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1 INTRODUCTION

In [Drl], Drinfeld has introduced the analogues of Shimura varieties for GL4
over a global field F' of positive characteristic. Following a suggestion of U.
Stuhler the corresponding varieties for an inner form of GLg, i.e. the group of
invertible elements A* of a central simple algebra A of dimension d? over F,
have been introduced by Laumon, Rapoport and Stuhler in [LRS]. For d = 2
these are the analogues of Shimura curves. In this paper we show that some of
these varieties (for different A) are twists of each other.

Let us recall the latter in the simplest case (i.e. over Q and by neglecting level
structure). Let D be an indefinite quaternion algebra over Q and D a maximal
order in D. The Shimura curve Sp is the (coarse) moduli space corresponding
to the moduli problem

(S — SpecZ) + abelian surfaces over S with D-action.
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By fixing an isomorphism D ® R 2 M5(R) the group of units D* acts on the
symmetric space Hoo: = ]P’}RfIP’l (R) (the upper and lower half plane) through
linear transformations. The curve Sp ®g R admits the following concrete de-
scription

Sp ®QR:D*\HOO. (1)

If p is a prime number which is ramified in D then there is a similar explicite
description over Q. For that let D be the definite quaternion algebra over Q
given by the local data D ® Q; =2 D ® Qy for all prime numbers ¢ different from
pand D®Q, = M5(Q,). Let D denote a maximal Z[%]—order in D and denote
by Q" the quotient field of the ring of Witt vectors of W (F,). The Theorem
of Cherednik-Drinfeld asserts that

Sp ®g Qp = D \(H, ®g, Q). (2)

(see [Ce], [Dr2] or [BC]). Here D" acts on Q) via v — Frob,, ordy (Nrd(7)) 3nd on
the p-adic upper half plane H,: = P}Qp — P'(Q,) via linear transformations.
Now let F' be a global field of positive characteristic, i.e. F' is the function field
of a smooth proper curve X over a finite field ;. The analogues of Shimura
curves over F' are the moduli spaces of A-elliptic sheaves as introduced in [LRS].
In this paper we generalize this notion slightly by making systematically use
of hereditary orders. Let oo € X be a fixed closed point. For simplicity
we assume in the introduction that deg(co) = 1. Let A be a central simple
F-algebra of dimension d? and let A be a locally principal hereditary Ox-
order in A. The condition locally principal means that the radical Rad(A,) of
Az = ARo, @X,z is a principal ideal for every closed point x € X. There
exists a positive integer e = e,(A) such that Rad(A;)¢ is the ideal A,w,
generated by a uniformizer w, of X at x. The number e, (A) divides d for al 1
x and is equal to 1 for almost all z. We assume in the following that e (A) = d.
If A is unramified at co then this amounts to require that A is isomorphic to
the subring of matrices in Mg(Ox ) which are upper triangular modulo wx.
Roughly, an A-elliptic sheaf with pole oo is a locally free .A-module of rank
1 together with a meromorphic A-linear Frobenius having a simple pole at oo
and a simple zero. The precise definition is as follows.

An A-elliptic sheaf over an Fy-scheme S is a pair E = (€,t) consisting of a
locally free right AKX Og-module of rank 1 and an injective homomorphism of
AN Og-modules

t: (idx x Frobg)* (£ ®4 A(—éoo)) — &

such that the cokernel of t is supported on the graph I'; C X Xgspecr, S of @
morphism z : S — X (called the zero) and is — when considered as a sheaf on
S =T, — alocally free Og-module of rank d.

Here A(—200) denotes the two-sided ideal in A given by A(—%00), = A, for
all z # oo and A(—300)o = Rad(Ax). This definition differs, but, as will be
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proved in the appendix, is equivalent to the one given in [LRS]!. Unlike in loc.
cit. we do not require the zero z to be disjoint from the pole oo nor from the
closed points which are ramified in A. Also we allow oo to be ramified in A. For
an arbitrary effective divisor I on X there is the notion of a level-I-structure
on E. We will show (Theorem 4.11) that the moduli stack of A-elliptic sheaves
with level-I-structure £€¢7 ; is a Deligne- Mumford stack which is locally of
finite type and of relative dime nsion d — 1 over X — I. If I #£ 0, it is a smooth
and quasiprojective scheme over X’ — I where X’ denotes the complement of
set of closed points z € X with e, (A) > 1.

Let B be another central simple F-algebra of dimension d? and assume that
there exists a closed point p € X — {oo} such that the local invariants of B
are given by inveo(B) = inveo(A) + %, invy(B) = invy(A) — § and inv,(B) =
inv,(A) for all z # oo, p. Let B be a locally principal hereditary Ox-order in B
with e, (B) = e;(A) for all z. Our main result is that the moduli stack £0¢3; ;
is a twist of 07 ;. To state this more precisely we assume for simplicity that
deg(p) =1 and I = 0 (see 4.24 and 4.25 for the general statement). We have

g0y, = (U @p, Fy)/ < wy @ Frob, > . (3)

Here wy is a certain modular automorphism of £ (in the case d = 2 it is
the analogue of the Atkin-Lehner involution at p for a modular or a Shimura
curve).

We explain briefly our strategy for proving (3). We consider invertible A-B-
bimodules £ together with a meromorphic Frobenius ¢ having a simple zero
at oo and simple pole at p. More precisely, for an Fy-scheme S, we consider
pairs L = (£, ®) where £ is an invertible A X Og-B K Og-bimodule and @ is
an isomorphism of bimodules

1 1
® : (idx x Frobg)"(£ @4 A(=2p)) — L @4 A(=750).

These will be called invertible Frobenius bimodules of slope D = éoo — ép
and their moduli space will be denoted by SEiB. We will show in section
4.4 that it is a torsor over SpecF, of the finite group of modular automor-
phisms of £0(% and compute it explicitely (it is instructive to view SE,[A),B as
an analogue of the moduli space of supersingular elliptic curves with a fixed
ring of endomorphisms). In section 4.5 we construct a canonical tensor product
EWR X SER 5 — WY, (B, L) — E®4 L. The isomorphism (3) is then a simple
consequence.

From the global result (3) we deduce that the uniformization at co and the
analogue of the Cherednik-Drinfeld uniformization for the moduli spaces E££ ;
are equivalent. In fact an analogue of the uniformization result (1) for ££07
has been proved by Blum and Stuhler in [BS] (in case where the level I is prime
to 00). On the other hand Hausberger has shown in [Hau] (again under the

n [LRS], the authors work with hereditary orders A with Aco = Md(éX,w) and
parabolic structures at co on £ instead.
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assumption that co does not divide the level I) that there is also an analogue
of the Cherednik-Drinfeld theorem.

We describe briefly the contents of each section. In section 2 and 3 we discuss
hereditary orders in central simple algebras over local fields and global function
fields. We show in particular that any hereditary order is Morita equivalent
to a (locally) principal hereditary order. This is the reason why it suffices to
consider A-elliptic sheaves for locally principal A. In section 4 we introduce
A-elliptic sheaves and study their moduli spaces and sections 2.6 and 4.4 are
devoted to invertible Frobenius bimodules. In section 3.3 we introduce the
notion of a special A-module. If E = (€,t) is an A-elliptic sheaf then Coker(t)
is special. The stack Coh 4 g, of special A-modules plays a key role in the study
of the bad fibers of the characteristic morphism char : 03 ; — X in section
4.3. In fact Coh 4 p is an Artin stack and char admits a canonical factorization
EY 1 — Cohgsp — X. We shall show that the first map is smooth and the
second semistable. In section 4.5 we construct the tensor product of an A-
elliptic sheaf (with level-I-structure) and an invertible Frobenius bimodules
(with level-I-structure) and prove our main result (Theorems 4.24 and 4.25).
Finally, in section 4.6 we discuss the application to uniformization of £ M‘X 1 by
Drinfeld’s symmetric spaces and its coverings.

Acknowledgements. 1 thank E. Lau and T. Zink for helpful conversations. Part
of this work has been done during a stay at the Max-Planck-Institute in Bonn
in the Winter 2004/05, so I am grateful for the hospitality.

NOTATION As an orientation for the reader we collect here a few basic nota-
tions which are used in the entire work. However most notations listed below
will be introduced again somewhere in this work.

For a scheme S we let |S| be the set of closed points of S. The category of
S-schemes is denoted by Sch /S. If S = Speck for a field k then we also write
Sch /k.

The algebraic closure of a field k is denote by k. If k is finite then k, C k
denotes the extension of degree n of k.

In chapters 3, 4 and in 5.2, X denotes a smooth proper curve over some base
field k. In chapter 3, k is an arbitrary perfect field of cohomological dimension
1, whereas in chapter 3 k is the finite field F,. The function field of X is
denoted by F. For Y, Z € Sch /k we write X x Y for their product over k.
For a closed point € X we denote by k(x) its residue field and by deg(z)
the degree [k(z) : k]. If S is a k(z)-scheme, then x5 will denote the morphism
S — Speck(xz) — X. If S = Speck’ is a field then we also write xys instead of
ISpec k-

For a non-zero effective divisor I on X, we denote the corresponding closed
subscheme of X by I as well. If M is a sheaf of Ox-modules then we use M
for M ®(9X O[.

In chapter 4, for S € Sch /F, we denote by Frobg its Frobenius endomorphism
(over Fy). In the case where S = Speck’ for some algebraic extension field £’
of F, we also sometimes write Frob, for Frobgpec s and Frobenius in the Galois
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group G(k'/F,). If S € Sch /F, and £ is a sheaf of Oxxg-modules then 7€
denotes the sheaf (idx x Frobg)*(E).

We denote by A the Adele ring of F' and for a finite set of closed points T of
X we let AT denote the Adele ring outside of T.
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2 LOCAL THEORY OF HEREDITARY ORDERS

2.1 BASIC DEFINITIONS

Let X be a scheme and A a quasi-coherent sheaf of Ox-algebras. We denote
by Mod 4 the category of sheaves of right A-modules. Let B be another quasi-
coherent O x-algebra. An A-B-bimodule Z is an Ox-module with a left A- and
right B-action which are compatible with the Ox-action.

A and B are said to be (Morita) equivalent (notation: A ~ B) if there exists
a quasi-coherent A-B-bimodule Z and a quasi-coherent B-A-bimodule 7 such
that the following equivalent conditions hold:
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(i) There exists bimodule isomorphisms
Ieopd — A, JRaT—B.
(ii) The functors
Q47T :Mody — Mod 4, -®p J : Modg — Mod 4

are equivalences of categories and mutually quasi-invers.

In this case Z and J are called invertible bimodules and 7 is called the inverse
of Z. The group of isomorphism classes of invertible A-A-bimodules will be
denoted by Pic(A).

Now assume that X is a Dedekind scheme that is a one-dimensional connected
regular noetherian scheme with function field K, i.e. Spec K — X is the generic
point. Let A be a central simple algebra over K. An Ox-order in A is a sheaf
of Ox-algebras A with generic fiber A which is coherent and locally free as an
Ox-module. If B is an Ox-order in another central simple K-algebra then it
is easy to see that an invertible A-B-bimodule is a coherent and locally free
Ox-module.

The Ox-order A in A is called mazimal if for any open affine U = Spec R C X
the set of sections I'(U, A) is a maximal R-order in A. A is called hereditary
if its sections I'(U, A) over any open affine U = Spec R C X is a hereditary
R-order in A that is any left ideal in I'(U,.A) is projective (equivalently any
right ideal is projective; compare ([Re], (10.7)). Let & be a locally free Ox-
module of finite rank which has a left or right A-action compatible with the
Ox-action. Then the set of sections of £ over any affine open U = Spec R C X
are a projective I'(U, A)-module.

If X is affine, i.e. the spectrum of a Dedekind ring @ we usually identify A
with its sections I'(X, . A). An O-lattice is a finitely generated torsionfree (hence
projective) O-module. A (left or right) A-lattice is a (left or right) .A-module
which is an O-lattice. By ([Re], (10.7)) A is hereditary if and only if every (left
or right) A-lattice is projective.

2.2 STRUCTURE THEORY

Let O be a henselian discrete valuation ring with maximal ideal p and residue
field k = O/p. Let w € p be a fixed prime element. We will recall the structure
theory of hereditary O-orders in central simple K-algebras (a reference for what
follows is [Re], section 39). Since we are only interested in applications to the
case where O is the henselisation or completion of a local ring in a global field
we will assume for simplicity that k is perfect and of cohomological dimension
<1.

Let A be a hereditary O-order in a central simple K-algebra A of dimension
n?. Its Jacobson radical will be denoted by 8 = Ba. By ([Re], 39.1 and
exercise 6 on p. 365) B is an invertible two-sided ideal and any other two-
sided invertible fractional ideal is an integral power of 3. Let B be a central
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simple K-algebra equivalent to A and B be a maximal order in B. We denote
its radical by 9 = PBr. Let I be an invertible A-B-bimodule. Its inverse is
J: = Homg(I,K). Let Z be a A-B-stable lattice in I, i.e. aZ,ZbCZ for all
a € A,b € B. Such a lattice exists. In fact if LCI is any O-lattice then the
O-module generated by the set {azb | a € A,z € L,b € B} is a A-B-stable
lattice. There exists a positive integer ¢ — called the type of A — such that
PIZ =TIM (see [Re], 39.18 (i)). It is also equal to the number of isomorphism
classes of indecomposable left (or right) A-lattices. If M is an indecomposable
left A-lattice then {P‘M|i = 0,1,...,t — 1} is a full set of representatives of
the set of indecomposable left A-lattices. For i € Z we set Z;: = P~°T and
Ji: = Homp(Z_;,0). The sequences {Z; | ¢ € Z} and {J; | i € Z} satisfy the
following conditions:

Q) PBLi =Tio1, M =TLiy, TP =Tio1, MT; = Tiy forallieZ

(ii) Let A;: = {$ €A | ,TIIQII} = {$ €A | j_lxgj_l} Then .Al, . ,At
are the different maximal orders containing .4 and we have A = A;N...N
A; (note that A; = A; if ¢ = j mod ¢). The lattice Z; is an invertible
A;-B-bimodule with inverse J_;. Note that A; = A; if i = j mod ¢.

(iii) Let A: = A/%B,B: = B/M and let
Z(Z) L= Im(z — EndE(L/L,l)) = Im(?l — Endg(j,i/j,ifl))

fori =1,...,t. Then, considered as a Z(i)—g—bimodule, Z;/Z;—1 is invert-
ible with inverse J_;/J—;—1. We have

A=A . x A

and A M, (k") for i = 1,...,t. Here k' is the center of B and
n; = rankg(Z;/Z;—1). The numbers (n1,...,n;) are called the invariants
of A. They are well-defined up to cyclic permutation.

DEFINITION 2.1. The positive integer e = e(A) with P = wA will be called
the index of A.

We will see below (Lemma 2.4) that e(A) does not change under finite étale
base change. If d is the order of [A] in Br(F) (hence d = [k’ : k]) and ¢ is the
type of A then e = dt.

Recall ([BF], p. 216) that A is said to be principal if every two-sided invertible
ideal of A is a principal ideal or equivalently if there exists IT € P with AIl =
ITA = B. For example A is principal if it is a maximal OQ-order in A or if
e(A) = n. This is a consequence of the following characterization of principal
orders.

LEMMA 2.2. Let A be a hereditary order in a central simple K-algebra A of
dimension n?. The following conditions are equivalent.
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(i) A is a principal order.
(ii) If (n1,...,n) are the invariants of A then ny = ... = ny.
(i11) Let My, ..., My be a full set of representatives of the isomorphism classes
of indecomposable right A-lattices. Then there exists an integer f € N such
that

Ag(Ml@...@Mth
as right A-modules. In this case we have f =ny =... =n; andn = ef.
Proof. (i) < (ii) see ([BF], Theorem 1.3.2, p. 217).
(i) < (iii) Since A is principal if and only if A 2 P as right A-modules this
follows from the fact that the map [M] — [M] is a cyclic permutation of the

set isomorphism classes of indecomposable right A-lattices ([Re], 39.23).
For the last assertion note that if A4 is principal then on the one hand

t _ t
dimy (A/PB) = Zdimk(jl(])) = Z dn? = tdn} = en
j=1 j=1

for i € {1,...,t}. On the other hand since M;/M ;P is an irreducible Z(j)-
module we have

t
dimy (A/P) = £ dim(M;/M;B) = ftdn; = fen,
j=1

Therefore we get f = n;. Finally because of

n? = dimy,(A/wA) = i dimy (P /P = e dimy (A/R)

=0

we obtain ef = n. O

Suppose that A is principal. We denote the subgroup of A* of elements x € A*
with zA = Az by N(A). For z € N(A) there exists a unique m € Z with
r A =P™ and we set v4(x) = 2. We have a commuative diagram with exact
rows

1 O* K* LA/ 0
| | |
1 A* N(A) —2— 1z 0

where vg denoted the normalized valuation of K and the vertical maps are the
natural inclusions.

Next we consider the special case where A = Endg (V) for a finite-dimensional
K-vector space V (i.e. Aissplit). A lattice chainin V is a sequence of O-lattices
L, ={L;|i € Z} such that
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(1) Ez Q ;CiJrl for all i € Z.

(ii) There exists a positive integer e, the period of Ly, such that £;_, = wL;
for all i € Z.

The ring
A=End(L,): ={feA| f(L;)CL; Vi Z} (4)
is a hereditary O-order in A of index (= type) e with invariants n;, =
dimy(L;/Li—1). We have:
P =End™(Ly): ={f€A| f(L)CLitm Vi€ L} (5)

Any hereditary O-order in A is of the form (4) for some lattice chain.

2.3 ETALE BASE CHANGE

We keep the notation and assumption of the last section. Let A be a central
simple algebra and A an O-order in A with radical .

LEMMA 2.3. The following conditions are equivalent:

(i) A is hereditary.

(ii) There exists a two-sided invertible ideal M in A such that A/9M is semisim-
ple and M = wA for some e > 1.

Moreover if M is as in (ii) then M = P.

Proof. (i) = (ii) follows from ([Re], (39.18) (iii) ) (for 2 = P).

(ii) = (i) In view of ([Re], (39.1)) it suffices to show that 9t = 9. The
inclusion 92O is a consequence of the assumption that A4/9M1 is semisimple.
The converse inclusion follows from ([Re], exercise 1). O

LEMMA 24. Let K'/K be a finite unramified extension and O’ the integral
closure of O in K'. Then A is hereditary (resp. principal) if only if A @0 O’
is hereditary (resp. principal). In this case B @o O is the radical of the latter.

Proof. We will prove only the statement for hereditary orders and leave the
case of principal orders to the reader. If A is hereditary then 9: =P R O’
satisfies the condition (ii) of Lemma 2.3. Hence A ®n O is hereditary.

To prove the converse let P be a left A-lattice. We have to show that

Homy (P, ) : Mod4 — Modo
is an exact functor or — since @’ is a faithfully flat O-algebra — that
HOIn_A('P, I ®o = HOInA@@O’(P Ko O/, - Qo O/)

is exact. However the assumption implies that P ®c O’ is a projective AQ o O'-
module. O
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2.4  MORITA EQUIVALENCE

Let A be a central simple algebra and A a hereditary O-order in A with radical
PB. If A" is another O-order in A containing A then A’ is hereditary as well
and P4 CP.

LEMMA 2.5. Let Ay, ..., As be a collection of O-orders in A containing A with
radicals P, ..., Ps. If A N...NAs = A then P1 + ... +Ps =P.

Proof. Clearly 1+ ...+ B,CB. By Lemma 2.4 to prove equality we may pass
to a finite unramified extension K'/K. Hence we can assume A = Endg (V)
for some finite-dimensional K vector space V and that there exists a lattice
chain £, = {£; | i € Z} in V with period e = e(.A) such that

Clearly it is enough to consider the case where s = e and A; = {f € A |
F(L)CL;}, i = 1,...,e are the different maximal orders containing A. We
proceed by induction on e so we can assume that e > 1 and that the radical

B ={feA|f(L)CL;_1 Viz0,1mode and f(L;)CL; 2 Vi=1mode},

of B: = Ai1N...NAe_1is=P1+... +Pe_1.
Let f € B. Consider the diagram of k-vector spaces

f
£1/£0—>£0/£71

!

Lo/Lo— 2> Lo/l e

where the vertical maps are induced by £1 < L. and id : Ly — Lo respectively
and the upper horizontal map by f. There exists a dotted arrow g making
the diagram commutative. Let g € Homp (L., Lo) = P be a “lift” of g.
Then g(z) = f(z) mod L_, for every x € Ly. Therefore (f — g)(£1)CL_1
and (f — g)(L:i)Cf(L:) + g(Le)TLi1 + Lo = L1 for i = 2,...,e — 1 and
consequently f — g € P’. This proves PCPR' + Pe = P1 + ... + Pe—1 + Pe.

O

COROLLARY 2.6. Let A be a hereditary O-order of type t with radical B in
the central simple K -algebra A and let Ay, ..., As denote the different mazimal
orders containing A. Then

A1+...+At=‘33‘t+1

is a two-sided invertible ideal.
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Proof. By ([Re], section 39, exercise 10) and Lemma 2.5 above we have
P=Pr+...+P=PA +... +PA =P (A +...+ A)
hence A; + ...+ A =P+, 0

Let B be another central simple K-algebra which is equivalent to A and let B
a maximal order in B with radical 9. Let I be an invertible A-B-bimodule,
J: =Hompg(I,K) and let {Z; | i € Z} and {J; | i € Z} be as in section 2.2.

LeMMA 2.7. Consider I; @ J; (resp. Ji @4 L;) as a submodule of (I; ®p
Ji)®@o K=1®pJ (resp. J @a1).

(a) > iy jm—t11 Li ®8 J; = A as an A-A-bimodule.

(b) Ji @4 TL; is an invertible bimodule. If i +j = 0 then J; @4 Z; = B (as
B-B-bimodule). We have

MYT; ®aZ;) ifi+7i=0 modr;
T @4 L; ifi+j#20 modr

Proof. (a) Under the identification I ® 5 J = Homg (J, K) ® g J = Homp(J, J)
the submodule Z; ®p J; corresponds to Homp(J—;,J;). Hence if we fix an
A-A-bimodule isomorphism I ® g J = A so that Homp(Jo, Jo) is mapped to
Ao then for arbitrary ,j € Z with i + j = 0 the module Homg(J_;, J;) is
mapped to A;. It follows EiJrj:O 7, ®8 J; =2 A1+ ...+ A, hence together
with Lemma 2.5 the assertion.

(b) The proof of the first two statements is similar and will be left to the reader.
For the last statement note that

Coker(J; ®aZj — Jix1 ®aZj) = Jix1/Ti 4Ty = Tiva/Ti @3 L/ Tj1

Tir1 @Al =T @aTjr1 = {

By (iii) above we have
Tis1/Ti @3 L5 [Tj1 = Tix1/ Ti O I,/T;1 =B
ifi+j=0 modtand Ji41/J; ®57Z;/T;—1 =0ifi+j#0 modt. |

COROLLARY 2.8. The assignment
M= {MUTL; | i €Z}

defines an equivalence between the category of right A-lattices and the category
of increasing chains {M; | i € Z} of right B-lattices such that M;9 = M,;_;
for all i € Z. A quasi-inverse is given by

MilieZ} > Mi®pJ

itj=—t+1

Here the sum is taken inside of (;c,, Mi) @5 J.
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PropOSITION 2.9. Let A; and As be hereditary O-orders in central simple
K-algebras Ay and As. The following conditions are equivalent:

(i) A1 and Ay are Morita equivalent.

(i1) Ay and Ay are equivalent and Ay and As have the same indez.

Proof. We will show only that (ii) implies (i). The proof of the converse
is easier and will be left to the reader. Suppose that A; and Ay have the
same period. Let D be a central division algebra over K equivalent to A;
and Ay and D be the maximal O-order in D. For v = 1,2 we fix increasing
sequences of A,-D- and D-A,-bimodules {Z\") | i € Z} and {T\") | i € Z} as
in 2.2. Put 1) = U, 7 and J@) = U,c, T, The assumption implies
that X: =37, ) Ii(l) ®p jj(Q) is an A;-As-lattice (the summation takes
place in IV @p J®) and Y: = D iim—ti1 Il@) ®p Jj(l) a Aa-A;-lattice. By
Corollary 2.8 above the assignment M — M ® 4, ¢X defines an equivalence
between the category of right A;-lattices and the category of right As-lattices.
A quasi-inverse is given by N — AN ®4, Y. This implies that A; and As
are Morita equivalent. In fact using Lemma 2.7 it is easy to see that the
X®A2y%A1andy®A1X%A2. O

Recall that a right A-lattice M is called stably free if there exists integers
r > 1,s > 0 such that M"™ = A5,

LEMMA 2.10. Let A is a principal O-order of index e in a central simple K-
algebra of dimension n%. Let My, ..., M, be representatives of isomorphism
classes of indecomposable right A-lattices. For a right A-lattice M # 0 the
following conditions are equivalent.

(i) M is stably free.

(it) M= (M; @ ...0 M)" for some positive integer r.

(iti)) D: = End (M) is a principal O-order of index e in a central simple
K-algebra D.

Moreover in this case A and D are Morita equivalent and M is an invertible
D-A-bimodule. If ranko M = rne then dimg (D) = (er)?.

Proof. The equivalence of (i) and (ii) follows immediately from Lemma 2.2.

(ii) < (iii) By Lemma 2.4 we may pass to a finite unramified extension K'/K.
Therefore we can assume that A = Endg (V) for an n-dimensional K-vector
space V and A = End(L,) for a lattice chain £, with period e in V. There
exists r1,...,7e > 0 with

ML S LD
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Since Hom 4(L;, £;) = p* with ¢ — j < pe < ¢ — j + e we have

My vy (((9)) MTIMEOg ceo My, EO%
My (p) Myyry(O) ... My, (O
EndA(M)% 2.1 2.2 . 2.

Mo ri(p) Mrry(p) oo My, (O)
By ([Re], 39.14) the order on the right is a hereditary order in M,,(K) where
m =3¢ ;7. Itsindex is = e if and only if r; > 1 for all ¢ € {1,...,e} and in
this case the invariants are (r1, ..., 7). The equivalence of (ii) and (iii) follows.
The proof of the last assertion will be left to the reader. O

COROLLARY 2.11. Let A be as in 2.10 and let M be a stably free A-module.
We have:

(a) ranko M is a multiple of en.

(b) M is free if and only if ranko M is a multiple of n. In particular if e = n
then M 1is free.

Proof. If A= M,,(D) where D is the central division algebra equivalent to A
then rankp M; = md? with d? = dimg (D). Hence if M = (M; & ... S M,;)"
for 7 € N then rankp M = rtmd? = ren. The second assertion is obvious.

O

COROLLARY 2.12. Let A and B be a principal orders in central simple K-
algebras A and B and assume that dimg(A) = dimg(B) = n? and e(A) =
e(B) =e. Let T be an A-B-bimodule. The following conditions are equivalent:
(i) T is an invertible A-B-bimodule.

(ii) T is a free left A-module of rank 1.

(iii) T is a free right B-module of rank 1.

Proof. (i) = (iii) We show first that Z is a lattice. Let J be an inverse of Z
and g_torJ its B-torsion (A-)submodule. Since g_torJ @4 Z — T Qa4 L =B
we have g_iorJ @4 Z = 0 and therefore g_ior = B_tord Q4L 5 J = 0. For
m € J,m# 0 we get Bm = B as left B-module and therefore

IT2T@Bm—TITsJ=A.

Hence 7 is a lattice. Let D: = Endg(Z) 2 A. Thus Z is a D-B-bimodule and
so Z®p J = Ais a D-A-bimodule. But End 4(A4) = A and therefore D = A.
By 2.10 and 2.11, 7 is a free B-module of rank 1.

(iii) = (i) By 2.10, D is a principal order of index e in a central simple K-
algebra D of dimension d? and T is an invertible D-B-bimodule. Since D D A
this implies D = A. O

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 595-654



608 MICHAEL SPIESS

COROLLARY 2.13. Let A be a hereditary O-order in central simple K-algebra
A of index e. Then there exists a principal O-order D in a central simple K -
algebra which is Morita equivalent to A. In fact that D can be chosen such that
rankp (D) = 2.

Proof. Let A’ be a principal O-order of index e in A’: = M.(A) (since €?
divides dimg (A’) and e is a multiple of the order of [A’] = [4] in Br(F) such
an order clearly exists). By Proposition 2.9 A’ is Morita equivalent to .A. The
second assertion follows immediately from 3.11. O

2.5 MAXIMAL TORI

Let A be a central simple K-algebra of dimension n? and A a hereditary O-
order in A with radical 3. In this section we consider commutative étale
O-subalgebras of 4. Note that a commutative finite flat O-algebra T is étale
if and only if Rad(7T) = @wT.

LEMMA 2.14. Let T be a commutative étale O-subalgebra of A. Then we have
Rad(T) =T n*P.

Proof. Since T is a direct product of local O-algebras 7 = [[ T; and Rad(T) =
[TRad(7;) it suffices to prove the assertion for each factor. Thus we may
assume that 7 is a local ring. Hence Rad(7) is the maximal ideal of 7 which
implies 7 NP C Rad(7T). On the other hand, by the assumption, we have
Rad(7) = @T hence Rad(T) C T NP. O

A commutative étale O-subalgebra T of A is called maximal torusif rankp T =
n. It follows immediately from the structure theory for hereditary O-orders in
central simple K-algebras ([Re], 39.14) that there exists a maximal torus in A.
We have the following characterization of maximal tori:

LEMMA 2.15. Let T be a commutative étale O-subalgebra of A. The following
conditions are equivalent.

(1) T is a mazimal torus.

(11) T is a mazimal commutative étale O-subalgebras of A.

(i) T=ZA(T)={zc A| at=tx VteT}.

() T/Rad(T) is a mazimal commutative separable k-subalgebra of A/PB.

Proof. The simple proof of the equivalence of the first three conditions will be
left to the reader.

(iii) & (iv) By 2.14 above we have Rad(7) = 7 NP = wT. Thus it follows
from Lemma 5.1 of the appendix that (iv) holds if and only if rankey 7 =
dimg (T /@wT) = n. ]
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LEMMA 2.16. (a) If k =F, and A is a mazimal order in A then A admits a
mazximal torus isomorphic to O, the ring of integers of the unramified exten-
sion of degree n of K.

(b) Let O" be a finite étale local O-algebra and T be a mazimal torus in A.
Then T @0 O’ is a mazimal torus in A R0 O'.

(¢) For any two mazimal tori T,T' of A there exists a finite étale local O-
algebra O' such that T @0 O and T' ®o O’ are conjugated (by some a €
(A®o O)*).

Proof. (a) and (b) are obvious.

To prove (¢) we may pass to a finite unramified extension of K if necessary so
that A = Endg (V) and A = End(L,) where V is a finite-dimensional K-vector
space and L, is a lattice chain in V. We may also assume that 7 = O™ &
T where n = dim(V). Let e be the period of £, and let £;: = L;/L; 1.
Consider the A: = A/P-module £: = @;_, L;. AsaT: =T /Rad(T)- and
T = T’/ Rad(T')-module it is free of rank 1 (by Lemma 5.3 of the appendix).
Hence there exists an isomorphism © : 7 — 7 such that ©(f)z = iz for all
t € T,z € L. We choose a lifting © of © i.e. an isomorphism of O-algebras
© : T — T’ which reduces to © modulo w. Then for any i € Z we h ave

O(t)x =tz forallt € T,z € L; (6)

Since Ly is a free T- and T’-module of rank 1 there exists f € Autp(Ly) C A*
such that f(tz) = O(t)f(z) for all t € T,z € Ly. Hence O(t) = ftf~ for all
t € T and therefore 7' = fTf~1. We claim that f € A*, ie. f(£;) = L; for
all ¢ € Z. For that it is enough to see that f(L£;) C £; for alli=1,2,...e and
in fact for i = 1 (by induction). Note that f(L£1) C f(Le) = w1 f(Loy) = Le.
Choose i € {1,2,...,e} minimal with f(£;) C £; and assume that ¢ > 2. Then
f induces a nontrivial 7-linear homomorphism f : £; — £; such that

f(tx) = 0O(t) f(x) = tf(z) forallt € T,z € L;.

On the other hand since £ is a free T-module of rank 1 we have Homy (L1, £;)
= 0, a contradiction. This proves f € A*. O

We need the following two simple Lemmas in section 3.3.

LEMMA 2.17. Suppose that A is principal and let T be a maximal torus in A.
Let M be a A-lattice and put T: = T /Rad(T). The following conditions are
equivalent.

(i) M is stably free.

(i5) M/PBM is a free T-module.

The proof will be left to the reader.

LEMMA 2.18. Assume that A is principal and let T be a mazimal torus in
A. Let 0 > M' - M — N — 0 be a short exact sequence of A-modules and
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assume that M is a stably free A-lattice and wN = 0. The following conditions
are equivalent.

(1) M’ is stably free.

(ii) N is a free T-module.

Proof. By using the exact sequence
0 — Ker(W @4 - N) = M /BM — M/BM — N /BN — 0
we see that

(M /PBM] = [M/BM] + [Ker(NV @4 P = N)| — [N/FN]
= M/BM]+ N @aB] - V]

in the Grothendieck group Ko(T). Note that [N] = [N ®4 %] if and only if
N is a free T-module. Hence (ii) is equivalent to the equality [M’/PBM’'] =

[M/BM] in Ko(T). The assertion follows from 2.17. O

2.6 LOCAL THEORY OF INVERTIBLE FROBENIUS BIMODULES

Let O be a henselian discrete valuation ring with quotient field K, maximal
ideal (w) = p and residue field & = O/p. We assume that k is finite of
characteristic p. Let vg be the normalized valuation of K. We denote by inv
the canonical isomorphism Br(K) — Q/Z of class field theory. Let O be a
finite étale local O-algebra with quotient field K’'. By o € G(K’/K) we denote
Frobenius isomorphism (i.e. o(z) = 2#* mod p). For an @’-module M we
write M for M Qo , O' (or equivalently “M = M with the new O’-action
x-m=o(x)m).

Let A be a central simple K-algebra of dimension d? and A a principal O-order
in A with radical P8 and index e = e(A) (note that we have einv(A) = 0). Let
M be a free right Ap,-module of rank 1 together with an isomorphism of
Aopr-modules

¢ MP" — M
for some m € Z. We set
B: =Enda,, (M,¢) ={f € Enda,, (M) | ¢pof=7foq}.

LEMMA 2.19. The O-algebra B is a principal order of index e in the central
simple K-algebra B: = By of dimension d2. We have

inv(B) = inv(A4) + T mod Z (7)

e
Proof. Let ¢r: = ¢ Qo idgs : “(Mg/) — Mg. By Lemma 2.10
the O’-algebra B': = Endg,, (M) is a principal O’-order of index e in
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B': = Enda,,(Mg:). Define a o-linear isomorphism ¢ : B’ — B’ by
Y(f): = ¢}} o fo¢g. We have

B={beB | ¢y(b)=b} and B =Bo.

Together with Lemma 2.4 this implies the first statement. The proof of the
second assertion will be left to the reader. ]

Conversely suppose that we have given a second central simple K-algebra B
of dimension d? and a principal O-order B in B of index e. We also assume
that [K’: K] is a multiple of the order of [B ® A°PP] in Br(K). Let m be any
integer such that (7) holds.

LEMMA 2.20. There exists an invertible Bo/-Ao:-bimodule M and an isomor-
phism of bimodules

¢ TMP™ — M.

Proof. By Proposition 2.9 the principal orders Bo, and Ap/ are Morita equiv-
alent. Let M be an invertible Bp/-Ap/-bimodule. Then 7 M is invertible as
well. Hence there exists an isomorphism ¢ : “MP™ — M for some m’ € Z.
By 2.19 we have

/

inv(B) = inv(A4) + ™ od Z
e

m/—m

and therefore m = m’ mod e. Put ¢: =w™ = ¢'. O

For the rest of this section we assume that O is an Fg-algebra (¢ = p” for
some r € Z) and let k' be an (possibly infinite) algebraic extension of k& whose
degree (over k) is a multiple of e. Let O': = O®p, k' and 0: =idp ® Frob, €
G(O'/0). For p € Homg, (k, k") = Homy (k ®r, k', k") we denote the kernel of
0" — k®p, k' — k' by pj, and we set O),: = Ol/%' Then O, is a (pro-)finite
(pro-)étale local O-algebra whose degree is a multiple of e and O" = €, O,
Similarly
Aor=EP A,  with A, = Ao,
P

and Por = Rad(Ao) is equal to the product [], Bj, where P, denotes the
maximal invertible two-sided ideal Ker(Ao: — Aj,/ Rad(A})) of Aos. For the
distinguished element ¢: = incl : k < &’ in Homp, (k,%’) we put p’ = p/, and
P =P.. Let M be a free right Ap,-module of rank 1. For m € Z the Aop/-
module 7 (M (P’)™) is also free of rank 1. Hence there exists an isomorphism

¢ T(MEF)™) — M.
If we set

B: =Enda,, (M,¢) ={f €Enda,, (M)| ¢o f= oo}
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then one can deduce easily from Lemma 2.19 that B is a principal O-order of
index e in the central simple K-algebra B = Bk and that equation (7) holds.

Conversely given such a principal O-order B of index e and m € Z such that
(7) holds there exists a pair (M, ¢) as above with B = End,, (M, ¢). To see
this let M be any invertible Bo/-Ap/-bimodule. Since M is invertible as well
we have

M) =M (8)

for certain m, € Z. Since () = ‘Bgmbq op We may assume — after replacing
M by M for a suitable invertible two-sided Ap/-ideal 2 — that m, = 0 for
all p € Homp, (k, k") except p = t. As in the proof of Lemma 2.20 we deduce

inv(B) = inv(A) + ™ mod Z
e

hence m, 2 m mod e and therefore (') = (P’')™. Hence there also exists
an isomorphism 7 (M (P')™) = M.

DEFINITION 2.21. A pair (M, @) consisting of an invertible Bo/-Ap-bimodule
M and an isomorphism ¢ : “(M(P)"™) = M is called an invertible ¢-A-B-

bimodule of slope — over O'.

We have seen that an invertible Bo/-Ao/-bimodule of a given slope r € Q exists
and only if r = inv(A) —inv(B) mod Z. It is also easy to see that any two
invertible Bo/-Ap:-bimodules of the same slope differ (up to isomorphism) by
a fractional A-ideal. This implies that if k" is an algebraic extension of k¥’ and
0" = O ®r, k" then any ¢-A-B-bimodule over 0" is obtained by base change
from an ¢-A-B-bimodule over O'.

REMARK 2.22. Assume that [k’ : k] = e and let n = [k’ : Fy]. Let (M, ¢)
be an invertible Bo/-Ap/-bimodule of slope —=. For r € Z/nZ we put P;. =
"B, We have [lcz/nz B = Bo = pAor. For each two-sided invertible
ideal 2’ of Ao/ and r € Z/nZ, the map ¢ induces isomorphisms (7" M)’ —
("TﬁlM)Ql’ B! "™ which will be also denoted by ¢. Consider the map

o M= (M) L (M D M T B = M (9)
reZ/nZ

Since (9) is Bp/-Ap:-bilinear and commutes with ¢ there exists an element
x € K with vg(x) = m such that (9) is given by multiplication with xz. This
fact will be used later when we discuss level structure at the pole of A-elliptic
sheaves.

3 GLOBAL THEORY OF HEREDITARY ORDERS

In this section we study hereditary orders in a central simple algebras over a
function field of one variable (though most results hold also for number fields).
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We shall show that two hereditary orders are Morita equivalent if their generic
fibers are equivalent and all their local indices are the same. Furthermore any
such hereditary order is Morita equivalent to a locally principal one. We will
then study the Picard group of a locally principal order A and introduce the
notion of A-degree of a locally free A-module of finite rank. In the final part
we will introduce the notion of a special A-module.

In this chapter k denotes a fixed perfect field of cohomological dimension < 1
and X a smooth projective geometrically connected curve over k with function
field F. For z € |X| we denote by O, the completion of Ox , and by F, the
quotient field of O,. The maximal ideal of O, will be denoted by p,. If V is a
coherent O x-module then we set V, = V®p, O, and if V is a finite-dimensional
F-vector space we put V, =V Qp F,.

3.1 MORITA EQUIVALENCE.

Let V be a finite-dimensional F-vector space. The set of locally free coherent
Ox-modules V with generic fiber V,, = V' is in one-to-one correspondence with
the set of O,-lattices V, in V, for all € | X| such that there exists an F-basis
B of V with V, = 37,5 O,b for almost all 2. Consequently if UCX is an
open subscheme then there is a one-to-one correspondence between coherent
and locally free Ox-modules V and coherent and locally free Oy-module Vi
and together with an O,-lattice V, in Vy @ F, forallz € X —U.

Let A be a central simple F-algebra and A a hereditary O x-order in A. We put
ex(A): =e(A;). There are only finitely many points 2 € | X| with e, (A) > 1.
Define the divisor Disc(A) as Disc(A): =} ¢ x| (ez(A) — D)z. If k is finite
and z € |X| then inv,(A) denotes the image of the class of A, under the
canonical isomorphism of class field theory Br(F,) — Q/Z.

PRrROPOSITION 3.1. Let Ay, A be central simple algebras over F' and let A; and
As be hereditary Ox -orders in Ay and As respectively. The following conditions
are equivalent.

(i) A1 and Az are equivalent.

(1) A1 and As are equivalent and (A1), and (Ag)y are equivalent for all x €
| X|.

(111) Ay and As are equivalent and Disc(A;) = Disc(Az).

Moreover if k is a finite field then the above conditions are also equivalent to:
() invy (A1) = invy(As) for all x € | X| and Disc(A;) = Disc(As).

Proof. (i) = (ii) is clear. (ii) < (iii) follows from Proposition 2.9 and (iii)
< (iv) from the Theorem of Brauer—Hasse—Noether. It remains to show that
(ii) implies (i). Let U be an affine open subscheme of X contained in the
complement of Disc(A;) = Disc(Aq) in X. By ([Re], 21.7) A;|y and As|y are
Morita equivalent. Let Zy; be an invertible A; |y-Asz|y-bimodule and let Z, be
an invertible (Aj)z-(Asz),-bimodule for each z € X — U. Since there is only
one invertible (A1),-(A2).-bimodule up to isomorphism we may assume that
I, F, =TIy ® F, i.e. that Z, is a lattice in Zyy ® F,.. It is easy to see that the
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locally free Ox-module Z corresponding to Zy and the Z,, x € X — U is then
an invertible A;-As-bimodule. O

A locally principal Ox-order A is a hereditary Ox-order in a central simple
F-algebra A such that A, is principal for all z € | X|. The rank of A is its rank
as an Ox-module, hence = dimp(A). If A is a hereditary Ox-order in A then
it is locally principal if for example A, is either maximal or e, (A) = d for all
a € | Disc(A)|.

Suppose that A is a locally principal Ox-order of rank d?>. We define two
positive integers e(A), §(.A) by

e(A): =lemfe,(A) | z € |X]|} (10)
0(A): = lem{ numerator of %é)) | z € |X|}

According to Lemma 2.2 we have §(A) | e(A) | d. If A is locally principal then
one can easily see that

2
deg(A) = _4

1
(- ) des(e).

z€|X|

In particular if B is a second locally principal Ox-order of rank d? with
Disc(A) = Disc(B) then
deg(A) = deg(B). (11)

COROLLARY 3.2. Let A be a hereditary Ox -order in a central simple F-algebra

A. Then there exists a locally principal Ox -order D which is Morita equivalent
to A. In fact D can be chosen such that ranke,, (D) = e(A)2.

Proof. That A is equivalent to a locally principal Ox-order follows easily from
the corresponding local statement 2.13. In fact if B: = M.(A) then for all
x € | Disc(A)| we can pick a principal O -order B, in B, equivalent to A,. If
U: = X — |Disc(A)| and By is a maximal Oy-order in B then there exists a
uniquely determined hereditary Ox-order B in B with B ®o, O = B, for all
x € | Disc(A)| and Bly = By. The order B is locally principal and equivalent
to A by 3.1.

Thus to prove the second statement we may assume that A is locally prin-
cipal. Let Z be a locally stably free A-module which is of rank de as an
Ox-module. By Lemma 2.10 and 3.1 above it follows that D: = End 4(Z) is
a locally principal Ox-order in End4(Z,). Moreover D is equivalent to A and
rankop, (D) = e(A)2 O

3.2 LOCALLY FREE A-MODULES

THE PICARD GROUP OF A LOCALLY PRINCIPAL ORDER. In this section A
denotes a locally principal Ox-order of rank d?. We are going to compute the
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Picard group of A. We define

Div(A): ={ > nmz € Div(X)® Q| ex(A)n, € Z Y € [X|}.
z€|X|
Note that deg(Div(A)) = Ti\)Z' For a divisor D =} ¢ x| na@ € Div(A)) we
denote by A(D) the invertible A-A-bimodule given by A(D)|x_|p| = Alx—|p|
and A(D), = P for all # € |X|. If D € Div(X) then A(D) = A®o,
Ox (D).

ProrosiTiON 3.3. The sequence

0 — F*/k* 2% Div(d) "7 pic(4) — 0
15 exact.
Proof. This follows from ([Re], 40.9). O

We also need to consider the group of isomorphism classes of invertible A4-.A4-
bimodules with level structure and give a description of it as an idele class
group. Let I = > ngx be an effective divisor on X. The corresponding
finite closed subscheme of X will be also denoted by I. A level-I-structure on
an invertible A-A-bimodule £ is an isomorphism 8 : Ay — L; of right Aj-
modules. We denote by Picy(A) the set of isomorphism classes of invertible
A-A-bimodules with level-I-structure. If (£1,81), (L2, B2) are invertible A-
A-bimodules with level-I-structures we define the level-I-structure $152 on
L1 ®4 Lo as the composite

B1B2  Ar L) (L)1 = A1 @4, (L)1 w) (L1 ®4 L)1 (12)

thus defining a group structure on Picj(A). Note that unlike Pic(.A), Pic;(A)
is in general not abelian. In fact we have a short exact sequence

0— T, A" /k* — Picy(A) — Pic(A) — 0 (13)
where the first map is given by a € T'(I, A7)* = (A, l, : Ar = Aj) .
Let Ur(A): = Ker([[, ¢ x| Az = [y x| (Aa/Pi=As)* =TI, Ar)*) and let
Cr(A): = (IToepx N(A)/Ur(A)F

where H/zel x| N (A;)) denotes the restricted direct product of the groups
{N(Az))}ze x| with respect to {A}},c x| Given a = {a.}. € H;ax\ N(A,)
we put div(a) = >, ¢ x| VA4, (az)z. Left multiplication by a induces a level-I-
structure 8, : Ar — A(div(a));.

COROLLARY 3.4. The assignement a +— (A(div(a)),B8,) induces an isomor-
phism Cr(A) = Picr(A).
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RELATIVE DIVISORS AND INVERTIBLE BIMODULES. Let S be a k-scheme and
let 7: X xS — S be the projection. We need to define the bimodule A(D)
also for elements of a certain group of relative divisors Div(A K Og). For the
latter we use the following ad hoc definition. Assume first that S is of finite
type over k. Let S be the collection of all connected components of x x S where
x runs through all closed points of X. Thus if S’ € S there exists a unique
closed point z: = 7(S") with S’ C z x S. We set

1

Div(AK Og): = —Z.
% eﬂ"(S/)(‘A)

Let R be the integral closure of k in T'(S, Og). Note that for x € |X| the set
of open and closed subschemes of  x S corresponds to the set of idempotents
in k(z) @, I'(S,0g). If f:S; — S3 is a morphism of k-schemes there is an
obvious notion of a pull-back f* : Div(A K Og,) — Div(AK Og,). For an
arbitrary k-scheme we define Div(A K Og) as the direct limit of Div(AX Og)
over the category of pairs (S, g) consisting of a k-scheme S’ of finite type and
a morphism g : S — S’ in Sch /k.

Let S € Sch /k. A k-morphism zg : S — X which factors as S — Spec k(z) —
X for some z € | X]| yields an element — denoted by zg as well — of the group
Div(AX Og). For that we can assume that S is of finite type. Since the graph
'y = (2g,idg) : S — X x S is an open and closed subscheme of 2 x S it is
a disjoint union of connected components and we define xg € Div(A X Og) to
be the sum of these components.

There exists a unique homomorphism

Div(AK Og) = Pic(AKOg), D (AKX Og)(D) (14)

compatible with pull-backs which agrees with the previously defined map in
case S = Speck’ for a finite extension k’/k. It suffices to define (14) for
ﬁD, where D is a connected component of z x S for some x € |X|. It is
also enough to consider the case where S is connected and of finite type over
k. Let R be the integral closure of k in T'(S,Og). Then Spec R is connected
and finite over Speck, i.e. R is an artinian finite local k-algebra. Let k' denotes
the residue field of R. Since k is perfect the canonical projection R — k' has
a unique section. Therefore the structural morphism S — Speck factors as
S — Speck’ — Speck. Thus by replacing k£, X and A by k' and X} and
AKX k' respectively we can assume that the residue field of R is k. However, in
this case,  x S is connected for all € |X|, hence D = z x S with = w(D).
S o we are forced to define (AKX OS)(mD)Z = ﬂ*(A(mz))

A-RANK AND A-DEGREE. Let f:S — X be a morphism. For £ in f.(4) Mod
and F in Mody-(4) we put £ @4 F: = E Qpeny F. If D = Zme|x\ NnyT €
Div(A) we set £(D): =E®a f*(A(D)) and F(D): = f*(AD)KOg) @4 F.
Let S be a k-scheme. We denote by 4Vect(S) (resp. Vect 4(5)) the category co-
herent and locally free left (resp. right) AX Og-modules. For F in 4Vect(S) or
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Vect 4(S) let rank 4 F be the locally constant function s ~— rank amp(s) (F|xxs)

on S (hence rank4 F can be viewed as an element of Z™(%)). For a posi-
tive integer r we denote by 4Vect'(S) (resp. Vect’y(S)) the subcategory of
F € aVect(S) (resp. F € Vect4(S)) with rank 4 F = r.

Let F be a locally free AKOg-module of rank r. Define det 4 F as the image of
the isomorphism class of F (viewed as an element of H!(X x S, GL,(AX Og))
under the map

HL (X x S,GL.(AR Og) — H]

zar zar

(X x 8,0") =Pic(X x 5)

induced by the reduced norm Nrd : M,.(A) — F. We obtain a locally constant
function

1
dega(F): S — EZ,S — deg((deta F)|xxs)
It is easy to see that

1

dega(F) = pE (deg(F) — rank 4(F) deg(A)).

In particular since deg(A(D)) = deg(A) + d? deg(D) we have
dega(A(D)) = deg(D)
for D € Div(A).

LEMMA 3.5. (a) Let 0 — F; — Fo — F3 — 0 be a short exact sequence of
coherent and locally free AX Og-modules. Then

dega(F2) = dega(F1) + dega(Fs).
(b) Let £ be an object of Vect’y(S) and F be an object of aVect®(S). Then

1

o (deg(€E @4 F) —rsdeg(A)) = rdega(F) + sdega(E).

(c) Let B be a second locally principal Ox-order of rank d* equivalent to A.
Let &€ be an object of Vect’y(S) and let I be an invertible A-B-bimodule. Then

degp(& @4 Z) = dega(E) + rdega(T).
(d) Let € be an object of sVect'(S) and D € Div(A). Then
degA(E(D)) = dega(€) + r deg(D)
Proof. (a) is obvious, (c) follows from (b) and (11) and (d) is a special case of

(¢). Note that by 2.12 the bimodule £ in (c) is a locally-free left A- and right
B-module of rank 1.
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For (b) it is enough to consider the case when S is a connected k-scheme of
finite type and therefore — by chosing a fixed closed point s € .S and taking the
base change Spec k(s) — Spec k — to consider the case S = Speck. If

& (15)

is a diagram of locally free A X Og-modules of the same rank r and injective
AKX Og-linear homomorphisms then it is easy to see that (b) holds for £ if and
only if it holds for £’. Since £|y = A" |y for some non-empty open subscheme
UCX there exists a diagram (15) with & = A”. The assertion follows. O

It follows from 3.3 or 3.5 (b) that degy : Pic(A) — Q is a homomorphism.
We denote its kernel by Pico(A). Also if I € Div(X) we let Picyo(A) be the
subgroup of (£, ) € Picr(A) with dega(L) = 0. The image deg4(Pic(.A)) is
equal to ﬁZ.

REMARK 3.6. Let A, B be locally principal Ox-order of rank d? and suppose
that A and B are equivalent. The set of isomorphism classes of invertible
A-B-bimodule has a simple transitive left Pic(.A)-action. Hence for any two
invertible A-B-bimodule Z, J the degrees dega(J) and dega(Z) differ by a
multiple of ril)' Call A and B strongly Morita equivalent if there exists an
invertible A-B-bimodule Z with deg(Z) = 0. It is easy to see that a given
equivalence class of locally principal O x-orders of rank d? decomposes into z
strong equivalence classes (where e and § are defined in (10)).

3.3 SPECIAL A-MODULES

Let A be a locally principal Ox-order of rank d2. If g : U — X is an étale
morphism then a maximal torus in Ay: = g*(A) is a maximal commutative
étale Oy-subalgebra of Ay .

DEFINITION 3.7. A right AKX Og-module K is called special of rank r if the
following holds:

(i) K is coherent as an Ox xs-module and the map Supp(K) — X xS — S is
an isomorphism. Hence Supp(K) is the image of the graph of a morphism
N=N(K):S— X and K is the direct image of a N*(A)-module — also
denoted by KC — by the graph Ty = (N,idg) : S = X x S.

(i) Consider K as a sheaf on S as in (i). For any étale morphism g : U — X
and mazimal torus T of Ay, (gs)*(K) is a locally free (Ny)*(T)-module
of rank r. Here gg (resp. Ny ) denote the base change of g (resp. N ) with
respect to N (resp. g).
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We denote by Cohly o, the stack over k such that for each S € Sch/k,
Coh’y ,(S) is the groupoid of special AKX Og-modules of rank r. The mor-
phism K +— N (K) will be denoted by N : Cohy o, — X.

REMARKS 3.8. (a) By Lemma 2.16 it suffices to check condition (ii) for a fixed
étale covering {U; — U} and maximal tori 7; of Ay,.

(b) Let K be as in 3.7 satisfying (i) and assume that N(K) : § — X factors
through X — | Disc(A)|. Then K is special of rank r if and only if K is a locally
free of rank rd as an Og-module.

(c) Let A’ be another locally principal Ox-order of rank d? equivalent to A and
let Z be an invertible .A-A"-bimodule. Tensoring with Z maps Coh, , isomor-
phically to Cohy, .. This follows easily from the fact that, locally on X, A and
A’ are isomorphic. More generally if A are equivalent on some open subscheme
U C X and 7 is a A-A’-bimodule which is invertible on U then tensoring with
7 yields an isomorphism - ® 4 Z : Cohil,Sp xXxU — CohTA,7sp xxU.

Except in the appendix, we need to consider only the case r = 1. In the fol-
lowing we investigate the geometric properties of Coh g ¢,: = Cohly o, Recall
that a morphism f : Y — X is said to be semistable if its generic fiber is
smooth and for any y € Y there exists an étale neighbourhood Y” of y, an
open affine neighbourhood Spec R of x = f(y) and a smooth X-morphism
Y' - Spec R[Th, ..., T,]/(T) --- T, — @) for some 7 > 1, where @ is a local
parameter at x. Equivalently, Y is a smooth k-scheme, the generic fiber Y,
is smooth over F' and the closed fiber Y, is a reduced divisor with normal
crossings for all z € | X|. Therefore if f is semistable it is flat.

We have the following simple Lemma whose proof will be left to the reader:

LEMMA 3.9. Let Y1 N Yy -2 X be morphism of schemes such that f is
smooth and surjective. Then g is semistable if and only if g o f is semistable.

Let Y be an algebraic stack over k. We will call a morphism f : Y — X
semistable if there exists a scheme Y and a presentation P : Y — Y (i.e. P is
smooth and surjective) such that fo P:Y — X is semistable. It follows from
3.9 that if this holds then any presentation P’ : Y/ — Y (with Y a scheme) has
this property. In particular if ) is a scheme the two notions of semistability
agree.

Our aim in this section is to prove the following result.

PROPOSITION 3.10. Cohysp is an algebraic stack over Fy. The morphism
N : Coh g sp — X is semistable of relative dimension —1. Its restriction to the
open subset X — Disc(A) is smooth. Consequently Coh.a s is locally of finite
type and smooth over IF,.

Proof. The last assertion follows from ([Lau], 3.2.1). Since the assertion is
étale local on X we may assume that X = Spec R is affine with R a principal
ideal domain, |Disc(A)| = {p} and the generic fiber of A is = My(F). By
3.2 we may also assume that e,(A) = d. Let w be a generator of p. Then
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I'(Spec R, A) is isomorphic to the R-subalgebra of My(R) of matrices which
are upper triangular modulo p. Hence I'(Spec R, A) can be identified with the
R-algebra R{II} defined by the relations

(1, ...,zq4) = (z2,..., 24, 21)IL, 1’ = w.

Let Cohaﬁsp(S) denote the groupoid of pairs (K, «) where £ € Cohgsp(S5)
and a : O¢ — N*(K) is an isomorphism. The action of IT on K yields — by
transport of structure via o — a map 0% — O% of the form (z1,...,24) —
(x2aq,...,xqa4—1,x104) for some (ay,...,aq) € T'(S,Og) such that a1 ---aq =
N*(w). Thus the assignement (K, a) — (N, a1, ..., aq) defines an isomorphism

COhEll,sp = Spec R[Tl, - 7Td]/(Tl c Ty — w)

Finally the forgetful morphism Coha Lsp — Coh 4¢p is a presentation. In fact
it induces an isomorphism G% \Coh Asp = Cohysp. Here the G4, action on

Coh} Asp is defined by the natural GZ,(S)-action on the set of isomorphisms
a: 0% — N*(K). O

We finish this section with the following criterion for an A X Og-module £ to
be a locally free.

LEMMA 3.11. Let U C X be a non-empty open subscheme such that E|uxs is
a locally free Ay W Og-module. The following conditions are equivalent.

(i) € is a locally free AR Og-module of rank r.

(ii) For x € |X — U| and any pair of k-morphism g : 8" — S and zg : S —
Speck(z) — X the quotient g*(£)/g*(E)(—+ A)xsf) is a special A-module of
rank r.

(i11) For x € |Disc(A)| — U and any pair of k-morphism g : S — S and
xg : S" — Speck(x) — X the quotient g*(£)/g*(E)(—< A)xsf) is a special
A-module of rank r.

Proof. That (i) implies (ii) follows from Lemma 2.17 and the equivalence of
(ii) and (iii) from 3.8 (b) above.

(ii) = (i) We may assume that S is affine, hence that S and of finite type over k.
For y € | X x S| we have to show that £ ® O(xxg),y is a free (A®Roy O(xxs),y-
module. It follows from ([Laf], 1.2, lemme 4) that we may even replace S by
the image s of y = X x S — S. It follows from ([Laf], 1.2, lemme 4). Thus it
is enough to prove (i) if S = Speck is the algebraic closure of k. However in
this case the assertion follows from 2.11 and 2.17. 0

We have the following generalization of ([Lau], Lemma 1.2.6).

LEMMA 3.12. Let 0 — & — & — K — 0 be a short exact sequence of right
A K Og-modules. We assume K is coherent as an Oxxg-module, the map
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Supp(K) < X x § — S is an isomorphism and K is as an Og-module locally
free of rank rd. We also assume that £ is a locally free AR Og-module of rank
r. Then the following conditions are equivalent.

(i) & is a locally free AR Og-module of rank r.

(i) K is special of rank r.

Proof. Again by using Lafforgues Lemma ([Laf], 1.2.4) (applied to A and max-
imal tori in \A) it suffices to consider the case where k is algebraically closed
and S = Spec k. The assertion follows then from Lemma 2.18. O

4 THE MODULI SPACE OF A-ELLIPTIC SHEAVES

4.1 A-ELLIPTIC SHEAVES

In this chapter X denotes a smooth projective geometrically connected curve
over the finite field IF, of characteristic p, F' the function field of X. We also
fix a closed point co € |X|. Let A be a locally principal Ox-order of rank d?
and let A be its generic fiber. We make the following

ASSUMPTION 4.1. ex(A) =d.

DEFINITION 4.2. Let S be an Fy-scheme. An A-elliptic sheaf over S with pole
o0 is a triple E = (£,00g,t), where £ is a locally free right AKX Og-module of
rank 1, where cog : S — X is an Fy-morphism with cog(S) = {oo} and where

1
t: 7(5(—3005)) — &

is an injective AKX QOg-linear homomorphism such that the following condition
holds:
(*) The map Supp(Coker(t)) — X x S — S is an isomorphism. Considered
as a sheaf on S, K is a locally free Og-module of rank d.
Hence Supp(Coker(t)) is the image of the graph of a Fq-morphism 1o : S — X
called the zero (or characteristic) of E.
We denote by ELLT the stack over Fy such that for each S € Sch /k, EUF(S) is
the category whose objects are A-elliptic sheaves over S and whose morphisms
are isomorphisms between A-elliptic sheaves.

For n € 37 we define ELLY ,, to be the open and closed substack of A-elliptic
sheaves E = (€,00g,t) with fixed degree deg4(£) = n. The functor which
maps an A-elliptic sheaf over E = (£,00g,t) over S to its zero ¢9 : S — X
defines a morphism char : £ — X (called the characteristic morphism).
Similarly E = (€, 00g,t) — 0og defines a morphism pole : E€05 — Spec k(c0).
By Lemma 3.12, Coker(t) is a special A-module of rank 1. This fact allows
us to compare the above condition (*) with the condition spéciale in ([Hau],
section 3) (see also 5.11 (b) below). It follows that the characteristic morphism
factors as

char : E00 — Coh g ep — X (16)
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We will see in the proof of Theorem 4.11 below that the first arrow is smooth.

REMARKS 4.3. (a) The concept of an A-elliptic sheaf is due to Laumon,
Rapoport and Stuhler ([LRS], section 2). The definition given above is dif-
ferent but, as will be explained in the appendix, equivalent to the one given
in ([LRS], section 2). In fact our Definition 4.2 is slightly more general. Their
notion corresponds to an A-elliptic sheaf where (i) A is a division algebra which
is unramified at oo, (ii) A|x_{o0} is @ maximal order in A and (iii) the zero
Lo is disjoint from |Disc(A)], i.e. ¢y factors through X — | Disc(A)| < X (the
latter condition was weakened in [BS] and [Hau] to require only that ¢y factors
through (X — | Disc(A)[) U {oo} U{z € | X[ | invy(A) = 3}).

(b) Let A be the subsheaf of My(Ox) of matrices which are upper triangular
modulo co. In this case £007 is isomorphic to the stack EME?) of elliptic sheaves
of rank d (hence above X — {oco} it is isomorphic to the stack of Drinfeld
modules of rank d; compare ([BS], section 3)). In fact by Proposition 5.10 of
the appendix we have E007 = PEM}’C}d(OX) and the latter is isomorphic to the

stack of 5%&?) by Morita equivalence.
(c) If A is a division algebra then A-elliptic sheaves are special cases of right
A-shtukas of rank 1 ([Laf], 1.1). Recall that an A-shtuka of rank 1 is a diagram

~
o

&
where £, &’ are locally free right A X Og-modules of rank 1 and where j and ¢
are injective A X Og-linear homomorphism such that the cokernels of j and ¢
and of the dual morphisms j¥ and tV satisfy condition (*) above (actually, it
follows from Lemma 3.12 (compare also the proof of 4.14 (b) below) that it is
enough to require that the cokernels of j and ¢ satisfies (*)). Hence we have
Coker(j), Coker(t) € Coha¢p(S). In fact if E = (£,00g,t) € ELF(S) is an
A-elliptic sheaf with zero ¢p : S — X then the diagram

£(~doos) | (17)

\5
V’

is an A-shtuka with pole cog and zero 1. Therefore we have a 2-cartesian
square
gy ——— Shty

lpole l (18)

Spec k(00) —— Coha sp
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Here the second vertical arrow is given by mapping an A-shtuka (£,&’,j,t)
to Coker(j). The lower horizontal arrow is defined by A/A(—2%00gpeck(00)) €
Coh 4 sp(Speck(00)). It is easy to see that it is representable and a closed
immersion. Hence the morphism £/% — Sht!y given by (17) is a closed im-
mersion.

(d) One could consider A-elliptic sheaves more generally for a hereditary Ox-
order A. However since any hereditary Ox-order is Morita equivalent to a
locally principal Ox-order we do not obtain new moduli spaces in this way.
(e) If we consider £/ as a k(00)- rather than a F,-stack we can (and will)
drop cog from the definition. More precisely for S € Sch /k(co) the objects of
ELF(S) are just pairs E = (&,t) such that (£, 00g,t) is an A-elliptic sheaf as
in 4.2 where cog is composite S — Spec k(o0) — X.

(f) Define an automorphism of stacks 0 : £ — ELUT by

0, 005,1) = (E(57005), "00s, (3 00s)) (19)

where "oo5 = 00g o Frobg. We have 0(£00,,) = EMZETH% for all n € éZ and
g4ee(**)(E) = E ® 4 A(400) for all A-elliptic sheaves E.

(g) Let A" be a locally principal O x-order which is Morita equivalent to A and
let £ be an invertible A-A’-bimodule. Then

E=(&05,t)» E®@aL: =(EQAL,005,tR41ds)

defines an isomorphism between £€¢5 and £447,. If m = deg 4 (L) then it maps
the substack 4¢3, isomorphically onto the substack ££(,, .. In particular
E — E ®4 L defines an action of the abelian group Pic(A) on £005.

We define Pic(A)[f] to be the group generated by its subgroup Pic(A) and the
element 6 which satisfies the relations §9°8(>*) = A(100) and 6L = L0 for all
L € Pic(A). Thus Pic(A)[0] acts on £05. The group Pic(A)[f] is an extension
of Z/deg(c0)Z = G(k(c0)/Fy) by Pic(A). The map deg, : Pic(A) — 17Z
extends to a homomorphism deg 4 : Pic(A)[0] — 1Z by defining deg 4(0) = %.

DEFINITION 4.4. The group of modular automorphisms W(A, 00) is defined as
the kernel of deg 4 : Pic(A)[0] — 3Z.

W(A, 00) stabilizes the substack 07, for all n € éZ. There exists a canonical
homomorphism

W(A, c0) = G(k(c0)/Fy) (20)

so that pole : £ — Spec k(c0) is W(A, 0o)-equivariant. The kernel of (20)
is Pico(A) and the image is of order M

only if deg4 : Pic(A) — 17 is surjective).

(thus (20) is surjective if and
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4.2 LEVEL STRUCTURE

We reformulate now the notion of a level structure on an A-elliptic sheaf given
in ([LRS], 2.7 and 8.4) in our framework. Let I = ) ng,x be an effective
divisor on X. We recall first from ([LRS], 2.7; see also [Dr3]) the notion of a
level-I-structure when oo does not divide I, i.e. ne = 0.

DEFINITION 4.5. Suppose that oo & |I|. Let E = (€,00g,t) be an A-elliptic
sheaf over an Fg-scheme S with zero 1o : S — X disjoint from I i.e. 1o(S)NI =
0. A level-I-structure on E is an A; X Og-linear isomorphism

1
a: ArROs — Elrxs @4 A(EOO)

compatible with t, i.e. the diagram

tlixs

T5|I><S 5|I><S

T (03

¢ AR Og
commutes.

We denote by £ ; the stack of A-elliptic sheaves with level I-structure and
for n € 17 by ELLR 1, the open and closed substack of A-elliptic sheaves
with level I-structure with fixed degree deg4 = n. Again we obtain morphisms
char : ELL 1 — X —1I and pole : £ ; — Spec k(00). The automorphism (19)
of Remark 4.3 (f) extends canonically to an automorphism 0 : E057 | — ELLF ;.
The right action of Pic(A) on £€¢7 lifts to a right action of Picy(A) on E£63 ;
as follows. If (£,/) is an invertible A-.A-bimodule with level-I-structure and
(E,a) an A-elliptic sheaf with level-I-structure (E, a) over S then we define
(E,0)®(L,8): =(F®L,aef) with
BRid alid

aef: AKOs — LiKOs = (AKOs)@ALKOs — (ER@aL)|1xs. (21)
As before we have §4°¢(>)(E, o) = (E, o) ® (A(%00),id).
Suppose now that |I| = {oo}, i.e. I = noo with n > 0. Let k(c0)y4 be a fixed
extension of degree d of k(co). According to section 2.6 there exists a pair
(Moo, ¢oo) consisting of a free right Ao ®r, k(00)g-module Mo, of rank 1 and
an isomorphism

Poo 1 T(MoP) — Moo

where B denotes the maximal invertible two-sided ideal of Ay ®F, k(00)q cor-
responding to the inclusion k(co) < k(oo)q. Let M; denote the sheaf of
Ar ®r, k(00)g-modules associated to the Moo/ Moopl,. The map ¢ induces
an isomorphism

b1+ (Mi(—5000)) — M;

where oogq denotes the morphism 0oj(o0), : Spec k(00)q — Spec k(o) — X.
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DEFINITION 4.6. Let E = (£,00g5,t) be an A-elliptic sheaf over an Fq-scheme
S with zero vy : S — X disjoint from I.

(a) Suppose that I = noo with n > 0. Let E = (£,00g,t) be an A-elliptic
sheaf over an Fy-scheme S with zero 1 : S — X disjoint from I. A level-
I-structure on E consist of a pair (A\,a) where X : S — Speck(c0)q is an
Fy-morphism of schemes which lifts the pole cog and where o is an Aj, K Og-
linear isomorphism

a (id[ X)\)*(M]) — 5|]><5
such that the diagram

tlrxs

("(E(—5008))|1xs Elrxs

"(a(—goos)) a

. idr XA)*(¢r
(idy < A)*(T(Mf(— oog))) L@

(id] X>\>*(MI)

commautes.

(b) Suppose that I is an arbitrary effective divisor on X with oo € |I| and write
I = noo+I® = I + I with n > 0 such that oo does not divide I>°. A
level-I-structure on E is a triple (of, A, aoo) consisting of a level-I°°-structure
af and o level-Ino-structure (A, a).

Let I be an effective divisor on X with oo € |I|. Again we define £€3 ; as the
stack of A-elliptic sheaves with level-I-structure (&,¢, ay, \, @) and denote
for n € 37 by U5 1, the substack where deg(€) = n. There are canonical
morphisms

char : EUR  — X — 1, pole : ELLY | — Speck(00)4

(the latter is given by (E, ay, A, ao) +> A; it lifts the morphism pole : £, —
Spec k(00)).

MODULAR AUTOMORPHISMS. Next we are going to extend the definition of
the automorphisms (19) and define a natural right action of a certain idele
class group on E4 ; (thus lifting the action of Pics(A) when oo ¢ |I]). Define
O:EUR 1 — EUZ 1 by

1

1
9(53 x0g, ta afa )‘a aoo) = (g(ETOOS)a TOOS) t(aTOOS), CYf, T)" CYtioo) (22)

where of_ is the composite

aoo(l"oo ) 17_
T E (T 00s)|rxs

é1(§700a)

(i %72 (M) 5 (i 30" (M (57 00a)
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Write I = noo + I* = I + I with n > 0 and co ¢ |I*°]. Let Dy be a
principal order in a central F-algebra D, of dimension d? such that

¢(Deo) = e(Ax) and inv(Dy) =inv(As) + 2

We have seen in section 2.6 that
Doo = End.Aoc®Fq k()4 (Mooa d)oo)

We choose an isomorphism (thus making (Mo, ¢oo) into an invertible ¢-Dyo-
Aso-bimodule of slope —%). Let

Ur(A® x Doo): =Ker( [  As x Dl =TI, Ar=)" X (Doo /pDec)”)
z€|X|—{oo}

and define
Cr(A™ X Doo): = ([The|x|— (o0} N(A2)) X N(Doo)/Ur(A> X Do) F*

For ¢ = (ar,000) = ({az}ostoo, o) € (H;E\X|f{oo} N(Az)) x N(Ds) let
div(a) = >, ¢x|- {00} V4. (@2)2 + vD (ass)oo € Div(A). Let (E,of, A aoo)
€ &0} ;. Left multiplication by ay on H;E‘XF{OO} N(A,) induces a level-
I*°-structure o - ay on £(div(a)). Similarly left multiplication by ac on Moo
yields a level-Io-structure a + oo on E ® A(div(a)). One easily verifies that

(B, a5\ 0x)-a: = (EQA(div(a)),af - af, A, 0o - Goo)

yields a right (H;EIX\—{OO} N(A;)) x N(Do)-action on EL3 ; and that it
factors through Cr(A*® X D).

The canonical projection C;(A> X Dy) — Cre(A) (given on the oco-factor
by N(Dwo) =% 17 2 N(Ay)/A%) followed by the isomorphism Cre(A) —
Picre (A) from 3.4 yields also a Cr(A> x Dy )-action on E££7 ;- and one checks
that the forgetful morphism of stacks €03 ; — ELLY 1o commutes with the
C1(A> x Dy, )-actions.

By Remark 2.22; there exists a prime element ws, € O such that the class
€ € Cr(A™ x Du) of the idele ({1},200, Woo) satisfies §99°8() (E) = E - ¢ for
all B € &0 ((S).

If co does not divide the level I we define the group Pics(.A)[6] similar to
Pic(A)[0] in the last section. Picy(A)[0] contains Pic;(.A) as a subgroup and
the element 6 lies in the center and satisfies the relation 9°8(>) = (A(400),id).
Let deg 4 : Picy(A)[0] — 1Z be given by (L, 8) — dega(L) on Pic;(A) and
deg 4(0) = %-

Assume that oo divides I and write I = noo+ I = I, + I*° as above. Define
Cr(A™ x Dy )[f] as the group generated by C;(A™ x Dy,) and a central element

0 satisfying the relation §49°8() = ¢ The homomorphism Cr(A>® x Ds,) —

Cr=(A) = Picr=(A) degq 17 extends to a homomorphism dega : Cr(A> x

Doo)[0] — L7 by setting dega(0) = L7Z.

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 595-654



TWISTS OF DRINFELD—STUHLER MODULAR VARIETIES 627

DEFINITION 4.7. Let I be an effective divisor on X. The group of modular
automorphisms W(A, I,00) of ELLY | is defined as follows:

Ker(deg 4 : Pic;(A)[0] — 17Z) if oo & |11,

o = { R G Do 120 el

REMARKS 4.8. (a) If co & |I| (resp. oo € |I]) there exists a canonical ho-
momorphism W(A, I, 00) — G(k(c0)/Fy) (resp. W(A, I,00) = G(k(c0)a/Fy))
with kernel Picyo(A) (resp. Cr(A™ x Du)o) such that €05, — Speck(o0)
(resp. €L 1 — Speck(00)q) is W(A, I, oo)-equivariant.

(b) Let I < J be effective divisors on X there exists a canonical projection
W(A, J,00) = W(A, I, 00) such that the forgetful morphism £ ; — ELLY
is W(A, J, 0o)-equivariant.

(c) The map z — 20~ 4de24(*) jnduces an isomorphism

Cr(A® x Do) /65, = W(A, I, ).
This fact will be used in section 4.6.
We have (compare ([LRS], 8.10) and ([Laf], 1.3.5))

LEMMA 4.9. Let I < J be effective divisors on X. QOver X — J the forgetful
morphism
EUT ; — ELUR

is representable and is a finite, étale Galois covering. Its Galois group is =
KerW(A, J,00) = W(A,I,00)). If co & |J| —|I] it is = Ker( A% — Aj).

COROLLARY 4.10. Let A’ be a locally principal Ox -suborder of A with the same
generic fiber A and denote by v : Y — X the reduced closed subscheme with
Y] ={z € |X]|]| ex(A") > e(A")}. Note that co € Y. Let I be an effective
divisors disjoint from'Y and put J: = I +Y. Then over X — J the forgetful
morphism factors canonically as

SO0y — EO% 1 — 0. (23)

Both maps are representable and finite and étale. Moreover the first arrow is
Galois.

Proof. Let P: =1Im(A'ly — Aly). Then the diagram
A —— 1.(P)
A —— 1.(Ay)

is cartesian. Here we view J as a closed subscheme of X and denote by ¢ :
J — X the inclusion. For £ = (€,t, 005, ) in L ;(S) we decompose « into
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a level-I-structure oy and a level-Y-structure ay. Define £ by the cartesian
square

& t+(P)

£ —— 1. (Elyxs) s 1. (Ay)

Then &’ is a locally free A’ X Og-module of rank 1. The first morphism in (23)
is induced by £ — £’ whereas the second by £ +— & ® 4 A. The proof of the
remaining assertions is left to the reader. 0

4.3 'THE COARSE MODULI SCHEME

Our aim now is to prove the following theorem.

THEOREM 4.11. (a) ELLY | is a Deligne-Mumford stack over Fy. It is locally
of finite type over X. The morphism char : 5%‘21 — X — I is semistable of
relative dimension d — 1.

(b) The open and closed substack ELLY 1 o of ELL 1 is of finite type over X': =
X — (Disc(A) UT). It admits a coarse moduli scheme which will be denote by
EIRY ;. The structural map ELER 1 olx: — ENY ; ds an isomorphism if I # 0.
(¢) The morphism char : ENY | — X' is quasiprojective and smooth of relative
dimension d — 1. In particular Elliﬁl is a smooth, quasiprojective Fy-scheme.

REMARK 4.12. This is known if A is a division algebra or A = My(F) and if
we restrict £€07 ; to the open subset X' ([LRS], Theorem 4.1 and [Drl]). In
fact if we assume that A is a division algebra and let S denote the subset of
Disc(A) consisting of all points p € Disc(A) — {oo} with inv, A =1 and of co
if inve, A = 0 then £00 1 admits a coarse moduli scheme EII} ; over X U S
which is projective and semistable of relative dimension d — 1 (at the pole oo
this is proved in [BS]; at p € S — {oo} it is proved in certain cases by [Hau] and
can be deduce in general from the first case using the main result of section
4.5).

The proof of 4.11 consists essentially of two parts. In the first part one shows
that €005 — X is a Deligne-Mumford stack and semistable. In the second

part one proves that for I # 0, £€£ | ,, is a quasiprojective scheme over X' by

showing that for a large m the map SMZO’;;?Z — ELL 1, s surjective. Here

Séﬁff}smb denotes the substack of A-elliptic sheaves whose underlying vector

bundle is I-stable. It is a consequence of a theorem of Seshadri that 8%2’?%

is a quasiprojective scheme. For the surjectivity one can follow the arguments
in ([LRS], section 5) so we will omit the proof.

The proof of the first part is also mainly a reproduction of the corresponding
arguments in ([LRS], section 4; compare also ([Laf] Chapitre I), [La] and ([Lau],
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1.3 and 1.4)) so we will be rather brief and elaborate only on those steps were
essential modification have to be made. We follow ([Lau], 1.2) and work with
the factorization (16), i.e. we consider ¢ ; mostly over Coh 4, rather than
over X. Let Inj 4 4, be the stack over k(co) such that for each S € Sch /k(o0),
Inj 4 4, (5) is the groupoid of injective morphisms j : & — & locally free right
AR Og-modules of rank 1 with Coker(j) € Coh 4 sp(S).

LEMMA 4.13. (a) The two morphism
Injyop — Vectiw x Coh 4 sp

given by (j : & — &) — (&, Coker(j)) and (j : £ — &) — (&', Coker(j)) are
representable and quasiaffine of finite type and smooth of relative dimension d.
Consequently Inj 4 g, s algebraic, smooth and of finite type over Fy.

(b) The two morphism

Inj,,, — Vectk

giwen by € and &' are representable and quasiprojective and in particular of
finite type.

The proof of (a) for the first morphism is literally the same as ([Lau], 1.3.2).
The statement for second morphism can be deduce from that for the first as
in ([Lau], 1.3.2). We need to remark only that for a short exact sequence
0— & — & — K — 0 of right A® Og-modules with £, € Vect!(S) and
K € Coh 4,6p(S) the third term of the dual sequence of A°PP ® Og-modules 0 —
gV — " = Exthgpo. (K, AR Og) — 0 lies, by Lemma 3.12, in Coh qers 5 ().
(b) follows from ([Laf], I.2.2 and 1.2.8). O

Consider now the following obvious diagram of stacks

gy —— Vect!y @, k(c0)
jge — (Vecty x Vectly) @r, k(o) (24)
COhA7sp

where the right vertical arrow in the (2-cartesian) square is the graph of the
endomorphism Frobof~! : Vectl ®r, k(c0) — Vectly ®r, k(co) (for the defini-
tion of #~! compare 4.3 (f); if deg(co) = 1 it is given by € — £(—400)). By
([Laf], 1.2.5) the stack Vecti‘ is algebraic, locally of finite type and smooth over
F,. Together with Proposition 3.10, Lemma 4.9 and Lemma 4.13 above the
same argument as in ([LRS], section 4; see also ([Laf], I.2.5) and ([Lau], 1.3.5))
imply part (a) of
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LEMMA 4.14. (a) Let I be an effective divisor on X. The morphism ELEY
— Coh 4 sp 15 algebraic, locally of finite type and smooth of relative dimension
d. The morphism char : ELLY 1 — X is semistable of relative dimension d — 1.
(b) ELLR is a Deligne-Mumford stack, locally of finite type and smooth over .
Moreover if I # 0 then ELLY 1|x/ is isomorphic to an algebraic space.

Proof of (b). Everything is clear if we replace “Deligne-Mumford” by “alge-
braic”. To prove that £ is indeed a Deligne-Mumford stack we use ([LM],
8.1). If we replace the lower vertical map in (24) by Inj, g, — Speck(co)
then, by Lemma 4.13 and ([La], Lemma on p. 60), the diagonal morphism
EUT — EUY X, ELLY is unramified. Note that for £ € EL0 ((S) with zero
S — X’ we have Aut(E) = F,* if I = 0 or Aut(E) = 1 otherwise. Hence the
last assertion follows from ([LM], 8.1.1). O

REMARKS 4.15. (a) Note that by 4.3 (f) we could have defined EII} also as the
coarse moduli scheme of the quotient E£05 /6% or of EL,, for any n € 2 Z.
(b) Let I — X be a reduced closed subscheme with oo ¢ I and let A be the
subsheaf of M3(Ox) of matrices which are upper triangular modulo I. Then
by using 4.10 and 4.3 (b) it is easy to see that the Ell} is isomorphic to the
(open) Drinfeld modular curve Yo (1) = Y5°(I).

(c) If Ais a central division algebra which is unramified at co and Alx_{oc)
is a maximal order in A then char : EIY — X is proper (see [LRS], Theorem
6.1 and [Hau], 6.4). In the general case this is not true anymore even if A is a
division algebra. In fact if d = 2 and A is ramified only at co and at p € | X|
and if A is a maximal O x-order in A then we will show in section 4.5 that Ell’j4
is a twist of the affine curve Yy®(p) — X.

4.4 INVERTIBLE FROBENIUS BIMODULES

We consider now two locally principal O x-orders A and B, both of rank d? with
Disc(A) = Disc(B) and assume that e(A) = d = e(B). We denote by A and B
the generic fibers of A and B respectively. Let D = erpq myx € Div(A) be
a divisor such that )" elx| Ma = 0. We consider the following moduli problem
associated to A, B, D.

DEFINITION 4.16. Let S be an Fy-scheme. An invertible Frobenius A-B-
bimodule (or ®-A-B-bimodule for short) over S of slope D is a tuple L =
(L, (x5)ze|p|, ®) where L is an invertible AKX Og-B X Og-bimodule which is
locally free of rank 1 as a left AX Og- and right B X Og-module, where for
x € |D|, g : S — X is a morphism in Sch /F, which factors through x — X
and where ® is a bimodule isomorphism

o :7(L(Dg)) — L.
with Dg: = Zz€|D| mgxs. The morphisms xg are called the poles of L.
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Note we have deg 4(£) = degg(L). Note also that (AKX Og)(Dg) ®4 L =
L ®p (BX Og)(Dg). Thus the notion £(Dg) is unambiguous.

Obviously the concept of invertible ®-A4-B-bimodules of slope D defines a
stack which we denote by 552, - It is equipped with canonical morphisms
85273 — Speck(z) for all z € |D|. For n € 17 let 555)\,5@ be the substack
of (£, (xg)zer,®) € 85273(5) with deg4(L£) = n. There is a canonical left
Pic(A)- and right Pic(B)-action on 85273 compatible with deg4 (in fact the
left and right action are the same if we identify the two groups under the
canonical isomorphism Pic(A) = Div(A) /F* = Pic(B)).

For x € |D| we define an automorphism 6, : 85273 — 552,5 by

HZ(‘C’ ('TZ‘S)I’€|D|a (I)) = (‘C(_mZT‘TS)’ Tzs, ('T{S)I’E\D\,z’;éz’ (I)(_mZTx))' (25)

The automorphisms 6, for different « € |D| commute with each other and with
the Pic(A)- and Pic(B)-action. We have 996(852731”) = Sé'igﬂnfmz for all
n € 17 and 035 (1) = A(—myuz) ® L = L& B(—myga) for all L € SER 5(9).
Moreover if |D| = {z1,...,2m} and if we put Op: = 0, o...0 0, then
O©p(L) = Frobg(L) for all S € Sch/F, and L € SEQyB(S). Hence Op =
FrObSEfZYB-

LEVEL STRUCTURE. Let L = (£, (25)ze|p|, ®) € SSQVB(S). We view L as a
right B-module only and proceed as in section 4.2. Let I be an effective divisor
on X. Assume first that |I| N |D| = . Then a level-I-structure on L is an
isomorphism of right B; ¥ Og-modules 3 : By K Og — L|;xs such that the
diagram

q>|I><S

T£|I><S £|I><S

a4 ROos
commutes.
Next assume that I = nz with n > 0 for some x € |D|. Put e = e;(A),m = m,
and let k(x). be an extension of degree e of k(x). If m > 0 we denote by M =
(Mg, ¢2) a fixed invertible ¢-A,-B,-bimodule of slope —m over O, ®F, k(x)e.
In case m < 0, M = (M,, ¢,) denotes a ¢-B,-A,-bimodule of slope m over
O, ®F, k(x)e. Thus if m > 0 (resp. m < 0) then ¢, is an isomorphism

Gz : T (MP") — My (resp. ¢ : 7 (B My) — M)

where P denotes the maximal ideal of B, ®, k(x). corresponding to the in-
clusion k(z) < k(z)e. As in 4.2 the pair (Mg, ¢,) induces a pair (My, ¢r)
consisting of A; ®r, k(z)e-Br ®F, k(z)e-bimodule and an isomorphism ¢r :
T(Mp(mzx.)) — My where z. is the map Speck(z)e — z — X. A level-
I-structure on L consists of a pair (u,3) where u : S — Speck(z). is an
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F4-morphism which lifts xg and an isomorphism of right By X Og-modules 3.
If m < 0, then 8 is a map

B (idr xp)*(Mr) — Llixs (26)

such that

T(L(D))l1xs Llrxs

(idr xp)*("(Mr(mz.))——(id; xp)* (M)
commutes. If m > 0 then

B:BrROg — (id; xpu)*(Mp) @4 L1xs (27)
and

P1®P|rxs

T((idr xp)*(M1) ®a Ll1xs) (idr xp)*(Mr) @4 L|rxs

E B, KOs 7

should commute.

For an arbitrary effective divisor I on X we write I = Iy + ZrGIIIN\D\ Nz X
=Io+ > .ci1jnp| L= With [Io| N [D| =0 and n; > 0 for « € |[I|N|D|]. Then a
level-I-structure on L is a tuple (8o, (tz, Bz)ze|rjn|p|) consisting of a level-Io-
structure By and level-I,-structures (u,,S,) for all € |I| N |DJ|. This yields
stacks 852,571, 85276,1,,1 equipped with forgetful morphisms

SE€8 g, SER 5. SER g — Speck(z),y forallz € |I|n|D)
(the latter lifts the morphism 852,5 — Spec k(z)).

MODULAR AUTOMORPHISMS. Let T: = {z € |[D|| m, > 0}. If |[I|NT =10
then there is a canonical left Picj(A)-action on 85276,1 lifting the Pic(A)-

action on 55276. We want to extend this to a natural left action of an idele
class group C; (AT x Br) on SE 27 p,r for arbitrary I' (similarly to the right action
of C1(A>® x Dy )-action on L jo defined in 4.2). Write I = I” + Iy with
[ITINT =0 and |I7| C T. Put

Ul(A" x Br): =Ker( [ A;x [[B:—TU", Apr)* xT(Ir, Br,)")

z€|X|-T €T
and define

Cr(A" x Br): =TIlheix|—r N(A2) X [Loer N(B.)/Ur(AT x Br)F*.
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There is a canonical epimorphism C;(A? x Br) — Pic(A) given on the
class [g] represented by g = ({as}ze|x|-7) {ba}eer) € H;epq_T N(A;)) x
[I.cr N(B:) by A(div(g)) where

diV(g) = Z 'U.AI(GJI):C + ZUBI(GJI):C

z€|X|-T zeT

The kernel of the composition C;(AT x Br) — Pic(A) degg Q will be denoted
by C[(.AT X BT)O-

Let g = (aT,bT) = ({az}nga {bw}weT) € H;G\X|—T N(Am)) X HzGT N(Bz)
and L = (L, Bo, (b, Bz )ze|11n|D]) € 85%57[(5’). Left multiplication by a” on
the target of By and (3, for x € |I7]| (respectively by by on the target of f3,
for x € |Ir|) yields a level-I-structure on A(div(g)) ® L. This defines a left
action of H;e\Xl—T N(A:)) x [I,er N(Bz) on 552137[ which factors through
C](AT X BT).

4.17. Similar to (22), for € |D| there exists a canonical lift of (25) to an
automorphism 6, : 852,571 — 55273,1 having the following properties:

(i) The following diagram commutes
Frob,
Speck(x). — Speck(x).
where x = 1 or x = e, (A) depending on whether = & |I] or z € |I|.
(ii) For n € 1Z we have 0,(SEZ 51 .) = SER 5.1 n—m. -

(iii) The automorphisms 6, for different x € |D| commute with each other
and with the C;(AT x Br)-action.

(iv) For z € |D| there exists &, € Cr(AT x Br) such that Qgeg(m)(L) =&, L
(resp. 057 V9B (L) = ¢, L) for all L € SEX ;5 /(9).

(v) f|D|={z1,...,2m} put Op: =0,,0...00, . Then Op = Frobsgﬁ,&[.
Let G be the group of automorphism of 552,57 ; generated by Cr(AT x Br)
and the set {0, | = € |D|}. For g € G the degree m € 17 of g is defined by

9853137[7,1 = SEZ,B,I,Her for all n € 17Z. Let Gy be the subgroup of elements
of degree 0. Since the degree of 0, x € |D| is —m, we have ©p € Gy.

DEFINITION 4.18. Suppose that 853137[70 # (. We define W(A,B,I,D) to be
the group of automorphisms of 852137[70 of the form g|355{ S0 for g € Go.
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REMARK 4.19. Assume that 859‘76,[’0 # (). For all z € |D| there exists canon-
ical homomorphisms W(A, B, I, D) — G(k(z)./Fq) where * = §) or * = e,(A)
depending on whether « ¢ |I| or x € |I|. Tt is surjective since @ p is mapped
to Froby .y, by property (v) above. The kernel of the homomorphism

W(‘A’BaIaD) — H G(k(x)/Fq) x H G(k(x)ex(A))/Fq) (28)
z€|D|—|1] z€|D|N|I|

is C](.AT X BT)O-
It is easy to see that (28) is surjective provided that §(A) = d (i.e. degy :
Pic(A) — 17 is surjective). Under this condition W(A, B, I, D) can be defined
in a similar way as 4.7, i.e. as the subgroup of deg 4 = 0 elements in the abstract
group Cr(AT x Br)[0.,x € |D|] generated by C;(AT x Br) and a set of central
element {0, | = € |D|} with dega () = —my and such that the relations (iv)
above hold.

TENSOR PRODUCT AND INVERSE. There is also a notion of a tensor product
of invertible Frobenius bimodules and of an inverse. These constructions are
needed in the proof of Proposition 4.20 below. Let C be a third locally principal

Ox-order of rank d? with Disc(C) = Disc(A). Let Dy = 3, oy miz, Dy =
> ze|X| mPr € Div(A) with 3°, ¢ x| m$) =0 fori=1,2. LetY = SpecF,
if [D1| N |D2| =0 or Y = Spec(®),.¢|p, |n|p,| k(%)) otherwise. We view 853,16
and 5515’),26 as stacks over Y. Let S € Sch /Y and let L = (£, (z5)ze|p|, ®) €
SENR(S), M = (M, (25)ae|py|, V) € SEG%(S) (hence for x € [Dy| N|Dal, the

morphisms xg for L and M agree and are equal to the canonical morphism
S — Speck(x) — X). Define

L&M= (LM, (xs)sc|Dy 4D, ® ®p ¥) € SERTT2(S).
Thus we get a morphism of stacks
®: SEQg xy SEGL — SEQFP- (29)

which is compatible with degrees.
The inverse L™ of L = (L, (zs)ze|p|, ®) € 88273(5) is defined as

L7 = (LY, (x5)seip)> (BY)7) € SEZA(S). (30)

We leave it to the reader to extend the Definition (29) and (30) to invertible
Frobenius bimodules with level-I-structure (see also the next section where the
tensor product of an A-elliptic sheaf with level-I-structure with a Frobenius
bimodule with level-I-structure is defined).

MoDULI SPACES. Let D = 3 o v mex € Div(A), D # 0 be such that
> veix| Ma = 0 and let I € Div(X) with I > 0. Our aim is to prove the

following result.
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PROPOSITION 4.20. (a) 852,571 # 0 if and only if

> inve(Blw= ()Y inve(A)z)+ D mod Div(X). (31)

z€|X| z€|X|

(b) SS,ZZ,B,I is a Deligne-Mumford stack which is étale over Fy. The open and
closed substack 552137[771 is finite over Fy for all n € éZ.

(c) 85273,1,0 admits a coarse moduli space SEQ,BJ. The structural morphism
855{73,[,0 — SEﬂ,BJ is an isomorphims if I # 0.

(d) Suppose that SEX ;5.1 o # 0. Then SER 5 ; — SpecF, is a W(A, B, I,D)-

torsor. In particular SEi&I s a finite, étale IFy-scheme.

We begin with the proof of (a). Since 852,571 is locally of finite presentation it
suffices to show that 8527B,I(Spec F,) # 0 if and only if (32) holds. We write
X, A etc. for X ®F, Fq, A®Fq etc. Let o: = idx ® Frob, : X — X and
let 7 : X — X be the projection. Define div(r) : Div(X) ® Q — Div(X) ® Q
by div(m)(}>; ni@;) = >.; nim(Z;) (Note that deg(div(m)(D)) # deg(D) in
general). Part (a) of Proposition 4.20 follows from the following slighty more
general result.

LEMMA 4.21. Let D € Divo(z_)._The Jollowing conditions are equivalent:

(1) There exists an invertible A-B-bimodule L such that "(L(D)) = L.
(i) We have

Z inv,(B)x = ( Z inv,(A)z) + div(7)(D) mod Div(X). (32)
z€|X]| z€|X]|

Proof. That (i) implies (ii) can be easily deduced from the corresponding local
result. To show the converse we consider first the special case div(7)(D) €
Div(X), i.e. A~ B. Then D can be written as a sum of divisors of the form

7*(D1), D1 € Dive(X) and of the form ﬁ(m —o(x)) for € | X|. Hence we

can assume that either D = ﬁ(x —o(x)) or D = pr*(Dy). In the first case
the assertion is obvious. In the second case it follows from the fact that the
homomorphism of abelian varieties

id — Frob : Jacx — Jacx

is an isogeny hence faithfully flat.

Returning to the general case note that by 3.1 at least A and B are Morita
equivalent. Let £ be an arbitrary invertible A-B-bimodule. Then "L is also
invertible hence T(E(ﬁ/)) ~ [ for some D € Divg(A). It follows that the
congruence (32) holds with D' instead of D as well and therefore div(w)(D —
EI) € Div(X). Hence by what we have shown above we may alter £ by some

element of Pic(A) so that "(£(D)) = L. O
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To prove the other assertions of 4.20 we first note that for a connected S €
Sch /Fy and L € 553137[771(5‘) the group of automorphisms Aut(L) of L is
=TF," if I =0 or = 1 otherwise. Hence for I > 0 the presheaf SEi&I defined
by

SEZ,B,I,n(S): = isomorphism classes of objects of 883137170(5)
is a fppf sheaf and the canonical morphism 852,5717,1 — SEQ,BJW is an iso-
morphism. We put SEE\,B,I = SEQ,B,I,O- For I > 0, 4.20 (¢), (d) follows
from:
LEMMA 4.22. Suppose that I # 0 and 85276,1,0 # 0. Then SEQ,BJ s a
WI(A, B, I, D)-torsor.

Proof. Assume first that D = 0, A = B. It follows from ([Laf], 1.3, Théoréme
2) that the map

(f : S — SpecFy) — f* : Picr(A) — SEY 4.1(S)

yields an isomorphism between 85?4, .1 and the trivial Picy(A)-torsor over F,.
In particular SEY 4 ; is isomorphic to the trivial Pics o(A)-torsor.

Now let D # 0. To simplify the notation we assume |D| N |I| = @ so that
Cr(AT x Br)o = Picro(A) (the proof in the general case is analogous). Let
S € Sch /F, be connected and let Lq,Ls € SEZ,B,I(S)- If Ly and Ly have
the same poles then £ = Ly ® L' € SE&,AJ(S) = Pics o(A) by the remark
above, hence £L; = Lo. In general there exists suitable r, € Z such that Lo
and ([[,¢p| 057)(L1) have the same poles, hence £(] [, p| 057)(L1) = L2 for
some § € Picy(A). Thus wly = Ly for w = {([,¢ p| 02°) € Yo

Let w € W(A,B,I,D), L € SEX 5,(S) such that wL = L. Write w =
EIl,ep Oz with £ € Picj(A) and r, € Z. By 4.17 (ii), for z € [D| and
the pole x5 of wL = L we have xg o Froby = xg, hence deg(x) | r,. By
4.17 (iv) it follows that w € Picro(A). However wL = L implies that w
corresponds to (wL) ® L™' = L ® L™ € SEY 4 ;0(S) under the canonical
bijection Picy(A) = SE%A,I,O(S), i.e. w = 1. This proves that for a con-
nected S € Sch /F,, SE%B’I(S) is either empty or W(A, B, I, D) acts simply
transitively on it.

To finish the proof we have to show that 553137[70 # ( implies that

SEQﬁBVI(SpeCFq) # (). This is a consequence of the fact that 853731]10 is
locally of finite presentation. O

Similarly one shows that SEQ&L" is a Im(Gy — Aut(SEQﬁBJyn))—torsor for all

(S %Z. In particular each SEiB,I’n is a finite étale Fy-scheme. This proves
(b) for I # 0.

It remains to consider the case I = 0. Choose an auxiliary level J € Div(X)
with J > 0 and |D|N|J| = 0. A similar argument as in 4.3 shows that

Sgﬁ,B,n = F(J’ AJ)*\ SE.E\),B,J,n
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Hence 552, 5 is a Deligne-Mumford stack. Moreover as in 4.3 one shows that
the quotient SEiB: = ([(J, Ay)*JF\ SEQ,BJ is a coarse moduli scheme
of SER 5o and that SER 5, = F*\SEL 5. Finally since W(A,B,D) =
W(A, B, J,D)/(T'(J, A;)*/F,*) it follows from Lemma 4.22 that SEZ 5 is a
W(A, B, D)-torsor over Fy. This completes the proof of 4.20.

REMARKS 4.23. (a) Let D = 3 ¢ x| max € Div(A), D # 0 be such that
> ze|x| Mz = 0. Condition (31) is not sufficient for 852,57170 # () (compare
Remark 3.6). However if additionally we have 3° o v Zm, = 17 then by
taking suitable products of 6,’s we obtain elements ¢ in the center of G of
arbitrary degree m € +Z. Thus 85276,1,,” # () implies 859‘76,[’0 # (0. We also
see that an automorphism g € G of degree zero is uniquely determined by its
restriction to 853137[70, i.e. we have W(A, B, I, D) = Gy.

(b) Suppose that 855‘)731]10 # (. One can describe the W(A, B, I, D)-torsor
SEZ 5.1 /Fq explicitely as follows. For L € SEY 5 ; o(F,) let

Y W(A, B, I, D) x SpecF, = H SpecF, — SEZ 5,
weW(A,B,I,D)

be given on the w-component by the morphism corresponding to wL. By 4.17
(v) the diagram

W(A, B, I, D) x SpecF, e, SEZ 5.1 x SpecF,

l@gl x Frob, lid x Frob,

W(A, B, I, D) x SpecF, e, SEZ 5.1 x SpecF,

commutes. Thus 17, induces an isomorphism

SEZ 5.1 =2 (W(A,B,1,D) x SpecF,)/ < ©5"' x Frob, >

4.5 TWISTS OF MODULI SPACES OF A-ELLIPTIC SHEAVES

In this section A denotes a locally principal Ox-order of rank d? with generic
fiber A such that e (A) = d. We also assume that there is a second closed
point p # oo such that e,(A) = d and we put D: = 2co — Lp. Let B be a
locally principal Ox-order of rank d? with Disc(B) = Disc(A) and such that
for the generic fiber B of B we have

Z inv,(B)x = ( Z inv,(A)x) + D mod Div(X).

z€|X| z€|X|

In order to show that the moduli spaces Ell} ; and EllY, ; are twists of each other
we are going to define a canonical tensor product ££€7 1 x 853137[ — 5%’; I
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We introduce more notation. Recall that the notion of level structure at oo
for objects of £0(% ; and SEX 5 ; and at p for objects of £ ; and SEXR 5 ;
depend on the choice of certain local Frobenius bimodules. In order to define
the tensor product (33) below these choices have to be compatibly matched.
For co let M = (Mo, doo) be an invertible ¢-Boo-Aso-bimodule of slope —é.
For p we choose an invertible ¢-A,-By-bimodule N = (N, ¢,) also of slope
fé. We use M to define level structure at co and N to define level structure
at p. By Remark 2.22 there exists prime elements wo, € O and w, € Oy
such that

eg(oco dde
¢de C o g(p) _ @p.

Now fix a level I € Div(X),I > 0. We put
_ [ k(o) ifoog ||, _ [ k) ifp gl
k(o0), = { k(oo ifoce|ll, PP k(p)a i .

There exists a canonical map W(A,I,00) — W(A,B,I,D) induced by
C1(A® xBx)[0] = Cr(A® X Bso) [0, 0] given by 6 — 0 !. Using the diagram
with exact rows

0_>C[(AOO X Boo)O %W(A,I,OO) G(I{J(OO)*/F,])

l | l

0 —= C1(A* X Boo)o —= W(A, B, I, D) —= G(k(00),/Fq) x G(k(p)s/Fy)

it is easy to see that W(A,I,00) — W(A, B, I, D) is injective and is equal to
the kernel of the canonical projection W(A, B, I, D) — G(k(p)y/F4) (compare
4.19). Recall that C7(A™ X Beo)o = Picr(A) if oo does not divide I. In the
following we will consider W(A, I, c0) as a subgroup of W(A, B,I, D). From
Proposition 4.20 we deduce that SEiB,I isa W(A, I, co)-torsor over Spec k(p);.
By 4.17 (iv) there exist oo, &y € Cr(A™ X Boo)o such that

glE(o0)«Fq] _ oo oLk(P)n:]Fq] =&
& and &, are given as follows. Let IIc € By (resp. II, € A,) be a generator
of the radical of B (resp. of Ap). If oo & |I| (resp. oo € |I]) then & denotes
the class in C7(A> X Byo) of the idele ({1}z00, II3}) (vesp. ({1} asoo, wxt))
in Cr(A™® x Bso). If p & |I| (vesp. p € |I|) then &, denotes the class in

Cr(A™ x Buo) of the idele ({1} zp. ) (resp. ({1}zp, @) in Cr(A® x Buc).
The tensor product

® : EUZ | n(oo), SEX g — EUY 1, (E,L) —» E® L (33)
is a morphism of Spec k(p)«-stacks having the following properties:

(i) The morphism (33) is compatible with deg4 and degg, i.e. for m,n € 17
it induces a morphism

Sggi?,l,m ®k(00)* SEZ,B,I,n — 566%,I,m+n'
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(ii) The morphism of stacks
ELUZ [ ooy, SER .1 — EUUY | Ry), SER .1, (B, L) ~ (E® L, L)
is an isomorphism with quasi-inverse

ELY | Duipy, SER 51— EUZ [ Oniooy, SEX 1> (B, L) — (E® L™, L).
(iii) The following diagram commutes

EUX | Ok(oo), SEX 5.1
K
020 seey,
®

EUT | Ok(oo). SEX 5.1

(iv) For € € C1(A>® x Bo) the following diagram commutes

EUZ | On(oo). SEX B
K
c@e ! gff%?j
®

EUZ [ Bp(oo), SER B

To define (33) let S € Sch /F, and let cog : S — X, pg : S — X be morphisms
in Sch /F, which factor through co — X and p — X respectively. Let E =
(€,0g,t) be an A-elliptic sheaf over S with zero z: S — X and let L = (£, ®)
be an invertible A-B-bimodule of slope % (cos — pg). Define

E®L: =(E®4L,ps,t@4P).

Note that £ @4 L(—1ps) = E(—J00s) ®a L(](c0s — ps)). One easily checks
that t ® 4 @ is an injective BX Og-linear homomorphism with Coker(t ® 4 ®) =
Coker(t) ® 4 L. Tt follows from 3.8 (c) that E® L is a B-elliptic sheaf with pole
p and zero z. Thus we have defined (33) if I = 0.

When considering additionally level-I-structure, it is enough to treat separately
the three cases co,p & |I|, |I| = {oo} and |I| = {p}. In the first case if F
carries a level-I-structure v and L a level-I-structure § then one defines a
level-I-structure oo § on E ® L as in (21).
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Suppose now I = noo, n > 0 and let £ = (£,005,t), L = (L, P,00g,ps) be
as above. Let (o, A), (i, 8) be level-I-structures on E and L respectively such
that A = pu: S — Spec k(o0)4 lifts cog. Thus

(67 (id] X)\)*(./\/l[) i) 5|[><5, ﬂ : B[&OS i) (id] XM)*(M[) XA £|]><5.

Let a e 3 be the composition

aef:BrX0Og i> (idy xp)*(My) ®4 Llrxs O@g (E®aL)|rxs
Finally let I = np, n > 0 and let a and (p, 8) be level-I-structures on F and
L. In this case level-I-structures on F and L are given by
a: AR Os — E|ixs, B:0dr xpu)* (N7) — Llixs
where 1 : S — Speck(p)q is a lift of pg. We set

Oz.ﬂ : (id[ Xu)*(N]) i) £|[><5 = A; XA £|I><S 0@9 (5 XA £)|I><S-

In both cases one easily checks that o e 5 defines a level-I-structure on £ ® L.
Thus we have defined (33). The straight forward but tedious verification of the
properties (i)—(iv) will be left to the reader.

Recall that El ;, EH%, ; and SEQ, p,; denote the coarse moduli spaces of

EUR 1 05 5%%’1’0 and 559‘76,[’0 respectively (these are fine moduli spaces if
I #0). By (i)-(iv), (33) induces an W(A, I, co)-equivariant isomorphism of
F4-schemes

EIZ ; k(o). SEX5.r — Bllly ; @rp, SEX 5.7 - (34)

Here the (free) action of the finite group W(A, I, c0) on the right is given by
id®¢, € € W(A,I,0) < W(A,B,I,D) whereas on the left it is given by
&1 ® £, Consequently by passing to quotients under the action and using the
fact that SEiB,I Jk(p)s is a W(A, I, 00)-torsor we obtain:

THEOREM 4.24. The isomorphism (34) induces an isomorphism of k(p)-
schemes
(Enilo,l ®k(oo)* SEZ,B,I)/W('Aa Ia OO) = EH%,I

We shall give now another formulation of this result. Note that

k :Fy k Fq
QUWFI] _ k@) Fale Frobspe ke,

In particular @B[k(p)“:wd lies in W(A, I, 00) and is equal to = §F®)sFalg 71 The

fact that (34) is in particular G[Dk(p)”:]FQ]—equivariant implies that the following
diagram commutes

- (34)
ENY | ®k(oc), SEX 51 — = Ell} |} @y, SEX 5.1

e[k‘(P)ﬁ:Fq]§;1®FrObSE/k(p)ﬁ id®F1PObSE/)€(p)n

- (34)
Ell} 1 ®k(o0), SEE\,B,I I—— EH%‘,I Ok(p)y SEE\,B,I
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Fix L € SEQLBJ(E]). Its poles correspond to F,-embeddings A : k(c0), — Fy,
p: k(p)y = Fyq. By taking base change of the above diagram with respect to
the morphism Spec Fq — SEi&I corresponding to L we obtain:

THEOREM 4.25. Let m = [k(p)y : Fyl. Thus m = deg(p) if p & |I| and
m = ddeg(p) otherwise. The isomorphism - ® L : El} | ®r(oo), A\Fq —
Ell%ﬁl ®k(p)u7MFq induces an isomorphism of k(p)y-schemes

(BN 1 ®k(oo), AFq)/ < 076 @ Froby > = ElIf ;.

REMARK 4.26. A pair (\, 1) € Homp, (k(c0),,Fy) x Homg, (k(p)y,Fy) will be
called admissible for (A,B,I) if there exists L € SEi&I(Fq) with poles A
and p. The surjectivity of the homomorphism W(A, B, I, D) — G(k(c0)./Fy)
implies that for all A there exists a u such that (A, ) is admissible.

4.6 APPLICATION TO UNIFORMIZATION

Let A be locally principal Ox-order of rank d? with generic fiber A such that
eso(A) = d. Let I € Div(X) denote an effective divisor. For a closed point
x € |X| — |I| we denote by E/)lel/ Spf(O) the formal completion of EIIy ,
along the fiber at = of the characteristic morphism Ell}y ; — X —I. Also for an
arbitrary x € [X| we let EII;" /F,; denote the rigid analytic space associated
to By ; xx Spec F;. There exists two types of uniformization of EII} ;, i.e.
explicite descriptions of E/)Tlilo 1/ Spf(Ox) and EN " /F, as (finite unions of)
certain quotients of Drinfeld’s symmetric spaces and its coverings. These are
called uniformization at the pole and Cherednik-Drinfeld uniformization. The
first concerns the point & = co (under the assumption inve, A = 0) whereas
the second the points p € |X| — {oo} with inv, A = . By using Theorem 4.25
we show that the two types of uniformization are equivalent (see Proposition
4.28 below).

In order to introduce the quotients of symmetric spaces appearing in the uni-
formization results below we have to introduce more notation. Fix a closed
point € X. We denote by OL' the completion of the strict henselisation
of O, and by ﬁ;r its function field. For each positive integer m we denote by
F mm the unramified extension of degree m of F), in 13;" and let O, be its ring
of integers. Note that the projection Oy — k(x),, has a canonical section,
i.e. k(#)m C Fym. Similarly k(z) C @;f. Denote by D, the central division
algebra over F, with invariant é and let D, be the maximal order in D,. We
also fix a uniformizer w, € O, and an element II, € D, with I1¢ = w,. Let
o denote the automorphism on O ,, and (5;“ which induces the Frob, on the
residue fields.

Let Q¢ be Drinfeld’s (d — 1)-dimensional symmetric space over F, and
Q¢ / Spf(O,) its canonical formal model (see e.g. [Ge]). The rigid analytic vari-
ety Q2 parametrizes certain formal groups. The formal scheme ﬁ‘i is equipped
with a canonical GL4(Fy)-action.
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We define an action of GLg(Fy) on fli@oz(%,m = ﬁg ®k(z) k(2)m and
QR O = O k(=) k(z) by letting ¢ € GLg4(F,) act canonically on
ﬁ‘i and by o~ ve(det(9) op Ozm and O, respectively. There exists a tower
Lot S, 5 B8, = Q) ®p, Frq of finite étale Galois
coverings ([Ge], IV.1). Each 3¢  carries a GL4(F,)/w?- and D} /w?-action

and the covering maps %4 flo — ¥4 are equivariant. Finally for n > 0

n,xr

we equip X4 ®p, , For o= 3¢ o On(a)a k(x) with a GLg(F;)- and D,-action

x

by letting g € GL4(F,) (or inD,) act canonically on the first factor and by
o~ v=(Nrd(9) op the second factor.

RIGID ANALYTIC DRINFELD-STUHLER VARIETIES. Suppose that inve, A =0
and fix an isomorphism A, & My(Fy). We write I = noo+1°° with oo & |I°°].
Assume first that n = 0. We define

Shoy o = A%\ (A*(A"O)/UI(A"O) x ﬁgo) .

This is formal scheme over Spf(Oy).
Next assume oo € |I| and write I = noo + I°° with co & |I°°|. Then we define

Sh ;i = A"\ (A" (A®) /U (A™) x £ ).

This is rigid analytic space over Fi.

There exists a canonical right action of the group C;(A® x D) on
éﬁjl and Sh ; which is defined as follows. Let a = ({as}oztoo;doc) €
(H;E‘XF{OO} N(A,)) X N(Ds) and assume first n = 0. Then the right action
of the class [a] € C1(A™® X D) of a on gl\lio 1 is given by right multiplication
by {az}erzec on A*(A>)/Ur(A>). Now assume that n > 0. Then [a] acts on
Sh ; by right multiplication of {a,}s%00 on A*(A>)/Us=(A>®) and letting
d7! act on X4 __.

There are canonical morphism

pole : gl\ljl — Spec k(o0) ifn=0, (35)
pole : Sh} ; — Spec k(00)4 ifn>0. (36)

which we are going to defined now. Denote by | = I : A*(A®) — Z the
composite

loo : A" (A®) X4 pr(a) &% (D 70 *5 7,

TF#00

Note that for a € A* C A*(A™) we have I (a) = — deg(00)veo (Nrd(a)). First
assume n = 0. Let

A*(A%®) /U (A™) x QL — Spec k(o) (37)
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be given on the component nU; (A>®) x Q2 by

. Frob, !
Q4 ——— Speck(co) ki BN Spec k(o00). (38)

Clearly, (38) factors through @j 1, hence it induces (35).
Now suppose n > 0. Since k(00)q C Fuo 4, We get a map Z‘fwo — Spec Foo g —
Spec k(00)q. Note that for g € GLy(Fo) the diagram

d 9 d
2n,oo 2n,oo

| | (39)

Frob—veo (det(4))
q

Speck(oco)y ———— Speck(c0)q
commutes. We define

A*(A™) /U (A>®) x B¢ — Speck(00)q (40)
on the component corresponding to nUr(A*) € A*(A>)/Ur(A*) by

Frob—1()
»d  ——— Speck(co)g Sk BN Spec k(00) 4.

n,00

The commutativity of (39) implies that (40) factors through Sh ;, i.e. it yields
the map (36).

CHEREDNIK-DRINFELD VARIETIES. Let & = {&, }aroo € (Ioe x| oo}V (A2))

and let £ € C;(A™ x Do) be the idele class represented by ({&s}etc0,1) €
(H;E‘XF{OO} N(Az)) X N(Ds). We assume that £ is a central element in

Cr(A® x Do) and that m = —ddeg 4 (&) = —lsc(€) # 0. We define
Shii s = AN\ (A" (A%) U1 (A®)E x O, 04y F(x)) i =0,

SBS, et = A\ (A7 (A%) /U= (AZ)E" X T @poe), B(0)) il 7> 0.

As above one defines a right action of C;( A X Dy) on §Ej7[700 and ShiLOo
by letting a = ({as }asoos doo) € (H;€|X\f{oo} N(A,;)) x N(Do) act by right
multiplication by {as}szec on A*(A®)/Ur(A>®) and letting d3}! act on

ﬁgo@)@w@gé (if n = 0) and 3¢  ®p_, ﬁ;or (if n > 0). Note that ¢ acts
trivially. .

Let k() denote the fixed field of Frob," in k(oc). There are canonical mor-
phisms

ShLs o0 — Speck(€) ifn =0, (41)
Shi\,[,oo — Spec k(&) if n > 0. (42)
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Their definition is similar to the definition of (35) and (35). For example (41)
is induced by the maps

N (A%)EZ) x D @y o0 FT00) —— Speck(€) — 20" Spec k(e).

The rigid analytic varieties Sh} ; and Shi I.oo are twists of each other. More
precisely we have the following result.

LEMMA 4.27. (a) There exists a canonical isomorphism of formal schemes over
Spf(Ouo) (resp. rigid analytic varieties over Fi,)

gl\liil Op(ooyk(00)/ < € @ Froby* > = @jﬁjm forn =0, resp. (43)

Sh 1 ®k(s0),k(00)/ < € @ Froby* > = Shi\,l,oo forn>0. (44)

Here gl\ljl Op(oc)k(00) (resp. ShY 1 Op(oc), k(00)a) denotes the base change to
k(c0) of the morphism (35) (resp. (36)).

(b) Let oo € C1(A™® X Do) be the class of the idele ({1}y400, 1I}) (if n=10)
resp. of ({1}ustoo, @) (if n>0). Then we have

ﬁlj,f,oo Pr(e)k(€)/ < oo ® Frobgeg(oo) > §1\1:I forn =0, resp. (45)
ShS) ;1 oo @r(e)k(€)/ < €oo ® Frobl 18> > = Shy forn>0. (46)

Proof. We prove only the existence of (43). The other cases are similar and
will be left to the reader. For nU;(A>) € A*(A>)/Ur(A>) we denote the base

~

change of the map (38) to k(co) by (nUr(A®) x QL) @ (c0) k(00). Let

~ id ® Frob(" —
(MU (A%) x QL) @pa) k(00) ————s O @) k(o) A7)

and let
(A (A%) /U1 (A7) x QL ) Dy(o0) B(60) = A” (A%) /U1 (A%) X (VU B 00) K(0)
(48)

be made up of all the morphisms (45). One easily checks that it is A*-
equivariant and that the following diagram commutes:

(A*(A%) /U (A%) x QL) @ (o0) — by A*(A%)/UH(A%) x (02 @ K(c0))

l{@Frob;" lvi@id
(A*(A%) /UH(A®) x ) @ F(00) — s A*(A®)/U1(A®) x (O & F(00))
Hence (48) induces the isomorphism (43). O
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Note that, since £ acts trivially on gl\ljl (resp. Sh} f), the C1(A® x Dy )-

action on é?ljj (resp. Sh7y ;) induces a right W(A, I, oo)-action (by Remark
4.8 (¢)). In terms of the latter, Lemma 4.27 (a) can be reformulated as follows:

§}\1:O7I @p(oc)k(00)/ < £0™ @ Froby" > = §Eilm for n =0, resp. (49)

Sh  ®(oc) k(00)/ < 0™ @ Frob)" > = ShS ; for n. > 0. (50)

UNIFORMISATION AT THE POLE. Suppose that inve, A = 0 and assume first
that co does not divide the level I. Then there exists an isomorphism of formal
schemes over Spf(Ou)

Bl ,/Spf(On) = Shy, (51)

which is compatible with the W(A, I, oo)-action and the morphisms pole.
Now assume oo € |I|. Then it is expected

ENZ 7" /Spec Foo = Sh;. (52)

Again, (52) should be compatible with the W(A, I, co)-action and the mor-
phisms pole.

We say that EIIY ; admits uniformization at the pole if (51) (resp. (52)) holds.
Suppose that oo ¢ |I|. (51) has been proved in ([BS], 4.4) if A is a division
algebra or A = My(F). As in loc. cit. the general case can be easily deduced
from ([St], Corollary, p. 531 and Theorem 1, p. 538) or ([Ge], 1I11.3.1.1). If
oo € |I] then (52) in known in the case of Drinfeld modular varieties (i.e.
A = My(F)) the uniformization (52) is proved in [Dr4].

CHEREDNIK-DRINFELD UNIFORMIZATION: Let p € |X| — {00} and assume
that inv, A = é. Let B be a locally principal Ox-order of rank d? with
Disc(B) = Disc(.A) and such that the local invariants of the generic fiber B of
B are given by inve(B) = inveo(A4) + 1, inv,(B) = 0 and inv,(B) = inv,(A)
for all z € |X| — {oo,p}. We fix an isomorphism B, = My(F}) and isomor-
phisms B, = A, for all x € |X| — {oo,p}. Using the latter we can identify

the groups C;(A™ x By ) and Cr(BP x Ay). Since £ acts trivially on gl\lé?;p
(resp. Sh%f"[,p) we obtain a right W(A, I,00) = Cr(BP x A,)/¢% -action on

@éip (resp. Sh%f‘},p). We also fix an isomorphism k(c0), = k(£) C k(p)

such that the pair (k(co0)s = k(§oo) < k(p), k(p)p — k(p)) is admissible in the
sense of Remark 4.26 (k(oco), and k(p)y are defined as in the last section) and
define

pole : gl\ljxjoo (4—1; Spec k(€x0) = Spec k(00)4 ifn=0,
pole : S, 2 Spec k(éa) = Spec k(s0). if n > 0.
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Assume that p & |I| (resp. p € |I]). Then we expect that there is a canonical

isomorphism of formal schemes over Spf(O,,) (resp. of rigid analytic spaces over
£p)

Ell, ;/Spf(Op) = Shgg, if p & |11, (53)
BN /F, = Shgﬁm if p e |I| (54)

compatible with W(A, I, c0)-action and the morphisms pole.

We say that ENY ; admits Cherednik-Drinfeld uniformization if (53) (resp.
(54)) holds. Both (53) and (54) are proved in ([Hau], 8.1 and 8.3) in the
case deg(oco) = 1, invee A = 0 and oo ¢ |I|. Under these assumptions the

8o
formal scheme Shp ; , and the rigid analytic variety Sh%?flm have the following
simpler description

Qo 6eo * * 0o Jove) ~ — .
Shyg , = B\ (B (AP2)/U(B>P) x Qff @) (P)) if n =0,
Shf’ﬁ’o,ol,p = B*\ (B* (Apyoo)/UI(Boo’p) X Eiﬁp ®k(p)d k(p)) if n >0,

where n denotes now the exact multiple of p occuring in 1.
By combining Theorem 4.25, (49), (50) and Lemma 4.27 (b) we obtain:

PROPOSITION 4.28. Let p € |X| — {oo} and let A and B be locally principal
Ox-orders of rank d* with Disc(B) = Disc(A) such that the local invariants of
the generic fibers A and B are given by inve(A) = 0,invee(B) = 5, invy(A4) =
L. inv,(B) = 0 and inv,(B) = inv,(A) for all z € |X|— {oo,p}. The following
conditions are equivalent:

(i) BN} ; admits uniformization at the pole.

(ii) Ellgﬁ 1 admits Cherednik-Drinfeld uniformization.

By applying 4.28 to the results of [BS] and [Hau] we obtain further cases where
EllY ; admits uniformization at the pole or Cherednik-Drinfeld uniformization.
For example if inve,(A) = 0, oo € |I] and if there exists a point p € | X|— {oco}
such that inv, (A) = & and deg(p) = 4 then EII%{ ; admits uniformization at the
pole. Conversely Cherednik-Drinfeld uniformization for Ellif, ; holds whenever
if p does not divide the level.

5 APPENDIX

5.1 COMMUTATIVE SUBALGEBRAS IN SEMISIMPLE ALGEBRAS

Let k be a perfect field and A a finite-dimensional semisimple k-algebra. We
collect a few facts about maximal separable and commutative subalgebras of
A for which we could not find any references.

Let Z denote the center of A. By Wedderburns Theorem we have Z & k1 x...Xx
k, for some finite separable extensions k; /k. For a finite Z-module M, ranky M
denotes the (not necessarily constant) rank of the corresponding locally free
Ospec z-module.
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LEMMA 5.1. Let T be a commutative separable k-subalgebra of A. The following
conditions are equivalent.

()T =Z4T)={x€cA| te=at VteT}.

(i1) T is a maximal commutative separable k-subalgebra of A.

(iii) T 2 Z and (rankz T)? = ranky A.

Moreover if A = Endg, (V1) X ... x Endg, (V,.) where V; a finite-dimensional
k;-vector space fori=1,...,r, then (i) — (i) are equivalent to

(iv) Vi ®...®V, is a free T-module of rank 1.

A commutative separable k-subalgebra T of A satisfying the equivalent condi-
tions (i) — (iii) above will be called a mazimal torus of A.

LEMMA 5.2. Let T1,Ty be two mazimal tori of A. Then there exists a finite
extension k' /k such that Ty ®p k' and To @ k' are conjugated in A Qy k'

A finite A-module M is called a generator of Mod 4 if the functor
HOInA(M, ) : Modyg — Mody

is faithfull. M is called a minimal generator if dimy (M) is minimal. Assume
now that A is split, i.e. A = Endg, (V1) x ... x Endg, (V) as in condition (iv)
of Lemma 5.1 and let 7" be a maximal torus in A. We have

LEMMA 5.3. Let M be a finite A-module. The following conditions are equiv-
alent.

(i) M is a minimal generator.

() M2V @ ..oV,

(i1i) M is a free T-module of rank 1.

5.2 A-ELLIPTIC SHEAVES ACCORDING TO LAUMON-RAPOPORT-STUHLER

The aim of this section is to show that under suitable assumptions on A the
moduli stack £0¢7 defined in section 4.1 is isomorphic to the stack defined in
([LRS], 2.4).

Firstly, we establish an equivalence between certain parabolic vector bundles
and locally free modules of a hereditary algebra. We use the following notations
and assumptions. Let k£ be a perfect field of cohomological dimension < 1 and
let X be a smooth connected curve over k and F' is the function field of X.
We also fix a closed point co € X. To simplify the notation we assume that
deg(oo) =1 (see Remark 5.11 below for the case deg(oo) > 1).

Let A’ be a locally principal Ox-order of rank d? with generic fiber A’. We
assume that ex(A") =1, i.e. AL 2 M4(Ox). To begin with we introduce the
notion of a parabolic A’-modules and parabolic vector bundles with A’-action
(compare [Yo]). A filtered object in a category C is a functor Cy : Z — C.
Morphisms of filtered objects are natural transformations. Here we regard the
ordered set Z as a category in the usual way. The set of objects is Z and for
1,] € Z we have

1 ifi<j

0 otherwise.

HMox(i, ) = {
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For i € Z the morphism C; — C;4; will be denoted by j; = jZC For a filtered
object Cy in C and n € Z the shifted filtered object C[n], is defined as the

composite Z 7z s A morphism ¢ : C, — D, of filtered objects induces
a morphism ¢[n] : Cn), — D[n,.

Recall that for S € Sch/k we have set 4 Mod(S): = awmo,Mod (resp.
MOd_A/(S) = MOd.A’|Z|OS)-

DEFINITION 5.4. Let S be a k-scheme.

(a) For e € Z with e > 1 let PMod ar (S) denote the category of pairs (Fy,s)
consisting of a filtered Mod 4/ (S)-object Fy and an isomorphism v, : Fle], —
Fi(00): = Fy 0y, s (Ox(00) ® Og) such that the restriction of j; : F —
Fit1 to X — {oo} x S is an isomorphism and such that the following diagram
commutes

‘Fi+e (55)
ij/
Fi Pi
id ®¢
]:i (OO)

where 1 : Oxxs — Ox(00) X Og is the inclusion. Morphisms in PMod as ¢ (S)
are morphisms of filtered objects compatible with the isomorphisms 1.

(b) Let PCohly, o, .(S) denote the groupoid of (Ks,vs) in PModas o(S) such
that IC; € Cohly, ,(S) and N(Ky): = N(K;) = N(Kiy1) for all i € Z.

(¢c) For e,r € Z with e,m > 1 and e | rd. We denote by PVect'y, .(S) the full
subcategory of (Fy, ¥r,) in PMod s (S) such that F; € Vect'y,(S) for alli € Z
and such that Coker(j : F, — F[1]) € PCohly g, .(S) with s = rd,

Similarly one defines 4 PMod.(S) and a PVectl(S) using left A’ K Og-
modules.

Note that for (F,¥.) in PMods ((S) with F; € Vect’y,(S) for all i € Z, the
commutativity of diagram (55) implies that j; : F; — F;41 is injective and
Coker(j;) is a sheaf on oo x S. For A’ = Ox we write Modx, PModx ., Vectx
etc. for Modo,, PModopy (5), Vectoy etc.

Let &, € PModar ((S) and F, € 4 PMod.(S). We are going to define now a
tensor product (&, @ 4r Fy)s. For i € Z we set

Ti(E.F): = @ &owuFu

A =i, \, n€Z
For i € Z with we define homomorphisms
i Ti(Exy Fio) — Tixa(Ex, Fi)y Bi: Ti(Exy Fi) — Tig1(Ex, Fi)

as the direct sums of the inclusions jy ®id : Ex ®ar Fu = Exy1 @ Fy (resp.
ld®j# N R ]:# — E\ Qu fqul). Also let

Yi - Ti(g*a]:*) — Ti(g*af*)
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be the isomorphism given on the summand £\ ® 4+ F, by

E\ Qur .7:# = 5,\(00) R ]'—#(*oo) ﬂfﬁf7 Erte Quar ]'—#,e.
Finally let
61’ : Ti—l(g*a]:*) @Tl(g*)]:*) — 711'(5*)]:*)

be given on the summand T;_1(x, Fx) by a;—1 — Bi—1 and by id — ; on
T;(Ex, Fi). We define

> & ®w Fu = Coker(;) (56)

AFp=i,\,pEL

There are canonical morphisms

Yo SeaFi— Y &HeaF. (57)

Apu=i—1,\,u€Z A+p=i,\,u€Z
The isomorphisms

Exed Ou Fo P2 (& 0u Fu)(00),  Ex O Fura "2 (Ex @u0 Fu)(o0)

induces an isomorphism

ExoaFu—( Y,  Ex®a Fu)(x). (58)
Apu=i+d,\,uEZL A pu=i,\,u€Z

DEFINITION 5.5. The tensor product (€, ® ar Fi )« € PModx ((S) is defined as
the collection of Ox xs-modules

(5* XA ]:*)i = Z 5)\ XA ]:u
Ap=i,\,u€Z

(for i € Z) together with the maps (57) and (58).

LEMMA 5.6. Let & € PVecty, .(S) and Fi € 4 PVect,(S). Then (Ex®ar Fi)«
lies in PVectg(dfe(S). In particular 32y, \ ez Ex @a Fpu is a locally free
Ox x s-module of rank rd? for all i € Z.

Proof. For A" = Ox this follows immediately from the fact that a parabolic
Ox xs-module is a parabolic vector bundle if and only if it is parabolically
flat ([Yo], Proposition 3.1). The general case can be deduce from this special
case by Morita equivalence. More precisely since the question is local we can
replace X by an étale neighbourhood of co and therefore can assume that
A" = My(Ox). Let Z be an invertible A'-Ox-bimodule and J its inverse.
Since (& @ Fi)x = ((Ex @4 T) @0 (T @47 Fi))« the assertion follows from
the case A’ = Ox. O
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Let A be another locally principal Ox-order of rank d? and assume that
eso(A) = d and Ay and A’|y are Morita equivalent where U = X — {oo}.
There exists an increasing families of A-A’-bimodules {Z; | ¢ € Z} and
of A'-A-bimodules {J; | i € Z} such that (Z;)|ly = (Zi+1)v =: Zy and
(T)lv = (Tix1)v =: Ju for all i € Z, Iy is an invertible Ay-Ap-bimodule
with inverse Jyy and such that {(Z;)e | 4 € Z} and {(Ji)s | ¢ € Z} are as in
2.2. Tt follows from Corollary 2.12 that Z; and J; are locally free A’-modules
of rank 1. Also we have

A(éOO) QAL =Tit1, Ti®a A(%oo) = Ji+1

for all 7 € Z.

PROPOSITION 5.7. Put Vect4 = Vectly and PVects = PVectly ;. The mor-
phisms

@4 Ly : Vect g —» PVectar, (- ®a Ji)a—1 : PVect s — Vect g (59)

given by E = E@aL: ={F@aLi|i€Z} and E = 30\ gy 1 ExOu Ty
are mutually inverse isomorphisms of stacks. Define 6 : Vect 4 — Vect 4 and
0" : PVectar — PVecta by 6(€) = 5(%00) and 0" (Ec, ) = (E[1]x, ¥[1]4).
Then the diagrams

® (®arTx)d—1
A

Vect 4 94T+, Pyect A PVect 4/ Vect 4
E o o lo @O
AL, (‘®A/.7*)d—1
Vect 4 ———= PVect 4 PVect y, ——————— Vecty

are 2-commutative.

Proof. In view of 5.6 we only have to show that the second morphism is well-
defined. By 5.6 and 3.11 we have to prove that for & € PVecta (S) the
quotient

( Z Ex@ar Tu)/( Z Ex®a Ty) & Z ExOa Ty

A+pu=0,\,nEZ Atp=—1,\uEZ A+p=0,\,nEZ

is a special A-module on S = co x S where £,: = Coker(&,[—1] — &,) €
PModg4(S). However this follows from:

LEMMA 5.8. The assignement Ky +— Z/\Jm:dfl Kax®a J,, defines a morphism
(- ®ar Jx)a—1: PCohly o, 4 — Cohly ., -

Proof. By Lafforgue’s Lemma ([Laf], 1.2.4) (applied to a maximal tori in A) it
suffices to consider the case where S = Speck and k is an algebraically closed
field. If N(K,) # oo then the assertion follows from Remarks 3.8 (b), (¢). Now

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 595-654



TWISTS OF DRINFELD—STUHLER MODULAR VARIETIES 651

assume N (K,) = c0. Let O = O, K = F4. Since the question is local with
respect to the étale topology we can replace X by Spec O where O = O.
Then A" =2 My(O) and A = End(L,) for a lattice chain £, of period d in
K®. Morita equivalence allows us to replace A’ by O, i.e. we can assume that
A" = 0. Then M;: =T (SpecO,K;) is a onedimensional k-vector space for all
1 € Z and we have to show that

> MigoJ; (61)

i+j=0

is a free T = T ® k-module of rank 1 where 7 2 O¢ is any maximal torus in
A If 1=e1+...+eq is a decomposition of 1 € T into primitive idempotents
we obtain a corresponding decompositon of (61) into

Z M¢®o‘7j(y), v=1,...,d

i+5=0

where jj(”): = Jje,. Since J; is free of rank 1 as a 7-module, j*(”) is a
shifted parabolic line bundle (compare [Yo]) for each v € {1,...,d}. Therefore
(M, @0 T, = M,[m] for some m € Z. Consequently

> Migo I = M,

i+5=0

is a onedimensional k-vector space. It follows that (61) is a free T ® o R-module
of rank 1. O

Now assume that k¥ = F, and that A’ is a maximal Ox-order in a central
division algebra A’ of dimension d? with AL = My(Fx). Let us recall the
definition of an A’-elliptic sheaf given in ([LRS], 2.2) and ([BS], 4.4.1) (here we
do not require deg(oo) = 1).

DEFINITION 5.9. Let S € Sch /F,. An A’-elliptic sheaf E' = (€;, ji, ti)icz with
pole oo in the sense of [LRS] consists of a commutative diagram

Ji—1 Ji
L/ & /& - Eit1

e e

Ji— Ji—
L — TE o —1> TEi1 = TE;

where & are locally free Oxxs-modules of rank d* additionally equipped with
a right action of A’ compatible with the Ox-action. The maps are injective
A’ & Og-linear homomorphisms.

Furthermore the following conditions should hold:
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(i) (Periodicity) £1ecdeg(oc) = Ei(00): = & R0y, s (O(00) K Og) where the
canonical embedding of €; on the right side corresponds on the left to the com-
postion &; Lo Eitddeg(oo) -

(i) The quotient sheaf £;/ji—1(Ei—1) is a locally free sheaf of rank d on the
graph of a morphism te; 1 S = X.

(i1i) There exists a morphism z : S — X — |Disc(A’)| — called the zero or
characteristic of E' — such that for all i € Z, Coker(t;) is supported on the
graph of a morphism z and is a direct image of a locally free Og-module of
rank d by T, = (z,idg) : S — X x S.

We first remark that condition (iii) implies that &; is actually a locally free
A’ Og-module. This follows from ([Laf], 1.4, proposition 7) or can be deduced

from Lemma 3.11 together with ([LRS], 2.6). Secondly condition (i) implies
that te0,;(S) = {00} and we have

Loo,i © Frobs = oo 11
for all 7 € Z. For that consider the two filtrations of &1 /t;—1("€;—1)

0C&/tic1(T€i—1)CEir1/tici(TEizn),
0Ct(TE:) /tic1(TEi=1)CEix1/tic1(TEZ1).

The first shows that the support of &1/t;—1("€i—1) is T, + T
second that it is I'; + ', _ ;oFrobs-

Suppose again that deg(co) = 1. Hence the stack PELY(S) of A’-elliptic
sheaves as defined in 5.9 is isomorphic to the stack of triples E/ = (&, t4)
where & = (&,1%4) € PVect 4/ (S) and t, : "E[—1], — &, is a morphism in
PVect 4/ (S) such that (iii) above holds for Coker(t,).

We show that the isomorphisms (59) yield isomorphisms between PEL(Y, and
ELR | X~ Disc(an| = ELZ xx (X — |Disc(A’)]). Define

and the

loo,i+1

by (€,t) — (€ ®4 L, t ® 4 Z,). The commutativity of the first diagram (60)
shows that t ® 4 Z, is a map "€ @4 Z,[—1] = £ @4 Z,. That E’ has property
(iii) above follows from Remark 3.8 (¢). Conversely, we define

by (Exyts) = ((Ex @ar Ti)d—1, (tx ®ar Ti)d—1). Again the commutativity
of the second diagram of (60) implies that (fx ®4: Jix)a—1 is a morphism
T(E(—%00g)) = € where € = (£,®.4: Ty )d—1. Finally condition (*) of Definition
4.2 follows Lemma 5.8. We deduce from 5.7:

PROPOSITION 5.10. Let S be a k-scheme. The morphisms
+@ali : ELY | x| Dise(an) — PEUZ, (62)
(- @ar Tu)a—1: PEUZ — ELET | x | Disc(ar)| (63)

are mutually inverse isomorphisms.
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REMARKS 5.11. (a) In order to extend 5.10 to the case deg(co) > 1 we have to
modify Definition 5.4 (b) as follows. For S € Sch /k let PVect 4/ (S) denote the
category of triples (Fy,¥r,,005) where cog : S — X is a k-morphism which
factors through co — X and (Fs,vr,) is an element of PMod 4/ g deg(oo)(S)
such that F; € Vectl,(S) for all i € Z and such that the sheaf Coker(j;)
is a locally free sheaf of rank d on the graph of cog o Frobfg S —- X. To
define isomorphisms similar to (59) we consider increasing families of AKk(oc0)-
A’ K k(co)-bimodules {Z; | i € Z} and A’ K k(00)-A K k(co)-bimodules {7; |
i € Z} with the following properties:

(i) A(300;) ®AZi = Lix1, Ji ®a A(S00;) = Jiya for all i € Z. Here oo
denotes the canonical morphism Spec k(oco) — X and oo;: = oogoFrob” :
Spec k(o0) — X.

(1) Zu = (Zi)|vxs, k(oo) Is an invertible Ay K k(oo)-Ay, Mk(co)-bimodule with
inverse Ju = (Ji)|vx, k(oo)-

(ili) For all ¢ € Z, Z; and J; are locally free A’ X k(oco0)-modules of rank 1.

As in 5.7 one defines isomorphisms

- ®@AZ, : Vect 4 xF, k(o0) — PVecta,
(- @4 Ti)d—1 : PVect 4 — Vect 4 XFqk(OO>

which then yield the isomorphisms (62), (63) above.

(b) Let p be a closed point of X such that inv,(A’) = 2. In [Hau], Hausberger
constructed a flat proper model of £0%, over (X — | Disc(A’)|)U{p} by extend-
ing the definition of the moduli problem 5.9 of Laumon-Rapoport-Stuhler to
characteristic p. By using ([Hau], 2.16) it is easy to see using that his condition
spéciale ([Hau], section 3) corresponds to our condition (*).
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