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In this paper, we consider the recognition problem on three classes of perfect graphs, namely, the HH-free, the HHD-
free, and the Welsh-Powell opposition graphs (or WPO-graphs). In particular, we prove properties of the chordal
completion of a graph and show that a modified version of the classic linear-time algorithm for testing for a perfect
elimination ordering can be efficiently used to determine in O(n min{m α(n, n), m + n log n}) time whether a
given graph G on n vertices and m edges contains a house or a hole; this implies an O(n min{m α(n, n), m +
n log n})-time and O(n + m)-space algorithm for recognizing HH-free graphs, and in turn leads to an HHD-free
graph recognition algorithm exhibiting the same time and space complexity. We also show that determining whether
the complement G of the graph G is HH-free can be efficiently resolved in O(nm) time using O(n2) space, which
leads to an O(n m)-time and O(n2)-space algorithm for recognizing WPO-graphs. The previously best algorithms
for recognizing HH-free, HHD-free, and WPO-graphs required O(n3) time and O(n2) space.
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1 Introduction
A linear order ≺ on the vertices of a graph G is perfect if the ordered graph (G,≺) contains no induced
P4 abcd with a ≺ b and d ≺ c (such a P4 is called an obstruction). In the early 1980s, Chvátal [2]
defined the class of graphs that admit a perfect order and called them perfectly orderable graphs. The
interest in perfectly orderable graphs comes from the fact that several problems in graph theory, which
are NP-complete in general graphs, have polynomial-time solutions in graphs that admit a perfect order
[1; 5]; unfortunately, it is NP-complete to decide whether a graph admits a perfect order [12]. Since the
recognition of perfectly orderable graphs is NP-complete, we are interested in characterizing graphs which
form polynomially recognizable subclasses of perfectly orderable graphs. Many such classes of graphs,
with very interesting structural and algorithmic properties, have been defined so far and shown to admit
polynomial-time recognitions (see [1; 5]); note however that not all subclasses of perfectly orderable
graphs admit polynomial-time recognition [7].

In this paper, we consider the class of HH-free graphs and two classes of perfectly orderable graphs,
namely, the HHD-free, and the Welsh-Powell opposition graphs; note that the complement of an HH-free
graph is perfectly orderable (this was conjectured by Chvátal and proved by Hayward [6]). A graph is
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Fig. 1: Some simple graphs.

HH-free if it contains no hole (i.e., a chordless cycle on ≥ 5 vertices) and no house as induced subgraphs
(see Figure 1). The HH-free graphs properly generalize the class of triangulated (or chordal) graphs, i.e.,
graphs with no induced chordless cycles of length greater than or equal to four [5]. A subclass of HH-free
graphs, which also properly generalizes the class of triangulated graphs, is the class of HHD-free graphs;
a graph is HHD-free if it contains no hole, no house, and no domino as induced subgraphs (see Figure 1).
In [8], Hoàng and Khouzam proved that the HHD-free graphs admit a perfect order, and thus are perfectly
orderable.

A graph is called an Opposition graph if it admits a linear order ≺ on its vertices such that there is
no P4 abcd with a ≺ b and c ≺ d. Opposition graphs belong to the class of bip∗ graphs (see [1]), and
hence are perfect [13]. The complexity of recognizing opposition graphs is unknown. It is also open
whether there is an opposition graph that is not perfectly orderable [1]. The class of opposition graphs
contains several known classes of perfectly orderable graphs. For example, bipolarizable graphs are, by
definition, opposition graphs; a graph is bipolarizable if it admits a linear order ≺ on its vertices such that
every P4 abcd has b ≺ a and c ≺ d [14]. Another subclass of opposition graphs, which we study in this
paper, are the Welsh-Powell opposition graphs. A graph is defined to be a Welsh-Powell Opposition graph
(or WPO-graph for short), if it is an opposition graph for every Welsh-Powell ordering; a Welsh-Powell
ordering for a graph is an ordering of its vertices in nondecreasing degree [18].

Hoàng and Khouzam [8], while studying the class of brittle graphs (a well-known class of perfectly or-
derable graphs which contains the HHD-free graphs), showed that HHD-free graphs can be recognized in
O(n4) time, where n denotes the number of vertices of the input graph. An improved result was obtained
by Hoàng and Sritharan [9] who presented an O(n3)-time algorithm for recognizing HH-free graphs and
showed that HHD-free graphs can be recognized in O(n3) time as well; one of the key ingredients in
their algorithms is the reduction to the recognition of triangulated graphs. Recently, Eschen et al. [4]
described recognition algorithms for several classes of perfectly orderable graphs, among which a recog-
nition algorithm for HHP-free graphs; a graph is HHP-free if it contains no hole, no house, and no “P” as
induced subgraphs (see Figure 1). Their algorithm is based on the property that every HHP-free graph is
HHDA-free graph (a graph with no induced hole, house, domino, or “A”), and thus a graph G is HHP-free
graph if and only if G is a HHDA-free and contains no “P” as an induced subgraph. The characterization
of HHDA-free graphs due to Olariu (a graph G is HHDA-free if and only if every induced subgraph of
G either is triangulated or contains a non-trivial module [14]) and the use of modular decomposition [11]
allowed Eschen et al. to present an O(n m)-time recognition algorithm for HHP-free graphs.

For the class of WPO-graphs, Olariu and Randall [15] gave the following characterization: a graph G is
WPO-graph if and only if G contains no induced C5 (i.e., a hole on 5 vertices), house, P5, or “P” (see Fi-
gure 1). It follows that G is a WPO-graph if and only if G is HHP-free and G is HH-free. Eschen et al. [4]
combined their O(n m)-time recognition algorithm for HHP-free graphs with the O(n3)-time recognition
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algorithm for HH-free graphs proposed in [9], and showed that WPO-graphs can be recognized in O(n3)
time.

In this paper, we present efficient algorithms for recognizing HH-free, HHD-free, and WPO-graphs. We
show that a variant of the classic linear-time algorithm for testing whether an ordering of the vertices of a
graph is a perfect elimination ordering can be used to determine whether a vertex of a graph G belongs to a
hole or is the top of a house or a building in G. We take advantage of properties characterizing the chordal
completion of a graph and show how to efficiently compute for each vertex v the leftmost among v’s
neighbors in the chordal completion which are to the right of v, without explicitly computing the chordal
completion. As a result, we obtain an O(n min{m α(n, n), m + n log n})-time and O(n + m)-space
algorithm for determining whether a graph on n vertices and m edges is HH-free; we also describe how
the algorithm can be augmented to provide a certificate (an induced house or hole) whenever it decides
that the input graph is not HH-free.

Our HH-free graph recognition algorithm, in conjunction with results by Jamison and Olariu [10] and
by Hoàng and Khouzam [8], enables us to describe an algorithm for recognizing HHD-free graphs which
also runs in O(n min{m α(n, n), m + n log n}) time and requires O(n + m) space. Additionally, for
a graph G on n vertices and m edges, we show that we can detect whether the complement G of G is
HH-free in O(n m) time using O(n2) space. In light of the characterization of WPO-graphs due to Olariu
and Randall [15] which implies that a graph G is a WPO-graph if and only if G is HHP-free and its
complement G is HH-free, and the O(n m)-time recognition algorithm for HHP-free graphs of Eschen et
al. [4], our result yields an O(n m)-time and O(n2)-space algorithm for recognizing WPO-graphs.

The paper is structured as follows. In Section 2, we review the terminology that we use throughout
the paper and we present well known results that are useful for our algorithms. In Section 3, we present
the methodology and establish properties that enable us to efficiently determine whether a given graph is
HH-free, describe the algorithm, and give its analysis and the certificate computation. The recognition
algorithms for HHD-free graphs and WPO-graphs are described and analyzed in Section 4. Section 5
summarizes our results and presents some open problems.

2 Preliminaries
We consider finite undirected graphs with no loops or multiple edges. Let G be such a graph; then,
V (G) and E(G) denote the set of vertices and of edges of G respectively. The subgraph of a graph G
induced by a subset S of G’s vertices is denoted by G[S]. A subset B ⊆ V (G) of vertices is a module
if 2 ≤ |B| < |V (G)| and each vertex x ∈ V (G) − B is adjacent to either all vertices or no vertex in
B. The neighborhood N(x) of a vertex x ∈ V (G) is the set of all the vertices of G which are adjacent
to x. The closed neighborhood of x is defined as N [x] := N(x) ∪ {x}. We use M(x) to denote the set
V (G) −N [x] of non-neighbors of x. Furthermore, for a vertex y ∈ M(x), we use n(x, y) to denote the
number of vertices in the set N(x) ∩N(y), i.e., the set of common neighbors of x and y, or equivalently,
the degree of the vertex y in the graph induced by the set N(x) ∪ {y}. The degree of a vertex x in a
graph G, denoted deg(x), is the number of edges incident on x; thus, deg(x) = |N(x)|.

A path v0v1 · · · vk of a graph G is called simple if none of its vertices occurs more than once; it is called
a cycle (simple cycle) if v0vk ∈ E(G). A simple path (cycle) is chordless if vivj /∈ E(G) for any two
non-consecutive vertices vi, vj in the path (cycle). A chordless path (chordless cycle, respectively) on n
vertices is commonly denoted by Pn (Cn, respectively). In particular, a chordless path on 4 vertices is
denoted by P4. If abcd is a P4 of a graph, then the vertices b and c are called midpoints and the vertices a
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Algorithm PEO(G, σ)

1. for each vertex u ∈ V (G) do
A(u)← ∅;

2. for i← 1 to n− 1 do
3. u← σ(i);

4. X ← {x ∈ N(u) | σ−1(u) < σ−1(x)}; {neighbors to the right of u (w.r.t. σ)}
5. if X 6= ∅
6. then w ← σ(min{σ−1(x) | x ∈ X}); {leftmost (w.r.t. σ) among vertices in X}
7. concatenate X − {w} to A(w);

8. if A(u)−N(u) 6= ∅ then return(“false”);

9. return(“true”);

Fig. 2: The perfect elimination ordering testing algorithm.

and d endpoints of the P4 abcd.

Let G be a graph and let x, y be a pair of vertices. If G contains a path from vertex x to vertex y, we
say that x is connected to y. The graph G is connected if x is connected to y for every pair of vertices
x, y ∈ V (G). The connected components (or components) of G are the equivalence classes of the “is
connected to” relation on the vertex set V (G). The co-connected components (or co-components) of G
are the connected components of the complement G of the graph G.

A graph G has a perfect elimination ordering if its vertices can be linearly ordered (v1, v2, . . . , vn)
so that each vertex vi is simplicial in the graph Gi = G[{vi, vi+1, . . . , vn}] induced by the vertices
vi, vi+1, . . . , vn, for 1 ≤ i ≤ n; a vertex of a graph is simplicial if its neighborhood induces a complete
subgraph. It is well-known that a graph is triangulated if and only if it has a perfect elimination ordering
[1; 5; 16]. The notion of a simplicial vertex was generalized by Jamison and Olariu [10] who defined
the notion of a semi-simplicial vertex: a vertex of a graph G is semi-simplicial if it is not a midpoint of
any P4 of G. A graph G has a semi-perfect elimination ordering if its vertices can be linearly ordered
(v1, v2, . . . , vn) so that each vertex vi is semi-simplicial in the graph Gi, for 1 ≤ i ≤ n. A graph is a
semi-simplicial graph if and only if it has a semi-perfect elimination ordering (see [4]).

Let σ = (v1, v2, . . . , vn) be an ordering of the vertices of a graph G; σ(i) is the i-th vertex in σ, i.e.,
σ(i) = vi, while σ−1(vi) denotes the position of vertex vi in σ, i.e., σ−1(vi) = i, 1 ≤ i ≤ n. In Figure 2,
we include the classic algorithm PEO(G, σ) for testing whether the ordering σ is a perfect elimination
ordering; if the graph G has n vertices and m edges, the algorithm runs in O(n + m) time and requires
O(n + m) space [5; 16]. Note that, in Step 4 of the Algorithm PEO(G, σ), the set X is assigned the
neighbors of the vertex u which have larger σ−1( )-values; that is, X = N(u) ∩ {σ(i + 1), . . . , σ(n)};
thus, in Step 6, the vertex w is the neighbor of u in G which is first met among the vertices to the right of
u along the ordering σ.
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3 Recognizing HH-free graphs
The most important ingredient (and the bottleneck too) of the HHD-free graph recognition algorithm of
Hoàng and Sritharan [9] is an algorithm to determine whether a simplicial vertex v of a graph G is high,
i.e., it is the top of a house or a building(i) (or belongs to a hole) in G, which involves the following steps:

. They compute an ordering of the set M(v) of non-neighbors of v in G where, for two vertices
y, y′ ∈ M(v), y precedes y′ whenever n(v, y) ≤ n(v, y′); recall that, for y ∈ M(v), n(v, y) is the
number of common neighbors of v and y. As we will be using this ordering in the description of
our approach, we call it a DegMN-ordering of M(v).

. They perform chordal completion on G[M(v)] with respect to a DegMN-ordering of M(v).

. The vertex v is high if and only if the graph G′
v resulting from G after the chordal completion on

G[M(v)] is triangulated.

As we mentioned in the introduction, the algorithm of Hoàng and Sritharan runs in O(n3) time, where
n is the number of vertices of the input graph. In order to be able to beat this, we need to avoid the chordal
completion step. Indeed, we show how we can take advantage of the Algorithm PEO and of properties
of the chordal completion in order to compute all necessary information without actually performing the
chordal completion. In particular, we prove that the following results hold:

Lemma 3.1 Let G be a graph, v a vertex of G, and (y1, y2, . . . , yk) a DegMN-ordering of the non-
neighbors M(v) of v in G. Moreover, let G′

v be the graph resulting from G after the chordal comple-
tion on G[M(v)] with respect to the DegMN-ordering (y1, y2, . . . , yk) and let σ = (y1, y2, . . . , yk, x1,
x2, . . . , xdeg(v), v) where x1, x2, . . . , xdeg(v) is an arbitrary ordering of the neighbors of v in G. If Algo-
rithm PEO(G′

v, σ) returns “false” while processing vertex yi ∈M(v), then A(yi)−N(yi) ⊆ N(v).

Proof: Since the Algorithm PEO returns “false” while processing vertex yi ∈ M(v), then A(yi) −
N(yi) 6= ∅. Suppose that there exists a vertex yj ∈M(v) belonging to A(yi)−N(yi). The vertex yj was
added to A(yi) at Step 7 of a prior iteration of the for-loop, say, while processing vertex y`. It follows that
σ−1(y`) < σ−1(yi) < σ−1(yj), and yi, yj ∈ N(y`). Since yj /∈ N(yi), we have that y` is not simplicial
in G′

v[{y`, y`+1, . . . , yk}]; a contradiction to the definition of G′
v . 2

Lemma 3.2 Let G′
v and σ be as in the statement of Lemma 3.1. The vertex v belongs to a C5 or is the

top of a house in the graph G′
v if and only if Algorithm PEO(G′

v, σ) returns “false” while processing
vertex z, where z ∈M(v).

Proof: (⇐=) The Algorithm PEO(G′
v, σ) returns “false” while processing vertex z only if at Step 8 there

exists a vertex x ∈ A(z)−N(z). From Lemma 3.1 we have that A(z)−N(z) ⊆ N(v); thus, x ∈ N(v).
The vertex x was added to A(z) at Step 7 of a prior iteration of the for-loop, say, while processing vertex y;
then, σ−1(y) < σ−1(z) < σ−1(x), and yz ∈ E(G′

v) and xy ∈ E(G′
v). Moreover, since z ∈ M(v) and

x /∈ N(z), we have that y ∈ M(v) and xz /∈ E(G′
v). Since σ−1(y) < σ−1(z), the definition of the

(i) A building is a graph on vertices v1, v2, . . . , vp, where p ≥ 6, and edges v1vp, v2vp, and vivi+1 for i = 1, 2, . . . , p− 1; the
vertex v1 is called the top of the building.
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DegMN-ordering implies that n(v, y) ≤ n(v, z); because xy ∈ E(G′
v) and xz /∈ E(G′

v), there exists a
vertex x′ ∈ N(v) such that x′z ∈ E(G′

v) and x′y /∈ E(G′
v). But then, the vertices v, x, x′, y, z induce

either a C5 or a house: if xx′ /∈ E(G′
v) then v belongs to a C5; otherwise, v is the top of a house.

(=⇒) Among the C5s of G′
v to which v belongs and the houses of G′

v with v as the top vertex, consider the
C5 or house whose vertices, say, y and z, that belong to M(v) are such that the quantity |σ−1(y)−σ−1(z)|
is minimized. Let x, x′ be the remaining two vertices of the C5 or house, where x, x′ ∈ N(v), xy ∈
E(G′

v), xz /∈ E(G′
v), x′z ∈ E(G′

v), and x′y /∈ E(G′
v), and suppose without loss of generality that

σ−1(y) < σ−1(z) (see Figure 4(a); the dotted edge indicates a potential edge of G).
Next, we show that z is the leftmost among the neighbors of y that are to the right of y (with respect to

σ) in G′
v . Suppose for contradiction that the leftmost among these neighbors is w 6= z. Then, σ−1(y) <

σ−1(w) < σ−1(z), and since yw ∈ E(G′
v) and yz ∈ E(G′

v), the definition of the graph G′
v implies

that wz ∈ E(G′
v). Additionally, if xw /∈ E(G′

v), then due to the ordering σ, n(v, y) ≤ n(v, w),
which (because xy ∈ E(G′

v)) implies that there exists a vertex p ∈ N(v) such that pw ∈ E(G′
v)

and py /∈ E(G′
v); but then, the vertices v, x, y, w, p induce a C5 or a house to which v belongs and

|σ−1(y)−σ−1(w)| < |σ−1(y)−σ−1(z)|, in contradiction to the minimality of the C5 or house induced by
v, x, y, z, x′. Thus, xw ∈ E(G′

v). Then, if x′w /∈ E(G′
v), the vertices v, x, w, z, x′ induce a C5 or a house

to which v belongs and |σ−1(w)−σ−1(z)| < |σ−1(y)−σ−1(z)|, in contradiction to the minimality of the
C5 or house induced by v, x, y, z, x′. If however x′w ∈ E(G′

v) then, because n(v, w) ≤ n(v, z) (since
σ−1(w) < σ−1(z)) and because xw ∈ E(G′

v) whereas xz /∈ E(G′
v), there exists a vertex q ∈ N(v) such

that qz ∈ E(G′
v) and qw /∈ E(G′

v); but then, the vertices v, x′, w, z, q induce a C5 or a house to which v
belongs and |σ−1(w)−σ−1(z)| < |σ−1(y)−σ−1(z)|, in contradiction again to the minimality of the C5

or house induced by v, x, y, z, x′. Therefore, w = z. Then, while processing vertex y, the Algorithm PEO
includes vertex x in X in Step 4 and later in Step 7 adds x in A(z); then, while processing vertex z, the
Algorithm PEO detects that A(z)−N(z) 6= ∅ since x /∈ N(z), and returns “false.” 2

Lemma 3.1 implies that, while running Algorithm PEO(G′
v, σ), it suffices to collect in the set X (Step 4)

only the common neighbors of u and v; in turn, Lemma 3.2 implies that it suffices to execute the for-loop
of Steps 2-8 only for the non-neighbors of v.

Additionally, since neither the graph G nor the ordering σ changes during the execution of the Algo-
rithm PEO, then, for each vertex u of G, we can precompute the corresponding vertex w (see Step 6).
In fact, in light of Lemma 3.2, we can precompute an array Next NeighborG′[M(v)],σv

[ ], such that
for each vertex u ∈ M(v), the entry Next NeighborG′[M(v)],σv

[u] is equal to the leftmost among the
neighbors of u that are to the right of u (with respect to a DegMN-ordering σv of the non-neighbors
M(v) of v in G) in the chordal completion G′[M(v)] of the subgraph G[M(v)]. Note that a ver-
tex u ∈ M(v) need not have any neighbors among the vertices that follow it in σv; in such a case,
the entry Next NeighborG′[M(v)],σv

[u] does not get assigned a value, yet, since the for-loop (Steps 2-8)
of Algorithm PEO will only be executed for the non-neighbors of v because of Lemma 3.2, we do not
need to update any set A( ).

Based on the above, we obtain the Algorithm Not-in-HHB, presented in Figure 3, which takes as input
a graph G and a vertex v of G, and returns “true” if and only if the vertex v does not belong to a hole, and
it is not the top of a house or a building in G. The correctness of Algorithm Not-in-HHB is established in
the following theorem.

Theorem 3.1 Algorithm Not-in-HHB(G, v) returns “false” if and only if the vertex v belongs to a hole
or is the top of a house or a building in G.
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Algorithm Not-in-HHB(G, v)

1. Compute a DegMN-ordering σv = (y1, y2, . . . , yk) of the non-neighbors of v in the graph G;
compute the array Next NeighborG′[M(v)],σv

[ ] for the chordal completion G′[M(v)] of the sub-
graph G[M(v)] with respect to the ordering σv;
for each non-neighbor u of v do

A(u)← ∅;

2. for i← 1 to k do

3. u← σv(i);

4. X ← N(u) ∩ N(v); {note: ∀x ∈ X , u precedes x in the ordering σv}

5. if X 6= ∅ and the entry Next NeighborG′[M(v)],σv
[u] has been assigned a value

6. then w ← Next NeighborG′[M(v)],σv
[u]; {note: w ∈M(v)}

7. concatenate X to A(w); {note: w /∈ X}

8. if A(u)−N(u) 6= ∅ then return(“false”);

9. return(“true”);

Fig. 3: The algorithm for determining whether a vertex v belongs to a hole or is the top of a house or a building.

Proof: (=⇒) Suppose that the algorithm returns “false” while processing vertex z ∈ M(v) (i.e, when
i = σ−1

v (z)). This happens only if at Step 8 of the current iteration of the for-loop there exists a vertex
x ∈ A(z) −N(z). Then, from Lemma 3.2, we have that A(z) −N(z) ⊆ N(v), which implies that x ∈
N(v) and xz /∈ E(G). The vertex x was added to A(z) at Step 7 of a prior iteration, say, while processing
vertex y; thus, xy ∈ E(G) and z = Next NeighborG′[M(v)],σv

[y] which implies that σ−1
v (y) < σ−1

v (z)
(and thus y ∈ M(v)), and yz ∈ E(G′[M(v)]). As in the proof of Lemma 3.2, we can show that there
exists a vertex x′ of G such that x′ ∈ N(v), x′z ∈ E(G), and x′y /∈ E(G) (see Figure 4(a), where the
dotted edge indicates a potential edge of G). For the vertices y, z (which are adjacent in G′[M(v)]), we
distinguish two cases:

yz ∈ E(G). Then, if xx′ /∈ E(G), the vertex set {v, x, y, z, x′} induces a hole (in fact, a C5), otherwise
it induces a house with vertex v at the top.

yz /∈ E(G). Then, because z = Next NeighborG′[M(v)],σv
[y] (i.e., the vertices y, z are adjacent in the

chordal completion G′[M(v)]), Lemma 2 of [9] implies that the graph G has an induced path on
at least three vertices connecting y and z all of whose vertices are in M(v) and such that for each
vertex w of the path other than y, z, it holds that N(w) ∩ N(v) ⊆ N(y) ∩ N(v). Let a1a2 · · · aq

be a chordless such path where a1 = y, aq = z, and q ≥ 3; then, ai ∈M(v) and N(ai) ∩N(v) ⊆
N(y) ∩ N(v), for all 1 < i < q (see Figure 4(b), where the dashed edge indicates an edge in
E(G′[M(v)])− E(G)). Since x′ /∈ N(y), this implies that x′ /∈ N(ai) for all i = 1, 2, . . . , q − 1.
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Fig. 4::

Let p = max{i | x ∈ N(ai)}; p is well defined since x ∈ N(a1), and p < q since x /∈ N(aq)
—recall that a1 = y, aq = z, xy ∈ E(G), and xz /∈ E(G). Then, the vertices ap+1, . . . , aq−1 are
not adjacent to x or x′, so that if xx′ /∈ E(G), the vertices v, x, ap, . . . , aq−1, z, x′ induce a hole in
G, whereas if xx′ ∈ E(G) they induce a house or a building with v at its top.

In both cases, the vertex v belongs to a hole or is the top of a house or a building in the graph G.

(⇐=) Suppose that the vertex v belongs to a hole or is the top of a house or a building in G. If v
belongs to a C5 or is the top of a house, let v, x, y, z, x′ be the vertices inducing the C5 or house (x, x′ ∈
N(v), y, z ∈ M(v), xy ∈ E(G), and x′z ∈ E(G)); if v belongs to a hole on more than 5 vertices
or is the top of a building, we consider such a hole or building on the fewest vertices, and let them
be v, x, y, a1, . . . , ap, z, x′ (x, x′ ∈ N(v), y, a1, . . . , ap, z ∈ M(v), xy ∈ E(G), and x′z ∈ E(G)).
Moreover, suppose without loss of generality that in either case σ−1

v (y) < σ−1
v (z). In case v belongs to a

hole on ≥ 6 vertices or is the top of a building, we can show that all the ais precede both y and z in the
ordering σv: if any ai appears between y and z, then the definition of the DegMN-ordering σv implies that
there exists vertex x′′ ∈ N(v) such that x′′ ∈ N(ai) −N(y) (recall that xy ∈ E(G) and xai /∈ E(G));
then the vertices v, x, y, a1, . . . , ai, x

′′ induce a hole or a building on fewer vertices. Then, this property
of the ais and Lemma 3.3 imply that yz ∈ E(G′[M(v)]).

From the above, we conclude that, in any case, the vertices y, z are adjacent in G′[M(v)]; then,
we show that there exists a sequence y=b1, b2, . . . , bq=z of non-neighbors of v in G such that bi =
Next NeighborG′[M(v)],σv

[bi−1] for 2 ≤ i ≤ q (note that bi = Next NeighborG′[M(v)],σv
[bi−1] im-

plies that σ−1
v (bi−1) < σ−1

v (bi) and bi−1bi ∈ E(G′[M(v)])). The existence of such a sequence is shown
as follows: if z = Next NeighborG′[M(v)],σv

[y], then the sequence is precisely y, z; otherwise, if b2 =
Next NeighborG′[M(v)],σv

[y], then yb2 ∈ E(G′[M(v)]) which from the fact that yz ∈ E(G′[M(v)])
and from the definition of G′[M(v)] implies that b2z ∈ E(G′[M(v)]); next, we repeat the above ar-
gument for b2 in the place of y, and so on so forth; since there is a finite number of vertices between
y and z in σv , eventually, we will find a vertex bq−1 such that z = Next NeighborG′[M(v)],σv

[bq−1].
Let r = max{i | x ∈ N(bi)}; r is well defined since x ∈ N(b1), and r < q since x /∈ N(bq) —
recall that b1 = y and xy ∈ E(G), and bq = z and xz /∈ E(G). Since x ∈ N(br) and br+1 =
Next NeighborG′[M(v)],σv

[br], the processing of vertex br will result in the addition of vertex x in the
set A(br+1); then, the Algorithm Not-in-HHB will return “false” when it processes vertex br+1, because
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Algorithm Recognize-HH-free

1. for each vertex v of the input graph G do
if Algorithm Not-in-HHB(G, v) returns “false”
then return(“the graph is not HH-free”); {G contains a house or a hole}

2. return(“the graph is HH-free”);

Fig. 5: The algorithm for determining whether a graph G is HH-free.

x /∈ N(br+1), if not earlier. 2

In light of Theorem 3.1 and by observing that a building contains a hole, we obtain the very simple
HH-free graph recognition algorithm that is given in Figure 5.

3.1 Computation of the values of Next NeighborG′[S],σ[ ].
Let G be a graph, S a subset of the vertex set of G, σ an ordering of the vertices in S, and let G′[S]
be the chordal completion of the subgraph G[S] with respect to σ. For each vertex x ∈ S, we want to
determine the leftmost among the neighbors of x that are to the right of x (w.r.t. σ) in G′[S]. In order to
avoid computing the graph G′[S], we take advantage of the following property of the chordal completion:

Lemma 3.3 Let G be a graph, let (v1, v2, . . . , vk) be an ordering of a vertex set S ⊆ V (G), and let
G′ be the graph resulting from the subgraph G[S] after we had applied chordal completion on it with
respect to the ordering of the vertices in S (i.e., after having added edges so that, for all i = 1, 2, . . . , k,
vertex vi is simplicial in the subgraph induced by the vertices vi, vi+1, . . . , vk). Then, the graph G′

contains the edge vrvj , where r < j, if and only if there exists an edge vivj in G such that i ≤ r and
the vertices vi, vr belong to the same connected component of the subgraph of G induced by the vertices
v1, v2, . . . , vi, . . . , vr.

Proof: (=⇒) Suppose that vrvj ∈ E(G′). We will show the following:

Proposition. If vrvj ∈ E(G′), then there exists a vertex vi, where i ≤ r, such that vivj

is an edge of G and the vertices vi, vr belong to the same connected component of the sub-
graph G[{v1, v2, . . . , vi, . . . , vr}].

We use induction on r.

Basis: r = 1. Then, since v1vj ∈ E(G′), it can only be that v1vj ∈ E(G) and the proposition holds with
vi being v1.

Inductive hypothesis: Suppose that the proposition holds for all r < r̂, where r̂ ≥ 2.

Inductive step: We show that the proposition holds for r = r̂.

Hence, suppose that vr̂vj ∈ E(G′). If vr̂vj is an edge of G, then the proposition clearly holds with
vi being vr̂. Otherwise, the edge vr̂vj must have been added while making a vertex vt simplicial;
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then, t < r̂ < j and vtvr̂, vtvj ∈ E(G′). Since vtvr̂ ∈ E(G′) and t < r̂, then by the inductive
hypothesis, there exists a vertex vp, where p ≤ t < r̂, such that vpvr̂ is an edge of G and vp, vt

belong to the same connected component of G[{v1, v2, . . . , vt}]. Similarly, by the inductive hy-
pothesis for the edge vtvj of G′, there exists a vertex vq, where q ≤ t < j, such that vqvj is an edge
of G and vq, vt belong to the same connected component of G[{v1, v2, . . . , vt}]. Therefore, the
vertices vp, vq belong to the same connected component of G[{v1, v2, . . . , vt}]. Then, the existence
of the edge vpvr̂ in G and the fact that p ≤ t < r̂ imply that vp, vr̂ belong to the same connected
component of G[{v1, v2, . . . , vr̂}]; moreover, since vpvj is an edge of G and p ≤ t < r̂ < j, the
proposition holds with vi being vp.

The induction then implies that the proposition holds for all edges vrvj ∈ E(G′), where r < j.

(⇐=) Suppose now that for vertices vr, vj of G, where r < j, there exists a vertex vi, where i ≤ r,
such that vivj is an edge of G and the vertices vi, vr belong to the same connected component of the
subgraph G[{v1, v2, . . . , vr}]. We will show that vrvj ∈ E(G′).
If vrvj ∈ E(G), then clearly vrvj ∈ E(G′). Suppose now that vrvj /∈ E(G). Since the vertices vi, vr be-
long to the same connected component of G[{v1, v2, . . . , vr}], there exists a simple path vrvp1vp2 · · · vp`

vi

from vr to vi in G[{v1, v2, . . . , vr}]; then, clearly, pt < r for all t = 1, 2, . . . , `. Since vivj is an edge of G,
then vrvp1vp2 · · · vp`

vivj is a simple path from vr to vj in G, and hence in G′. For ease of notation, let us
set vp0 = vr, vp`+1 = vi, and vp`+2 = vj , so that the path from vr to vj becomes vp0vp1vp2 · · · vp`+1vp`+2 .
Let ps be the minimum among p1, p2, . . . p`+1, i.e., vps is the leftmost (with respect to σ) vertex among
vp1 , vp2 , . . . vp`+1 ; then, since for all t = 1, 2, . . . , ` + 1 it holds that pt < r < j, we have that ps < ps−1

and ps < ps+1. The definition of the graph G′ implies that vps is simplicial in G′[{vps , vps+1, . . . , vk}];
since vps is adjacent in G′ to vps−1 and to vps+1 , G′ contains the edge vps−1vps+1 . Thus, vp0vp1 · · · vps−1

vps+1 · · · vp`+2 is a simple path in G′ from vr to vj , i.e., we obtained a path in G′ from vr to vj where the
leftmost vertex vps has been removed. The process of removing the leftmost (w.r.t. σ) vertex among the
vertices of the path can be repeated over and over, and in each case we obtain a shorter simple path in G′

from vr to vj . Since pt < r < j for all t = 1, 2, . . . , ` + 1, eventually all the vertices vp1 , vp2 , . . . , vp`+1

will be removed and we will have that vp0vp`+2 = vrvj is a path (= edge) in G′, as desired. 2

We note that the above lemma implies Lemma 2 of [9] as a corollary. Lemma 3.3 implies that for the
computation of the value Next NeighborG′[S],σ[vr], where σ = (v1, v2, . . . , vk), it suffices to find the
leftmost (w.r.t. σ) vertex among vr+1, vr+2, . . . , vk which is adjacent in G to a vertex in the connected
component of G[{v1, v2, . . . , vr}] to which vr belongs. This can be efficiently done by processing the
vertices v1, v2, . . . , vk in order from v1 to vk. In detail, the algorithm to compute the contents of the
array Next NeighborG′[S],σ[ ] is presented in Figure 6; note that if a vertex vi ∈ S has no neighbors in
G′[{vi, . . . , vk}], then the entry Next NeighborG′[S],σ[vi] is not assigned a value.

It is important to observe the following:

Observation 3.1 At the completion of the processing of vertex vj in Algorithm Compute-Next Neighbor,
the sets of vertices maintained by the algorithm are in a bijection with the connected components of
G[{v1, v2, . . . , vj}];
The observation follows from the fact that while processing vj , we consider the edges vivj where i < j,
and we union the set containing vj (which has vertex vj as its rightmost vertex with respect to σ) to
another set iff vj is adjacent to a vertex in that set. The correctness of Algorithm Compute-Next Neighbor
is established in the following lemma.
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Algorithm Compute-Next Neighbor(G, S, σ)

1. {let σ = (v1, v2, . . . , vk) be the given ordering of the vertices in S}
make a set containing the vertex v1;

2. for j = 2, 3, . . . , k do
3. make a set containing the vertex vj ;

4. for each edge vivj of G, where i < j, do
5. vr ← the rightmost (w.r.t. σ) vertex in the set to which vi belongs;

6. if vr 6= vj

7. then {vi and vj belong to different sets}
8. Next NeighborG′[S],σ[vr]← vj ;

9. union the sets to which vi and vj belong;

Fig. 6: The algorithm for computing the contents of the array Next NeighborG′[S],σ[ ].

Lemma 3.4 The Algorithm Compute-Next Neighbor correctly computes the values of the entries Next Ne-
ighborG′[S],σ[vi] for all the vertices vi ∈ S.

Proof: First, we show that, for a vertex vr ∈ S, the Algorithm Compute-Next Neighbor assigns a value
to the entry Next NeighborG′[S],σ[vr] if and only if the vertex vr is adjacent in the graph G′[S] to a
vertex in {vr+1, vr+2, . . . , vk}.

The entry Next NeighborG′[S],σ[vr] is assigned a value if, during the processing of a vertex vj , where
j > r, there exists an edge in G connecting vj to a vertex vi, and vr is the rightmost (w.r.t. σ) vertex
among the vertices in the set containing vi (Step 5 of Algorithm Compute-Next Neighbor). Since the
vertices vi and vr belong to the same set, which corresponds to the same connected component of the
subgraph G[{v1, v2, . . . , vj−1}] (Observation 3.1), and since vr is the rightmost vertex in the set, then
vi, vr belong to the same connected component of G[{v1, v2, . . . , vr}]. Due to this and due to the fact that
vrvj ∈ E(G), where r < j, Lemma 3.3 implies that the chordal completion G′[S] of the subgraph G[S]
of G induced by the elements of S contains the edge vrvj .

Suppose now that a vertex vi is adjacent in G′[S] to a vertex in {vi+1, vi+2, . . . , vk}; we show that
the Algorithm Compute-Next Neighbor assigns a value to the entry Next NeighborG′[S],σ[vi]. Let vs

be the leftmost (w.r.t. σ) vertex among the vertices in {vi+1, vi+2, . . . , vk} which are adjacent in G to a
vertex in the connected component of G[{v1, v2, . . . , vi}] to which vi belongs. We show that right before
processing vs, the rightmost (w.r.t. σ) vertex in the set to which vi belongs is precisely vi. Suppose for
contradiction that this is not the case and let vs′ be the rightmost vertex, where s′ > i. Then, there exists a
simple path in G from vi to vs′ ; let it be vp0vp1vp2 · · · vph

, where vp0 = vi and vph
= vs′ . Clearly, pt < s′

for all t = 1, 2, . . . , h− 1. Let t̂ = min{ t ∈ {1, 2, . . . , h} | pt > i }; t̂ is well defined since ph = s′ > i.
Then, vpt̂

vpt̂−1
∈ E(G) and since vp0vp1 · · · vpt̂−1

is a path in G and pt ≤ i for all t = 0, 1, . . . , t̂ − 1,
the vertices vpt̂−1

and vi belong to the same connected component of G[{v1, v2, . . . , vi}]; however, these
facts come to a contradiction with the definition of vs, because i < pt̂ < s. Therefore, right before
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processing vertex vs, vi indeed is the rightmost (w.r.t. σ) vertex in the set to which it belongs, and thus the
entry Next NeighborG′[S],σ[vi] will be assigned a value (it will be set equal to vs during the processing
of vertex vs).

The proof will be complete if we show that, whenever the Algorithm Compute-Next Neighbor assigns
a value to an entry Next NeighborG′[S],σ[vr], it assigns the correct value. Observe that whenever the
algorithm executes an assignment Next NeighborG′[S],σ[vr] ← vj , then r < j and there exists an
edge vivj in G such that i < j and the vertices vi, vj belong to the same connected component of
the subgraph G[{v1, v2, . . . , vr}]. Then, Lemma 3.3 implies that the chordal completion G′[S] of the
subgraph G[S] of G induced by the elements of S contains the edge vrvj . We need to show that vr

is not adjacent in the chordal completion of G[S] to any vertex vt, where r < t < j. Suppose for
contradiction that there existed such a vertex vt. Then, by Lemma 3.3, there exists a vertex vs such that
s < r, vsvt ∈ E(G), and vs, vr belong to the same connected component of G[{v1, v2, . . . , vr}]. But
then, while processing the vertex vt, vt will be included in the set containing vr, in contradiction to the
fact that, while processing vj (which is done after processing vt since t < j), the rightmost (w.r.t. σ)
vertex in the set containing vr is precisely vr; recall that r < t. Therefore, all the assignments to the
entries of the array Next NeighborG′[S],σ[ ] are correct. 2

Time and Space Complexity. Let m be the number of edges of the graph G; recall also that |S| = k.
If we ignore the operations to process sets (i.e., make a set, union sets, or find the rightmost (w.r.t. σ)
vertex in a set) while running Algorithm Compute-Next Neighbor(G, S, σ), then the rest of the execution
of the algorithm takes O(k + m) time. The sets are maintained by our algorithm in a fashion amenable
for Union-Find operations, where additionally the representative of each set also carries a link to the node
storing the rightmost (w.r.t. σ) vertex in the set. Then,

• making a set which contains a single vertex vi requires building the set and setting the rightmost
(w.r.t. σ) vertex in the set to vi;

• finding the rightmost (w.r.t. σ) vertex in the set, say, A, to which a vertex vj belongs, requires
performing a Find operation to locate the representative of the set A, from which the rightmost
vertex is obtained in constant time;

• unioning two sets requires constructing a single set out of the elements of the two sets, and updating
the rightmost (w.r.t. σ) vertex information; since we always union a set with the set containing vj ,
where vj is the rightmost vertex in any of the sets, then the rightmost vertex of the resulting set is
vj , and this assignment can be done in constant time per union.

As the Algorithm Compute-Next Neighbor creates one set for each one of the vertices v1, v2, . . . , vk, it
executes k make-set operations; this also implies that the number of union operations is less than k. The
number of times to find the rightmost (w.r.t. σ) vertex in a set is O(m), since the algorithm executes one
such operation for each edge of the subgraph G[S]. The sets may be represented as disjoint-set forests, in
which case, the time to execute p make-set, find, and union operations involving q elements is O(p α(p, q))
[17], where α( , ) denotes the very slowly growing functional inverse of Ackerman’s function; since
Algorithm Compute-Next Neighbor performs p operations, where k ≤ p = O(k + m), on k elements,
and the function α(p, q) decreases as the ratio p/q increases, the use of disjoint-set forests implies a time
complexity of O(m α(k, k)). Alternatively, the sets may be represented by linked lists, and the time to
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execute p make-set, find, and union operations involving q elements is O(p+q log q) [3]; thus, in this case,
the time complexity is O(m + k log k). In either case, the space required (in addition to the space needed
to store the graph G) is O(k). Thus, the computation of the values of the array Next NeighborG′[S],σ[ ]
for the k elements of the set S takes a total of O(min{(k + m) α(k, k), m + k log k}) time and O(k)
space. Therefore, we have:

Lemma 3.5 Let G be a graph on m edges, S a subset of vertices of G, and σ an ordering of the elements
of S. Algorithm Compute-Next Neighbor(G, S, σ) correctly computes the values of the entries of the
array Next NeighborG′[S],σ[ ] in O(min{(k + m) α(k, k), m + k log k}) time and O(k) space, where
k is the cardinality of the set S.

3.2 Complexity of the Algorithm Recognize-HH-free
Let us assume that the graph G has n vertices and m edges and that vertex v of G has k non-neighbors
in G. It is not difficult to see that the execution of the Algorithm Not-in-HHB(G, v) for vertex v takes
O(n + m) time and space plus the time and space needed for the computation of the entries of the ar-
ray Next NeighborG′[M(v)],σv

[ ]. For the latter computation, we run Algorithm Compute-Next Neighbor
on G, M(v), and σv , which takes O(min{(k+m) α(k, k), m+k log k}) = O(min{(n+m) α(n, n), m+
n log n}) time and O(k) = O(n) space (Lemma 3.5); note that the function α(i, i) increases as i in-
creases (see definition in [17]). Therefore, Algorithm Not-in-HHB(G, v) takes O(n + m + min{(n +
m) α(n, n), m + n log n}) = O(min{(n + m) α(n, n), m + n log n}) and O(n + m) space. Hence, we
have:

Theorem 3.2 Let G be a graph on n vertices and m edges. Algorithm Not-in-HHB determines whether
a vertex v of G belongs to a hole or is the top of a house or a building in O(min{(n + m) α(n, n),
m + n log n}) time and O(n + m) space.

The Algorithm Recognize-HH-free consists of applying the Algorithm Non-in-HHB on every vertex
of the input graph G. If G is connected, then n = O(m) and processing all the vertices of G takes
O(

∑
v min{m α(n, n), m+n log n}) time and O(n+m) space. If G is not connected, then we compute

its connected components [3] and work on each of them separately (note that a hole and a house are
both connected); clearly, the subgraph of G induced by each such component is connected and has O(n)
vertices and O(m) edges. Then, the computation of the components and the processing of all the vertices
of G takes O(n+m+

∑
v min{m α(n, n), m+n log n}) total time and O(n+m) space. Summarizing,

we obtain the following corollary:

Corollary 3.1 Algorithm Recognize-HH-free determines whether a graph G on n vertices and m edges
contains a hole or a house (i.e., is not HH-free) in O(n min{m α(n, n), m+n log n}) time and O(n+m)
space.

3.3 Providing a Certificate
The Algorithm Recognize-HH-free can be made to provide a certificate (a hole or a house) whenever it
decides that the input graph G is not HH-free. In particular, we augment the Algorithm Not-in-HHB(G, v)
(5) as follows:

◦ When processing vertex u, we add a reference to u to each element of the set X formed in Step 4, so
that for each vertex w, each element of the set A(w) carries a reference to the vertex during whose
processing this element was added to A(w) (see Step 7).
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Our approach follows the proof of Theorem 3.1. The Algorithm Recognize-HH-free answers that the
graph G is not HH-free when a call to Algorithm Not-in-HHB(G, v) for a vertex v returns “false,” i.e.,
when in Step 8 the difference A(u)−N(u) is non-empty for a non-neighbor u of v in G. Let x ∈ N(v) be
an element in A(u)−N(u); the vertex x is associated with a vertex y ∈ M(v) during whose processing
vertex x was added to A(u) (then, clearly, u = Next NeighborG′[M(v)],σv

[y]).(ii). Then, we can obtain a
hole or a house of G by doing the following:

1. We traverse the neighbors of vertex u and find a vertex x′ which is adjacent to v and not adjacent
to y; such a vertex always exists since n(v, y) ≤ n(v, u) (note that y precedes u in the DegMN-
ordering σv) and x ∈ N(y) ∩N(v) whereas x /∈ N(u) ∩N(v).

2. We consider the subgraph of G induced by u, y and the vertices preceding y in σv , and we apply
BFS on it starting at y until u is reached (note that u will be eventually reached, because u =
Next NeighborG′[M(v)],σv

[y], and thus y and u belong to the same connected component of the
subgraph of G induced by u, y and the vertices preceding u in σv; see Lemma 3.3); let a1a2 · · · aq,
where a1 = y and aq = u, be the path in the BFS-tree from y to u, which is thus chordless.
Moreover, {a1, a2, . . . , aq−1} ∩ N(x′) = ∅ (otherwise, the algorithm would have exited while
processing a vertex preceding u; see proof of Theorem 3.1).

3. We compute p = max{ i | x ∈ N(ai) }. Then, if xx′ /∈ E(G), the vertices v, x, ap, . . . , aq−1, u, x′

induce a hole in G; if xx′ ∈ E(G), the vertices v, x, ap, u, x′ induce a house in G if p = q − 1,
whereas if p ≤ q − 2, the vertices x, ap, . . . , aq−1, u, x′ induce a hole.

The correctness of the computation follows from the proof of Theorem 3.1. Regarding the time and space
complexity, we first note that the augmentation of the Algorithm Not-in-HHB does not asymptotically
increase the time and space complexity of the Algorithm Recognize-HH-free. In turn, if we assume that
we have an adjacency-list representation of the input graph G and that we use two auxiliary arrays (of
size n) to mark the neighbors of v and of y, it is not difficult to see that all three steps of the certificate
computation take O(n + m) time and O(n) space, where n, m are the numbers of vertices and edges of
G, respectively. Therefore, we have:

Theorem 3.3 The Algorithm Recognize-HH-free can be easily augmented to provide a certificate when-
ever it decides that the input graph G is not HH-free; if G has n vertices and m edges, the certificate
computation takes O(n + m) time and O(n) space.

4 Recognition of HHD-free and WPO-Graphs
In this section, we present two applications of the ideas and of the algorithm for recognizing HH-free
graphs. In particular, we show how to use the HH-free graph recognition algorithm in order to recognize
HHD-free graphs within the same time and space complexity, and how the ideas can be used to determine
if the complement of a given graph is HH-free so that we can recognize WPO-graphs.

(ii) It must be noted that vertex x may have been added in A(u) more than once by different vertices; yet, x and any of these
vertices suffice for our purposes.
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Algorithm Recognize-HHD-free

1. if the input graph G is not HH-free
then return(“the graph is not HHD-free”);

2. Run LexBFS on G starting at an arbitrary vertex w, and let (v1, v2, . . . , vn) be the resulting ordering,
where vn = w.

3. for i = 1, 2, . . . , n− 5 do
if vi is not semi-simplicial in G[{vi, vi+1, . . . , vn}]
then return(“the graph is not HHD-free”);

4. return(“the graph is HHD-free”).

Fig. 7: The algorithm for determining whether a graph G is HHD-free.

4.1 HHD-free Graphs
Our HHD-free graph recognition algorithm is motivated by the corresponding algorithm of Hoàng and
Sritharan [9], which in turn is motivated by the work of Hoàng and Khouzam [8] and relies on the follow-
ing characterization of HHD-free graphs proved by Jamison and Olariu:

Theorem 4.1 (Jamison and Olariu [10]) The following two statements are equivalent:

(i) The graph G is HHD-free;

(ii) For every induced subgraph H of the graph G, every ordering of vertices of H produced by LexBFS
is a semi-perfect elimination.

In fact, we could use the Algorithm Not-in-HHB(G, v) in Hoàng and Sritharan’s HHD-free graph recog-
nition algorithm in order to determine if vertex v is high, and we would achieve the improved time and
space complexities stated in this paper. However, we can get the much simpler algorithm which we give
in Figure 7.

Note that, after step 1, we need only check whether the input graph G contains a domino; this is why,
we only process the n− 5 vertices v1, v2, . . . , vn−5 in step 3. Additionally, it is important to observe that,
for all i = 1, 2, . . . , n, the ordering (vi, vi+1, . . . , vn) is an ordering which can be produced by running
LexBFS on the subgraph G[{vi, vi+1, . . . , vn}] starting at vertex vn. The correctness of the algorithm
follows from Theorem 4.1 and the fact that if the currently processed vertex vi in step 3 is semi-simplicial
then clearly it cannot participate in a domino (note that none of the vertices of a domino is semi-simplicial
in any graph containing the domino as induced subgraph).

Time and Space Complexity. Let n and m be the number of vertices and edges of the input graph G.
According to Corollary 3.1, step 1 takes O(n min{m α(n, n), m + n log n}) time and O(n + m) space.
step 2 takes O(n + m) time and space [5; 16]. The construction of the subgraphs G[{vi, vi+1, . . . , vn}]
in step 3 can be done in a systematic fashion by observing that G[{v1, v2, . . . , vn}] = G and that
G[{vi+1, vi+2, . . . , vn}] can be obtained from G[{vi, vi+1, . . . , vn}] by removing vertex vi and all its
incident edges; if the graph G is stored using a (doubly-connected) adjacency-list representation with
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pointers for every edge ab connecting the record storing b in the adjacency list of a to the record storing
a in the adjacency list of b and back, then obtaining G[{vi+1, vi+2, . . . , vn}] from G[{vi, vi+1, . . . , vn}]
takes time proportional to the degree of vi in G[{vi, vi+1, . . . , vn}] and hence O(deg(vi)) time, where
deg(vi) denotes the degree of vertex vi in G. Additionally, in order to check whether a vertex is semi-
simplicial, we take advantage of the following result of Hoàng and Khouzam (which was also used in
[9]):

Theorem 4.2 (Hoàng and Khouzam [8]) Let G be a graph and x be a semi-simplicial vertex of G. If x is
not simplicial, then each big co-component of the subgraph G[N(x)] is a module of G.

(A connected component or co-component of a graph is called big if it has at least two vertices; we also
note that if a vertex x is simplicial then none of the co-components of the subgraph G[N(x)] is big.) Since
computing the subgraph induced by the neighbors of vertex vi in G[{vi, vi+1, . . . , vn}], computing its co-
components, and testing whether a vertex set is a module in G[{vi, vi+1, . . . , vn}] can all be done in time
and space linear in the size of G[{vi, vi+1, . . . , vn}], step 3 takes a total of O

(∑
i

(
n+m+deg(vi)

))
=

O(n m) time and O(n+m) space. Finally, step 4 takes constant time. Therefore, we obtain the following
theorem.

Theorem 4.3 Let G be an undirected graph on n vertices and m edges. Then, Algorithm Recognize-
HHD-free determines whether G is an HHD-free graph in O(n min{m α(n, n), m + n log n}) time and
O(n + m) space.

4.2 Welsh-Powell Opposition Graphs
Our algorithm for recognizing WPO-graphs relies on the fact that a graph G is a WPO-graph if and only
if G is HHP-free and its complement G is HH-free, which follows from the following characterization
due to Olariu and Randall [15]:

Theorem 4.4 (Olariu and Randall [15]) A graph G is a WPO-graph if and only if G contains no induced
C5, P5, house, or “P”.

Eschen et al. [4] described an O(n m)-time algorithm for recognizing whether a graph G on n vertices
and m edges is HHP-free by using the modular decomposition tree of G and Theorem 4.2 due to Hoàng
and Khouzam [8]. We next show that we can detect whether the complement G of G contains a hole
or a house in O(n m) time. Combining these two algorithms, we get an O(n m)-time algorithm for
recognizing WPO-graphs.

The obvious approach of running Algorithm Recognize-HH-free on the complement G of G, in order
to check whether G contains a hole or a house, proves to be expensive. Thus, instead, we process the
vertices of G in turn; for each vertex v, we consider a (different) auxiliary graph Ĝv as follows:

◦ V (Ĝv) = V (G)

◦ E(Ĝv) = { vy | y ∈M(v) }
∪ {xy | x ∈ N(v), y ∈M(v), and xy /∈ E(G) }
∪ {xx′ | x, x′ ∈ N(v) and xx′ /∈ E(G) }
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Note that in G the neighbors of v are the non-neighbors M(v) of v in G, and its non-neighbors are the
neighbors N(v) of v in G. Thus, the graph Ĝv is precisely G without any edges between neighbors of v.
This implies that:

(i) v cannot be the top of a house or a building in Ĝv , and

(ii) if v is the top of a house or a building in G, then it belongs to a hole in Ĝv .

Then, in order to check whether vertex v belongs to a hole or is the top of a house or a building in G,
it suffices to execute Algorithm Not-in-HHB(Ĝv, v), and answer “true” if and only if Algorithm Not-in-
HHB(Ĝv, v) returns “false.” Thus, we have the following result.

Lemma 4.1 The vertex v belongs to a hole or is the top of a house or a building in G if and only if
Algorithm Not-in-HHB(Ĝv, v) returns “false.”

Lemma 4.1 and the complexity of Algorithm Not-in-HHB implies the following theorem.

Theorem 4.5 Let G be an undirected graph on n vertices and m edges. Then, the algorithm that we
described in this section determines whether the complement G is an HH-free graph in O(n m) time and
O(n2) space.

Proof: It suffices to establish the theorem for a connected graph G. If G is not connected, then, be-
cause the complement of a house and the complement of a hole are both connected, we work with the
connected components of G, which can be computed in O(n + m) time and space [3]. Thus, suppose
that G is connected; then, n = O(m). In order to facilitate the construction of the auxiliary graphs, we
compute and store the adjacency matrix of G, which takes O(n2) time and space. Then, for any ver-
tex v of G, the graph Ĝv has n vertices and O(n + n deg(v) + deg2(v)) = O(n deg(v)) edges, where
deg(v) is the degree of v in G. We can easily obtain an adjacency-list representation of Ĝv by computing
the sets N(v) of neighbors and M(v) of non-neighbors of v in G, and by taking advantage of the adja-
cency matrix of G; the computation of the sets N(v) and M(v) takes O(n + m) time and O(n) space,
while the construction of the adjacency lists of Ĝv is completed in O(m + n deg(v)) additional time
and O(n deg(v)) space for a total of O(m + n deg(v)) time and O(n deg(v)) space. The execution of
Algorithm Not-in-HHB(Ĝv, v) takes O(min{(n + n deg(v))α(n, n), n deg(v) + deg(v) log deg(v)}) =
O(n deg(v) + deg(v) log deg(v)) = O(n deg(v)) time (Theorem 3.2; note that k = deg(v)). Thus, we
can determine whether the vertex v belongs to a hole in Ĝv in O(m + n deg(v)) time and O(n deg(v))
space. Then, the total time required, i.e., the time required for the computation of the adjacency matrix of
G and the processing of all the vertices, is

O
(
n2 +

∑
v

(m + n deg(v))
)

= O
(
n m + n

∑
v

deg(v)
)

= O(n m).

The space complexity is O(n2) since the space taken by each auxiliary graph Ĝv can be reused after the
processing of v. 2

From Theorem 4.5 and the result of Eschen et al. [4] (i.e., HHP-free graphs can be recognized in O(n m)
time and O(n + m) space), we obtain the following theorem.

Theorem 4.6 Let G be an undirected graph on n vertices and m edges. Then, it can be determined
whether G is a WPO-graph in O(n m) time and O(n2) space.
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5 Concluding Remarks
We have presented recognition algorithms for the classes of HH-free and HHD-free graphs running in
O(n min{m α(n, n), m + n log n}) time, and for WPO-graphs running in O(n m) time, where n is the
number of vertices and m is the number of edges of the input graph. Our proposed algorithms are simple
and require O(n+m) and O(n2) space, respectively. Moreover, our HH-free graph recognition algorithm
can be easily augmented to yield a certificate (a hole or a house) whenever it decides that the input graph
is not HH-free.

We leave as an open problem the designing of O(n m)-time algorithms for recognizing HH-free and
HHD-free graphs; note that an O(n m)-time algorithm for recognizing HH-free graphs directly implies
an O(n m)-time recognition algorithm for HHD-free graphs. Additionally, in light of the O(n m)-time
recognition of P4-comparability, P4-simplicial, bipolarizable, and WPO-graphs, it would be worth inves-
tigating whether the recognition of brittle and semi-simplicial graphs is inherently more difficult.
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