit follows, thatwhenwe call MAKEDEC(G,W) for a connectedyraphG of
treavidth at mostk, andmaximumdegreeat mostd, andary non-emptyertex subsef¥ which hassize
atmost(6k + 4)d, we obtainadominotreedecompositiorof G of width atmost(9k + 7)d(d + 1) — 1.

If G is not connectedthenmake separatelominotreedecomposition$or eachconnectecomponent,
andconnectheseto atreein anarbitraryway. O

Thenew ideain the proof canbefoundin step2 of theprocedurevAKEDEC: by addingtheneighbours
of the verticesin setS U W to the root bagof the tree decompositiorto make, we do not have to use
theseverticesatlowerlevelsof thetreedecompositiorarymore.Apartfrom thisidea,the structureof the
algorithmis similar to algorithmsfoundin [RS95 BGHK95].

Corollary 3.2 Let k be a constant. Given a graph with treewidth at most £ and maximum degree at most
d, a domino tree decomposition of G of width at most (9% + 7)d(d + 1) — 1 can be builtin O(n?) time.

Proof:  Usethe proceduregivenin the proof above. Excludingthe time spentin recursve calls of
MAKEDEC, onecall of MAKEDEC usesO(n) time. ThereareO(n) suchcalls (e.g.,every vertex belongs
to atmosttwo bags henceatreedecompositiomith O(n) nodess obtainedandthenumberof recursve
calls of MAKEDEC equalsthe numberof nodesof the resultingtree decomposition)so the total time is
boundedby O(n?). O

4 A lower bound

In this sectionwe shav thatageneraboundlik e obtainedn the previoussectionmustalwaysbe of order
Q(kd).
We first startwith thefollowing lemma,whichis alsointerestingon its own. For agraphG = (V, E),
let
G?* = (V,{{v,w} | {v,w} € EVIz € V : {v,z} € EA{z,w} € E})
Lemma4.1 Let G = (V, E) be a graph with domino treewidth at most k. The treewidth of G? is at most
2k.

Proof: W.l.o.g.,supposé7 is connectedLet ({X; |i € I},T = (I, F')) beadominotreedecompo-
sition of G of width atmostk. Notethat(by the propertiesf treedecompositiongsindthe assumptiorof
connectednessf G) eachtwo adjacenbagsintersect.Chooseanarbitraryrootr. If we addto eachbag
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Fig. 1: Grid with addedverticesz;

X; thebagof the parentof ¢ (unlessi = r), thenwe obtaina treedecompositiorof G of width at most
2k. (Theunionof two bagswith a non-emptyintersectiorandwith sizeat mostk + 1 eachis taken.)

For everyedge{v, w} in G%, we have abagcontainingoothv andw: thisis trivially trueif {v,w} € E.
If v andw have acommonneighbourz in G, theneitherthereis a bag X; containingbothwv, w, z, or
therearetwo adjacenbags,onecontainingv andz, andonecontainingw andz. Onemustbea child in
T (with rootr) of theother Thus,v, w, andz all threebelongto a commonbagin the constructedree
decomposition]

A 1/3 — 2/3-separatoof asetW in agraphG = (V, E), is a setof verticesS, suchthat W canbe
partitionedinto setsiWy, Ws, andWs, with W3 = SNW, |[Wy| < 2/3|W|, |Ws| < 2/3|W|, andevery
pathfrom avertexin W; to avertexin W, usesavertexin S.

Thefollowing lemmais well known. Seee.g.[BGHK95, GRE84 Liu90, RS86].

Lemma4.2 Let G = (V, E) be a graph of treewidth at most k. Let W C V. Then G contains a
1/3 — 2/3-separator of W of sizeat most k + 1.

Lemma4.3 For all d > 5, k > 2, k even, there exists a graph G with treewidth at most &, maximum
degree at most d, and domino treewidth at least 11—2kd - 2.

Proof: Considerthefollowing graph.

First, we take a grid of size k/2 by d?k. l.e., we have verticesof the form v; ;, 1 < i < k/2,
1 < j < d*k, andv; ; is adjacento vy j, iff |[i — i'| + |7 — j'| = 1. Tothisgrid, we addk/2 additional
verticeszy, . . ., 22, With, for eachi, 1 < i < k/2, 2; adjacento eachvertex v; j.qr, 1 < j < d. Let
G = (V, E) betheresultinggraph.

SeeFigure 1 for anillustration of the construction. (In orderto make the figure not too large, the
distancebetweersuccessie neighbourf theverticesz; is 4 in thefigure,insteadof dk.)

The maximumdegreeof G is max(5,d): verticesof the form v; ; have degreeat mostfive, while
verticesof theform z; have degreed. It is alsonot hardto seethatthe treewidth of G is at mostk. The
k/2 by d*k grid graphhastreewidth exactly /2 (seee.g.[Bod98.) As G containsk/2 verticessuchthat
whenthesearedeletedrom G, G becomesigraphof treewidth k£ /2, thetreewidth of G is atmostk. (See
e.g.[Bod9qg, Lemma72.)

Call the ith row the setof all verticesof theform v; j, 1 < j < d*k. Similar, the setof all verticesof
theformu; ;, 1 < i < k/2 s calledthe jth column.

Now, we claim that G? hastreewidth at Ieast%dk — 1. Notethatall verticesin theith row thatwere
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adjacento z; form acliquein G2. Call the setof theseverticestheith row-clique. Let
W ={vi;|1<i<k/2,1<j<kd’}

l.e., W is thesetof thegrid verticesin G.

SupposeS is a 1/3 — 2/3-separatof W of minimum sizein G2, partitioning W into Wy, W,
Ws=8nW.

We will now shaw that|S| > +dk. Assume|S| < &dk.

Notethat|Wy| < 2 - d®k?/2, henceW, N W3| > ¢d?k?, andlikewise |[W; N Ws| > ¢d*k>.

Every columnthat containsboth a vertex in W; anda vertex in W, mustalsocontaina vertex in S.
Thus,we mayassumeherearefewerthan%dk suchcolumns. So, fewer than 11—2dk2 verticesin W can
belongto suchacolumn.lt followsthatthereareatleast(3 d?k* — & dk?)/(k/2) = $d*k— gdk columns
thatonly containverticesin Ty, andthus,everyrow containst d*k — ¢ dk verticesin Wy . Likewise,every
row containstd?k — tdk in W.

We now will shaw thatevery row containsat Ieast%dk verticesin S.

Considettheith row. Notethateitherall verticesin theith row-cliquebelongto W; U S or all vertices
in theith row-cliquebelongto W, U S. Withoutlossof generalitywe supposeheformer;the othercase
is identical.

We partition the verticesin the ith row in d intervals, where the mth internval containsvertices
Vi, (m—1)dk+1> Vi, (m—1)dk+25 - - - » Vi,mak- At least[(§d*k — +dk)/(dk)] > 1d of theseintervals must
containverticesin W,. However, eachinterval alsocontainsa vertex in theith row-clique, henceit con-
tainsavertex in S U W;. So,eachinterval thatcontainsavertex in W, mustcontainavertexin S, hence
theith row containsat Ieast%d verticesin S.

As we have k/2 rows, it followsthat|S| > tdk. By Lemma4.2 onthe pagebefore,we have thatthe
treewidth of G2 is at Ieast%dk — 1, henceby Lemmad4.1 on pagel46,the dominotreewidth of G is at
least5dk — 2. O

5 Final remarks

It is possibleto give amodifiedversionof the procedureof Corollary 3.2 on pagel46,thatyieldsdomino
treedecompositionsf somevhatlargerwidth (but still of O(kd?), but thatusesO(n log n) time instead
of O(n?) time. However, the proofin [BE97] canbeturnedinto analgorithmthatuseslineartime. It is
notknown how muchtime a proceduréasedupontheproofby Ding andOporonski [DO95] would take.

Theproofgivenin this paperseemsinableto yield lineartime algorithms- theapproachypically leads
to algorithmicresultsof Q(n logn) time. It is openwhetherdominotreedecompositionsf O(kd?) width
canbeobtainedwith alineartime algorithm.

Anotherinterestingopenproblemis whethera boundof O (k%d) canessentiallybeimproved. It would
be interestingto seeif betterbounds,e.g.,a boundof O(kd) canbe proved, andwhetherbetterlower
boundsarepossible.

In somespecialcasesbetterboundscanbeobtained.For instancefor treeswe have thefollowing easy
result.

Theorem5.1 The domino treewidth of a tree is at most its maximum degree.
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Proof: LetT beatreewith maximumdegreed. Chooseanarbitraryrootr, andview T" asarooted
tree.Let T’ = (V', E") bethetree,obtainedby removing all leavesfrom T'. Considerthefollowing tree
decompositiorof T: ({X, | v € V'},T"), whereeachsetX, consistof v andall childrenof v in T'. One
easilyverifiesthatthisis a dominotreedecompositiorof 7" with width at mostd. O

Sofor trees(andsimilarly for forests) the dominotreawidth is linearin its degree. (Note alsothatthe
dominotreawvidth of a graphwith maximumdegreed > 1 is atleast[(d + 1)/2] — 1: atmosttwo bags
cancontaina vertex of degreed andall its neighbours.)It seemdnterestingto seeif it is alsopossible
to obtainsimilar boundsfor otherrestrictedclassef graphsof boundedreewidth, e.g.,seriesparallel
graphsHalin graphsor arbitrarygraphsof treewidth two.
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