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In this paper we study a semi on-line version of the classical multiprocessor scheduling problem on two identical
processors. We assume that the sum of the tasks and an upper bound γ on the size of each task are known. Each task
has to be assigned upon arrival and the assignment cannot be changed later. The objective is the minimization of the
maximum completion time on the processors. In this paper we propose new algorithms and improve known lower
and upper bounds on the competitive ratio. Algorithms and bounds depend on the value of γ. An optimal algorithm,
with respect to the competitive ratio, is obtained for γ ∈ [ 1

n
, 2(n+1)

n(2n+1)
] ∪{ 2n−1

2n(n−1)
}, where n is any integer value,

n ≥ 2.

Keywords: semi on-line scheduling, parallel processors, competitive analysis

1 Introduction
1.1 Description of the problem
In this paper we study semi on-line scheduling on two identical processors, where the sum of the tasks
(normalized to 2, without loss of generality) and an upper bound γ on the size of the tasks are known in
advance. Tasks arrive one at a time and must be immediately assigned to a processor. No changes are
permitted on previous decisions. The objective is to minimize the makespan.
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Fig. 1: Previous bounds for γ ∈ [ 1
2
, 1].

1.2 State of the art
The performance of on-line algorithms is often analyzed by studying their competitive ratio as introduced
in [8]. We indicate with A(I) the value of the solution obtained by an algorithm A on an instance I , and
with T ∗(I) the optimal value of an off-line algorithm, that is an algorithm that has perfect information on
all the instance I . The competitive ratio rA of algorithm A is defined as rA = maxI

A(I)
T∗(I) . An on-line

algorithm A is said to be optimal if no other algorithm A′ has a competitive ratio rA′ < rA.
For the on-line version of the multiprocessor scheduling problem on two processors the algorithm which

assigns the incoming item to the least loaded processor (LS algorithm) is 3
2 -competitive and is optimal.

The result is due to Graham [5], where it has been shown that the algorithm is (2− 1
m )-competitive for m

processors and to Faigle et al [4] who proved that the algorithm is optimal when m = 2 and m = 3.
Several semi on-line versions of the multiprocessor scheduling problem on two processors have been

studied. Kellerer et al [7] have studied the cases where a buffer of fixed length is available to store the
tasks, or the total size of the tasks is known, or two processors are available for the processing. For each
of these problems an optimal 4

3 -competitive algorithm has been provided, which improves the 3
2 of the

on-line problem. A 4
3 optimal algorithm has been obtained also for a randomized algorithm (see Bartal et

al. [3]). Angelelli [1] has studied the semi on-line version on two processors where, in addition to the sum
of the tasks, a lower bound β on the size of each task is known. He has shown that the performance of 4

3
is improved by an optimal algorithm to max(2 − 2β, 1) if the lower bound β is greater than 1

3 . He and
Zhang [6] have studied the semi on-line problem where both the bounds β and γ are known. They proved
that the LS algorithm is optimal with performance 1 + γ−β

2β .
The only semi on-line problem on two processors which has been studied in the literature and is still
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partially open is the problem with given sum of the tasks and known upper bound γ. This problem has
been introduced in [2] where an optimal 4

3–competitive algorithm has been presented for γ ≥ 1. For
γ < 1, the results are pictured in Figures 1, 2, and 3, where lower and upper bounds on the performance
ratio of algorithms are illustrated. Namely, these figures show the bounds for γ ∈ [ 1

n , 1
n−1 ] for n = 2,

n = 3 and n integer greater than 3, respectively.

1.3 Contribution of the paper

In this paper we improve on lower and upper bounds on the performance of algorithms for the problem
described above. The results are summarized in Figures 4, 5, and 6. Our objective was to strengthen the
bounds known for γ ∈ [ 12 , 1] to the intervals [ 1

n , 1
n−1 ] where n is any integer greater than 2. This has

been completely achieved for the lower bounds. By comparing Figure 1 to Figures 5 and 6 we note that
the shape given in Figure 1 has been reproduced in parametric form with respect to n on every interval
[ 1
n , 1

n−1 ]. Further relevant results, though partial, have been achieved for upper bounds. In Figure 4
we see that the upper bound on [ 12 , 1] has been improved; in Figure 5 and specially in Figure 6 we see
the improvement over List Scheduling — the only algorithm which was previously available for small
values of γ (large values of n). We note that the proposed algorithms are optimal for γ ∈ [ 1

n , 2(n+1)
n(2n+1) ]

∪{ 2n−1
2n(n−1)} ⊂ [ 1

n , 1
n−1 ].

It is still an open problem whether the algorithm, which is optimal for γ = 2n−1
2n(n−1) , can be extended

to a neighborhood of such a point.
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1.4 Structure of the paper

In Section 2, we propose lower bounds on the performance of any algorithm for different values of γ in
the range [ 1

n , 1
n−1 ], where n is any integer greater than or equal to 2. First, two lower bounds are proposed

for γ ∈ [ 2(n+1)
n(2n+1) ,

2n−1
2n(n−1) ] and for γ ∈ [ 2n−1

2n(n−1) ,
1

n−1 ]. Next, the bounds are extended to the entire range
[ 1
n , 1

n−1 ]. In Section 3, we propose three algorithms H ′, S, and H ′′. Algorithms H ′ and H ′′ provide
the main results of the paper. Algorithm S is used as a “subprogram” for algorithm H ′′. Finally, some
conclusions are given.

In this paper we denote with T ∗ and T, respectively, the off-line optimum makespan and the makespan
obtained by an on-line algorithm.

2 Lower bounds
In this section we propose a lower bound on the performance of any algorithm for each value of γ
in the interval [ 1

n , 1
n−1 ], where n ≥ 2 can be any integer. We first consider lower bounds for γ ∈

[ 2(n+1)
n(2n+1) ,

2n−1
2n(n−1) ] and for γ ∈ [ 2n−1

2n(n−1) ,
1

n−1 ], and then extend the bounds to the entire interval.

Lemma 1 If γ ∈ [ 2(n+1)
n(2n+1) ,

2n−1
2n(n−1) ] for some fixed integer n ≥ 2, then no on-line algorithm can have

competitive ratio better than n−1
3 γ + 2

3
n+1

n .

Proof: Let us consider two parametric instances I ′p, I ′′p , where p ∈ [0, γ] is a parameter whose value
corresponds to the size of the first two tasks of each instance. The two instances are defined as follows:

I ′p = {p, p, α, α, 2(n − 1) tasks of size γ} where the parameters p and α are fixed such that
p + α + (n− 1)γ = 1 and α ≤ p ≤ γ/2.

I ′′p = {p, p, β, 2(n − 1) tasks of size 1
n} where the parameters p and β are fixed such that

2p + β + (n− 2) 1
n = 1 and p < β ≤ 1

n .

While the off-line optimum for both I ′p and I ′′p is T ∗ = 1, we note that in the optimal assignments for
I ′p and I ′′p the two tasks p are assigned, respectively, to different processors and to the same processor.

When two tasks of size p arrive first, any algorithm H has to decide whether it assigns them to different
processors or to the same processor.

1) If algorithm H assigns the two tasks p to different processors, then on instance I ′′p the makespan is

T ≥ p + (n− 1)
1
n

+ β = 1− p +
1
n

.

2) If algorithm H assigns the two tasks p to the same processor, then on instance I ′p the makespan is

T ≥ 2p + (n− 1)γ.
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Thus, in either case T/T ∗ ≥ min(1− p + 1
n , 2p + (n− 1)γ). This lower bound clearly depends on the

parameter p. By maximizing with respect to p, we obtain the bound

T/T ∗ ≥ n− 1
3

γ +
2
3

n + 1
n

for p = n+1
3n − n−1

3 γ. Note that this value of the parameter fits all the implicit assumptions on p (i.e.,
α ≤ p ≤ γ/2, p < β ≤ 1

n ) when γ ∈ [ 2(n+1)
n(2n+1) ,

2n−1
2n(n−1) ]. 2

Lemma 2 If γ ∈ [ 2n−1
2n(n−1) ,

1
n−1 ] for some fixed integer n ≥ 2, then no on-line algorithm can have

competitive ratio better than n
2n−1 (1 + (n− 1)γ).

Proof: Let us consider two parametric instances I ′p, I ′′p , where p ∈ [0, γ] is a parameter whose value
corresponds to the size of the first two tasks of each instance. The two instances are defined as follows:

I ′p = {p, p, 2(n − 1) tasks of size 1−p
n−1}, where the equality p + (n − 1) 1−p

n−1 = 1 is an identity
satisfied for all p.

Here we only have to impose the inequality 1−p
n−1 ≤ γ, that is p ≥ 1− (n− 1)γ.

I ′′p = {p, p, α, β, (2n− 3) tasks of size γ}, where the parameters p, α and β are fixed such that
(n− 1)γ + α = 1 and p + p + (n− 2)γ + β = 1.

Obviously, we must guarantee that α, β ∈ [0, γ]. While the condition α ∈ [0, γ] is ensured by the
hypothesis γ ∈ [ 1

n , 1
n−1 ], the condition β ∈ [0, γ] requires the assumption p ∈ [ 1−(n−1)γ

2 , 1−(n−2)γ
2 ].

Summarizing the requirements on p induced by instances I ′p and I ′′p , we assume the inequalities

p ≥ 1− (n− 1)γ (1)

p ≤ 1− (n− 2)γ
2

(2)

While the off-line optimum for both I ′p and I ′′p is T ∗ = 1, we note that in the optimal assignments of I ′p
and I ′′p the two tasks p are assigned, respectively, to different processors and to the same processor.

Now, consider an algorithm which assigns the first two tasks to the same processor, and calculate the
makespan it obtains on instance I ′p. Inequality (2) together with the condition γ ≥ 1

n implies p ≤ 1
n .

Thus, the inequalities

2p ≤ 2
1
n

= 2
1− 1

n

n− 1
≤ 2(

1− p

n− 1
)1 < n(

1− p

n− 1
)

hold.
A set of 2n − 2 tasks of size 1−p

n−1 must be assigned to the two processors which have loads 2p and 0,
respectively. The makespan T produced by the algorithm is either n 1−p

n−1 (case 2p ≥ 1−p
n−1 ) or 1 + p (case

2p < 1−p
n−1 ). Thus,

T ≥ min(n 1−p
n−1 , 1 + p).
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Consider now an algorithm which assigns the first two tasks to different processors, and calculate the
makespan it obtains on instance I ′′p . Observe that an odd number of tasks of size γ must be assigned to
two processors whose loads are equal to p. Inequality (1) implies that the residual load [α + β] is not
greater than γ. That is,

T ≥ p + (n− 1)γ.

Let us observe that p + (n − 1)γ ≤ 1 + p for γ ≤ 1
n−1 , and derive that no algorithm can guarantee a

ratio better than min(p + (n− 1)γ, n 1−p
n−1 ) on a set of instances whose off-line optimum is T ∗ = 1. The

maximum value for such a lower bound is n(1+(n−1)γ)
2n−1 , obtained when p = n−(n−1)2γ

2n−1 . In conclusion,
for any algorithm, an instance exists such that

T/T ∗ ≥ n + n(n− 1)γ
2n− 1

.

2

Now we extend the previous lower bounds to the range [ 1
n , 1

n−1 ] for any fixed integer n ≥ 2. The idea is
that if a set of instances can be used to prove a lower bound b for a fixed γ′, then the same set of instances
can also be used to prove the same lower bound b for any other γ > γ′ because each task p satisfies
p ≤ γ′ < γ.

Lemma 3 If γ ≥ 1
n for some fixed integer n ≥ 2, then no algorithm can have competitive ratio better

than 1 + 1
2n+1 .

Proof: Define m = n + 1 and apply Lemma 2 for γ = 1
m−1 = 1

n . 2

Remark: The same argument holds also for n ≥ 1.

Lemma 4 If γ ≥ 2n−1
2n(n−1) for some fixed integer n ≥ 2, then no algorithm can have competitive ratio

better than 1 + 1
2n .

Proof: Apply Lemma 1 for γ = 2n−1
2n(n−1) . 2

In conclusion, by a selection of the highest lower bound available for each value of γ, the following
general lower bounds can be drawn for γ ∈ [ 1

n , 1
n−1 ].

Theorem 5 If γ ∈ [ 1
n , 2(n+1)

n(2n+1) ] for some fixed integer n ≥ 2, then no algorithm can have competitive
ratio better than 1 + 1

2n+1 .

Proof: This follows from Lemma 3. 2

Theorem 6 If γ ∈ [ 2(n+1)
n(2n+1) ,

2n−1
2n(n−1) ] for some fixed integer n ≥ 2, then no algorithm can have compet-

itive ratio better than n−1
3 γ + 2

3
n+1

n .
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Proof: This is the statement of Lemma 1. 2

Theorem 7 If γ ∈ [ 2n−1
2n(n−1) ,

2n2−1
2n2(n−1) ] for some fixed integer n ≥ 2, then no algorithm can have com-

petitive ratio better than 1 + 1
2n .

Proof: This follows from the bound given in Lemma 4, which is greater than the one in Lemma 2 for
γ < 2n2−1

2n2(n−1) . 2

Theorem 8 If γ ∈ [ 2n2−1
2n2(n−1) ,

1
n−1 ] for some fixed integer n ≥ 2, then no algorithm can have competitive

ratio better than n
2n−1 (1 + (n− 1)γ).

Proof: This is the statement of Lemma 2 restricted to a shorter interval. 2

3 Algorithms
In this section we propose three algorithms H ′, S and H ′′ for γ ∈ [ 1

n , 1
n−1 ] where n is any integer greater

than or equal to 2. While the focus is on the range γ ∈ [ 1
n , 1

n−1 ] for n ≥ 2, some results for H ′ will be
proved valid also for n = 1.

We shall apply the following notation. The current task is denoted by p. Processors are indicated by P1

and P2. We use index i = 1, 2 for processors P1 and P2, respectively, and then the variable P3−i indicates
the processor alternative to Pi. For the sake of avoiding too much notation, P1 and P2 are also used to
represent the loads of the two processors.

3.1 Algorithm H ′

1 – If P1 + p ≤ 1 + 1
2n+1 , then assign p to P1

2 – else if P2 + p ≤ 1 + 1
2n+1 , then assign p to P2

3 – else assign p to min(P1, P2)

Lemma 9 If γ ≥ 2(n+1)
n(2n+1) for some fixed integer n ≥ 1, then algorithm H ′ produces a makespan T ≤

nγ.

Proof: Note that γ ≥ 2(n+1)
n(2n+1) implies 1 + 1

2n+1 ≤ nγ. Thus we only need to consider instances such
that T > 1 + 1

2n+1 . By construction, algorithm H ′ loads a processor more than 1 + 1
2n+1 only if neither

rule ( 1) nor rule ( 2) is matched, that is, a task p′ arrives when the two loads – say P ′
1 and P ′

2 – satisfy the
inequality p′ + min(P ′

1, P
′
2) > 1 + 1

2n+1 . Thus, in this case we have

P ′
1 + P ′

2 + p′ ≤ 2 (3)

P ′
1 + p′ > 1 +

1
2n + 1

=
2n + 2
2n + 1

(4)

P ′
2 + p′ >

2n + 2
2n + 1

, (5)
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where P ′
2 =

k∑
i=1

pi ≤ kγ, for some k ≥ 0, and

P ′
1 + pi >

2n + 2
2n + 1

, (6)

for all i = 1, ..., k.
Now we can derive a number of inequalities: from (3) and (5) we obtain

P ′
1 <

2n

2n + 1
, (7)

from (3) and (4) we obtain

P ′
2 <

2n

2n + 1
, (8)

from (6) and (7) we obtain for all i

pi >
2

2n + 1
, (9)

from (4) and (7) we obtain

p′ >
2

2n + 1
, (10)

and finally, we obtain
k < n, (11)

from (9) and (8). In conclusion, T = p′ + min(P ′
1, P

′
2) ≤ p′ + P ′

2 ≤ kγ + γ ≤ nγ. 2

Lemma 10 If γ ≤ 2(n+1)
n(2n+1) for some fixed integer n ≥ 1, then H ′ produces a makespan T ≤ 1 + 1

2n+1 .

Proof: Suppose that an instance exists such that T > 1 + 1
2n+1 . By the same argument as in the proof of

Lemma 9, we derive the contradiction T ≤ nγ ≤ 1 + 1
2n+1 . 2

Lemma 11 If γ ≤ 1
n−1 for some fixed integer n ≥ 2, then H ′ has makespan T ≤ 1 + 1

2n−1 .

Proof: Define m = n − 1. Apply algorithm H ′ for γ ≤ 1
m ≤ 2(m+1)

m(2m+1) . Lemma 10 guarantees the
makespan T ≤ 1 + 1

2m+1 = 1 + 1
2n−1 . 2

Theorem 12 If γ ∈ [ 1
n , 2(n+1)

n(2n+1) ] for some fixed integer n ≥ 2, then algorithm H ′ is (1 + 1
2n+1 )-

competitive; moreover, H ′ is optimal.

Proof: The competitive ratio follows from Lemma 10 and T ∗ ≥ 1. Optimality follows from the lower
bound in Theorem 5. 2

Theorem 13 If γ ∈ [ 2(n+1)
n(2n+1) ,

1+2n
2n2 ] for some fixed integer n ≥ 2, then algorithm H ′ is nγ-competitive.
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Proof: The competitive ratio follows from Lemma 9 and T ∗ ≥ 1. 2

Theorem 14 If γ ≤ 1
n−1 for some fixed integer n ≥ 2, then algorithm H ′ is (1 + 1

2n−1 )-competitive;
moreover, H ′ is optimal for γ = 1

n−1 .

Proof: The competitive ratio follows from Lemma 11 and T ∗ ≥ 1. Optimality for γ = 1
n−1 follows from

the lower bound in Theorem 8. 2

3.2 Algorithm S

Theorem 12 guarantees that algorithm H ′ is optimal when γ ∈ [ 1
n , 2(n+1)

n(2n+1) ] and Theorem 14 that algo-

rithm H ′ is optimal if γ = 1
n−1 . Thus, we now need to focus on the range γ ∈ ( 2(n+1)

n(2n+1) ,
1

n−1 ) and look
for an algorithm with a performance 1 + δ somewhere in between the lower bounds given by Theorems
6, 7 and 8 – which are certainly greater than 1 + 1

2n+1 – and the best performance guaranteed by List
Scheduling and by the algorithm H ′. Thus assume δ < min(nγ − 1, γ

2 , 1
2n−1 ).

It is easy to see that if a processor has load in the range [1 − δ, 1 + δ] for a fixed δ < γ/2, then it is
possible – by assigning all the remaining tasks to the other processor – to control the makespan such that
T ≤ 1 + δ. On the other hand, if both processors have their loads in the range (1 + δ − γ, 1 − δ), then
it is not possible to find an assignment rule which guarantees T ≤ 1 + δ (a task of size γ will violate the
bound 1 + δ on both processors). Now, the point is whether or not it is possible to find a set E of values
such that if both processors are loaded less than 1 + δ and a processor has load in E, then the makespan

can be controlled such that T ≤ 1+ δ. With this objective in mind we define the safe region E =
n⋃

k=0

Ek,

where the sets Ek = [1 + δ − 2(k + 1)δ, 1 + δ − kγ], for k = 0, ..., n, are the component ranges.

Safe Algorithm S

(S.1) – If p + Pi ∈ E for some i = 1, 2, then assign p to Pi

(S.2) – else if Pi ∈ E0 for some i = 1, 2, then assign p to P3−i

(S.3) – else if Pi ∈ E for some i = 1, 2, then assign p to P3−i

(S.4) – else assign p to min(P1, P2)

Note that rules (S.2) and (S.3) are not redundant. Indeed, if P2 ∈ E0 and P1 ∈ E1, rule (S.2) assigns
p to processor P1, which is not guaranteed by rule (S.3) itself.

The following Lemma proves that the name safe region is appropriate.

Lemma 15 If any of rules (S.1), (S.2) or (S.3) is matched by a task p when P1, P2 ≤ 1 + δ, then all
successive tasks will match either (S.2) or (S.3) and T ≤ 1 + δ.

Proof: Let us assume the inequalities
P1 ≤ 1 + δ (12)

P2 ≤ 1 + δ. (13)
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If rule (S.1) is matched (assume without loss of generality p + P1 ∈ E), then task p is assigned to
processor P1. Inequalities (12) and (13) still hold, and obviously P1 ∈ E after the assignment of p to P1.

If rule (S.2) is matched (assume P1 ∈ E0), then p is assigned to P2. Inequalities P1 ≥ 1 − δ and
P1 + p + P2 ≤ 2 imply p + P2 ≤ 1 + δ. Thus, inequalities (12) and (13) still hold and P1 ∈ E.

If rule (S.3) is matched (assume P1 ∈ E \ E0 =
n⋃

k=1

Ek =
n⋃

k=1

[1 + δ − 2kδ − 2δ, 1 + δ − kγ]),

task p is assigned to processor P2. Now, we note first that p < 2δ, since otherwise p ∈ [2δ, γ] implies

p+P1 ∈
n−1⋃
k=0

Ek ⊂ E and rule (S.1) would apply. Secondly, processor P2 is loaded less than 1− δ, since

otherwise P2 ∈ E0 and rule (S.2) applies. Thus, inequalities (12) and (13) still hold and P1 ∈ E.
In conclusion, if any of the rules (S.1), (S.2) or (S.3) is matched by a task p when P1, P2 ≤ 1 + δ,

all successive tasks will match either (S.2) or (S.3), while the inequalities (12) and (13) are guaranteed at
each iteration. 2

The hypotheses upon which Lemma 15 is based are certainly satisfied when the initial load of the two
processors is in the safe region, that is E contains 0. The following three lemmas exploit this lucky case,
but unfortunately do not improve on the performance of algorithm H ′.

Lemma 16 If γ ≤ 2(n+1)
n(2n+1) and δ = 1

2n+1 for some fixed integer n ≥ 2, then algorithm S produces a
makespan T ≤ 1 + 1

2n+1 .

Proof: In this case En = [0, β] where β = 1 + 1
2n+1 − nγ ≥ 0. Since both processors start at 0, rule

(S.3) is matched and Lemma 15 applies. 2

Lemma 17 If γ ≥ 2(n+1)
n(2n+1) and δ = nγ − 1 for some fixed integer n ≥ 2, then algorithm S produces a

makespan T ≤ nγ.

Proof: In this case En = [α, 0] where α = 2n − 2n2γ + 2 − nγ ≤ 0. Since both processors start at 0,
rule (S.3) is matched and Lemma 15 applies. 2

Lemma 18 If γ ≤ 1
n−1 and δ = 1

2n−1 for some fixed integer n ≥ 2, then algorithm S produces a
makespan T ≤ 1 + 1

2n−1 .

Proof: In this case En−1 = [0, β] where β = 1 + 1
2n−1 − (n− 1)γ ≥ 0. Since both processors start at 0,

rule (S.3) is matched and Lemma 15 applies. 2

3.3 Algorithm H ′′

Since we are looking for a performance better than 1+min(nγ−1, γ
2 , 1

2n−1 ), and for δ < nγ−1 we have
supEn < 0, we will not take into account En anymore. Moreover, for δ < 1

2n−1 we have inf En−1 > 0,
and this means that the initial load of the two processors is not in the safe region E, but in its complement

with respect to [0, 2]. We shall call this complement the risky region A. That is, A = A0 ∪
n−1⋃
k=1

Ak ∪An,
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where the sets An = [0, inf En−1), Ak = (supEk, inf Ek−1), for k = 1, ..., n− 1, and A0 = (1 + δ, 2]
are the component ranges.

We already know that if the load of a processor happens to enter the safe region, then algorithm S
guarantees, by Lemma 15, a makespan (and also a performance) T ≤ 1 + δ.

In the next lemma we investigate what happens if the arriving task p is such that Lemma 15 cannot be
applied. In such a case, the loads of the two processors must be both in the risky region. Task p may be
so small that it is not able to move the load of any processor from its current risky component to the next
one. The following lemma takes into consideration the opposite case, i.e. when task p is big enough to
force the load of a processor to move from a risky component to the next one. The claim is that if task p
forces the load of one processor to move from range Ak to range Ak−1, skipping range Ek−1, then the
same task, if assigned to the other processor, would force its load to exit its current risky range Ah and
move either to the safe region Eh−1 or to the risky range Ah−1.

Lemma 19 Suppose that P1 ∈ Ak and P2 ∈ Ah for some k, h > 1 and δ ≥ max( 1+(n−1)γ
4n−1 , n−1

2n−1γ) for
some fixed integer n ≥ 2. If p + P1 ∈ Ak−1, then p + P2 /∈ Ah. Conversely, if p + P2 ∈ Ah−1, then
p + P1 /∈ Ak.

Proof: The diameter of Ek is d(Ek) = k(2δ − γ) + 2δ which decreases as k grows. The minimum is
2δn− nγ + γ, for k = n− 1.

On the other hand, the diameter of An is d(An) = inf En−1 = 1 + δ − 2nδ, while the diameter of
Ak is k(γ − 2δ) for k = 1, ..., n − 1. The maximum is (n − 1)(γ − 2δ), for k = n − 1. We see that
d(En−1) ≥ d(An) if δ ≥ 1+(n−1)γ

4n−1 , and d(En−1) ≥ d(An−1) if δ ≥ n−1
2n−1γ.

Thus, if P1 ∈ Ak and p + P1 ∈ Ak−1, then p > d(Ek−1) ≥ d(En−1) ≥ max(d(An−1), d(An)), and
consequently p + P2 /∈ Ah. 2

Lemma 19 can be used to calculate lower bounds on some tasks of instances that keep an algorithm
from loading the processors in the safe region.

Algorithm H ′′

H.1 – if Pi ∈ E for some i = 1, 2, then run algorithm S

H.2 – if p + Pi ∈ E for some i = 1, 2, then run algorithm S

H.3 – if P2 = 0 and p ∈ (1 + δ − (n− 1)γ, 1+δ−(n−2)γ
2 ], assign p to P2

H.4 – if p + P1 ≤ 1 + δ, assign p to P1

H.5 – else assign p to min(P1, P2)

Remark: If rule (H.1) or (H.2) is matched, then algorithm H ′′ is stopped and algorithm S takes decisions
on task p and all the remaining tasks. Therefore, we can apply the bound derived for S, as follows.

Lemma 20 If rule (H.1) or (H.2) is matched when P1, P2 ≤ 1 + δ, then T ≤ 1 + δ.



14 Enrico Angelelli and Maria Grazia Speranza and Zsolt Tuza

Proof: The result follows by Lemma 15. 2

It is interesting to analyze the performance of H ′′ on instances which force the loads to grow within
the risky region and produce a makespan T > 1 + δ. We have a result for a particular infinite sequence of
values γ and δ.

Lemma 21 Let γ = 2n−1
2n(n−1) and δ = 1

2n for some fixed integer n ≥ 2. If rules (H.1) and (H.2) are never
matched when P1, P2 ≤ 1 + δ, then algorithm H ′′ produces a makespan T such that T/T ∗ ≤ 1 + δ.

Proof: If rules (H.1) and (H.2) are never matched, the makespan is necessarily greater than 1+δ, because
the loads of the two processors are forced to grow within the risky region A until at least one processor
is loaded more than 1 + δ. We proceed as follows. We first prove that the makespan T is bounded from
above by 1 + γ

2 = 4n2−2n−1
4n(n−1) , and then we prove that the off-line optimum T ∗ is bounded from below by

2δ(n− 1) + 1+δ−(n−2)γ
2 = 4n2−4n+1

4n(n−1) > 1.

Finally the ratio T/T ∗ is bounded from above by 4n2−2n−1
4n2−4n+1 < 1 + δ = 1 + 1

2n for all n.
Let p̃ ≤ γ be the first task which forces T > 1 + δ. When this task arrives, both processors have loads

in the range A1 = (1 + δ − γ, 1− δ), and p̃ ∈ (2δ, γ].

Upper bound for T . Assume, without loss of generality, that P1 < P2. If P1 > 1− γ
2 , task p̃ is assigned

to P1 and T ≤ 2− P2 < 1 + γ
2 , and otherwise if P1 ≤ 1− γ

2 , then T ≤ P1 + γ ≤ 1 + γ
2 .

Lower bound for T ∗. We will show that instance I contains at least 2n − 1 “big” tasks: n of them are
greater than 1+δ−(n−2)γ

2 = 4n−3
4n(n−1) and the other n− 1 are greater than 2δ = 1

n . One of these big

tasks is the already mentioned task p̃ > 2δ. Note that 2δ = 1
n < 4n−3

4n(n−1) = 1+δ−(n−2)γ
2 for all n.

This will be sufficient for proving that 4n2−4n+1
4n(n−1) is a lower bound for the off-line optimum. Indeed,

at least one processor must be assigned at least n big tasks, and the sum of them is bounded from
below by 2δ(n− 1) + 1+δ−(n−2)γ

2 = 4n2−4n+1
4n(n−1) > 1 for all n.

Tasks on processor P2. When p̃ arrives, P2 ∈ A1. We claim that processor P2 contains exactly n − 1
tasks – say p(i) (for i = 1, ..., n − 1) which are greater than 2δ. This is proved by the following
argument. Only task p(1) can be possibly assigned to processor P2 before processor P1 reaches
range A1. In this case p(1) > 1 + δ − (n− 1)γ = 2δ.

All the other tasks which are assigned to P2 (possibly including p(1)) arrive when P1 ∈ A1. All
these tasks must satisfy the inequality p(i) + P1 > 1 + δ which implies p(i) > 2δ, as P1 < 1 − δ.
Moreover, since p(i) ∈ (2δ, 2n−1

2n(n−1) ], we obtain that n−2 tasks of type p(i) are not sufficient to reach

range A1, while n tasks of type p(i) certainly make processor P2 pass range A1. In other words,
processor P2 has exactly n−1 tasks of size at most γ. The inequality p(1) +p(2) > 1+δ−(n−2)γ
implies that at least one of these two tasks is greater than 1+δ−(n−2)γ

2 (say, p(1) > 1+δ−(n−2)γ
2 ).

Tasks on processor P1. Similarly, processor P1 must contain at least n − 1 tasks which make the load
of P1 pass from Ak to Ak−1 for every k = n, ..., 1. According to index k we enumerate such tasks
p(k) in the reverse order of arrival. When p(n−1) arrives, processor P2 is either empty or only loaded
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with a single task not greater than 1+δ−(n−2)γ
2 . If P2 = 0, then p(n−1) < 1+δ−(n−2)γ

2 would be
assigned to processor P2 by rule (S.1) or (S.2). If P2 ∈ (1 + δ − (n− 1)γ, 1+δ−(n−2)γ

2 ] ⊂ An−1,

Lemma 19 and the assumption that the safe region cannot be reached imply p(n−1) > 1+δ−(n−2)γ
2 .

In either case, p(n−1) > 1+δ−(n−2)γ
2 . Similarly, p(k) > 1+δ−(n−2)γ

2 for k = n− 2, ..., 1.

In conclusion, we have 2n − 1 big tasks. Among them, n tasks are greater than 1+δ−(n−2)γ
2 , namely

p(1) and the p(k) (k = n− 1, ..., 1). The other n− 1 big tasks are greater than 2δ, these are p̃ and the p(i)

(i = 2, ..., n− 1). Thus, the off-line optimum is bounded from below by 2δ(n− 1) + 1+δ−(n−2)γ
2 . 2

Theorem 22 If γ = 2n−1
2n(n−1) and δ = 1

2n for some fixed integer n ≥ 2, then algorithm H ′′ is (1 + 1
2n )–

competitive; moreover, H ′′ is optimal.

Proof: If γ = 2n−1
2n(n−1) and δ = 1

2n , then either Lemma 20 or Lemma 21 applies. in both cases T/T ∗ ≤
1 + δ. Optimality follows from Theorem 6. 2

In conclusion, for all integers n ≥ 2, algorithm H ′ is optimal for γ ∈ [ 1
n , 2(n+1)

n(2n+1) ] and nγ–competitive

for γ ∈ ( 2(n+1)
n(2n+1) ,

1+2n
2n2 ). Algorithm H ′′ is (1 + 1

2n )–competitive for δ = 1
2n and γ ∈ [ 1+2n

2n2 , 2n−1
2n(n−1) ] ;

in particular, it is optimal for γ = 2n−1
2n(n−1) . For γ ∈ ( 2n−1

2n(n−1) ,
1

n−1 ], the better performance is proven for
algorithm H ′.
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