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ABSTRACT. For a usual local field of mixed characteristic (0, p), we
have the theory of Coleman power series [Co|. By applying this theory
to the norm compatible system of cyclotomic elements, we obtain
the p-adic Riemann zeta function of Kubota-Leopoldt [KL]. This
application is very important in cyclotomic Iwasawa theory.

In [Ful], the author defined and studied Coleman power series for K»
for certain class of local fields. The aim of this paper is following the
analogy with the above classical case, to obtain p-adic zeta functions
of various cusp forms (both in one variable attached to cusp forms,
and in two variables attached to ordinary families of cusp forms) by
Amice-Vélu, Vishik, Greenberg-Stevens, and Kitagawa,... by apply-
ing the Ky Coleman power series to the norm compatible system of
Beilinson elements defined by Kato [Ka2] in the projective limit of Ky
of modular curves.
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1. INTRODUCTION

1.1. Let p be any prime number. For a complete discrete valuation field H
of mixed characteristic (0, p), with perfect residue field, we have the theory of
Coleman power series, as reviewed in section 2. One of the important appli-
cations of this theory is the construction of the p-adic Riemann zeta function
of Kubota and Leopoldt [KL], by applying the theory to the norm compatible
system of cyclotomic elements.

In the paper [Ful], we have obtained “Ks-version of Coleman power series” for
a certain class of local fields. Following the analogy with the case of the usual
Coleman power series above, the aim of the present paper is to show that by
applying the theory of K5 Coleman power series to the norm compatible system
of Beilinson elements in the projective limit of K5 of modular curves defined
by Kato [Ka2], we obtain p-adic zeta functions of various cusp forms, both in
one variable attached to cusp forms (cf.Amice-Vélu [AV], Vishik [Vi]), and two
variables attached to universal family of ordinary cusp forms (cf. Greenberg-
Stevens [GS], Kitagawa [Ki]).

1.2. We describe our result briefly reviewing the classical result on the p-adic
Riemann zeta function.

Let denote by (» € @, a primitive p"-th root of unity and assume ¢}, = (pn
for all n > 1. We write Q(Z,[[G]]) for the total quotient ring of the completed
group ring Zp[[Guo]] = imZ,[(Z/p"Z)*] and G = Z; is regarded as the

Galois group Gal(Q,(¢p=)/Qp) associated to the cyclotomic p extension of Q,
via the cyclotomic character.

Iwasawa [Iw] discovered a relationship between the norm compatibles system
of cyclotomic elements (1 — (pn )y, € lim Q,((pn )™ and the p-adic Riemann zeta

function Cpadic € Q(Zy[[Goo]]) of Kubota and Leopoldt [KL]. The relation of
these two appears in the theory of the usual Coleman power series as follows.
The theory of Coleman power series for the multiplicative group induces a map

C and C sends (1 — (pr)n € HmQp(Cpr )™ t0 Cpragic € Q(Zp[[Goc]]):

)>< via Coleman power series Q(

C : lim @y (Gpr Zy[[Gl)),

C((l - Cp“)n) = Cp—adio

The purpose of this paper is, by pursuing the analogy with this work, to obtain
p-adic zeta functions in one variable attached to cusp forms, and in two variables
attached to ordinary families of modular forms, whose existences are already
known (for one-variable zeta functions cf. Amice-Vélu [AV], Vishik [Vi],..., and
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COLEMAN POWER SERIES FOR Ko 389

two-variable zeta functions associated to ordinary families of cusp forms cf.
Greenberg-Stevens [GS], Kitagawa [Ki],...).

Let 1.1
H= (@(Z/pnz[[Q]][g]))[g],

where ¢ is an indeterminate. This is a complete discrete valuation field of
mixed characteristic (0, p) whose residue field k is an imperfect field satisfying
[k : kP] = p. As reviewed in section 2, for H, we have a theory of K5 Coleman
power series [Ful].

Let N be a positive integer which is prime to p. Let us denote by Y (Np™, p")
a 3
vy 0
SLa(Z); a=1(Np™),8=0(Np"),y =0(p"),d = 1(p")} whose total constant
field is Q(¢pn ).

In his paper [Ka2], Kato discovered a norm compatible system of Beilinson ele-
ments belonging to lim K»(Y (Np",p")). We study the image of this Beilinson-

the modular curve corresponding to the subgroup I'(Np", p") = {( €

n
Kato system under a map Cy below which is defined by using our K5 Coleman
power series following the analogy with the classical map C. We call this image
a universal zeta modular form (see section 4).

CN , @KQ(Y(an,pn)) via Ko Coleman power series Q(OH[[G(()? % Gg)“)

n

Cn (Beilinson-Kato system) = the universal zeta modular form.

(Precisely we will define the universal zeta modular form as an element obtained
from this image with a suitable modification, cf. section 4.) Here Gg) =
Ggi) ~ (G, Gg,) is a group of diamond operators acting on the space of p-
adic modular forms (refer to sections 3 and 4), and G = Gal(Qp(¢pe)/Qp).
Further Q(OH[[G&) X Gg)]]) denotes the total quotient ring of the completed
group ring OH[[G((;)) X Gg))]].

Theorem 6.2 which is one of our two main results will state that the above
universal zeta modular form produces p-adic zeta functions (in one variable) of
eigen cusp forms which are not necessarily ordinary.

Theorem 7.3 which is the other main theorem asserts roughly the following.

THEOREM 1.3 (cf. Theorem 7.3). We assumep > 5. Let b‘}\}gw be the ordinary
part of the ring of Hecke operators of level Np™ acting on the space of the p-
adic cusp forms of level Np> (cf. section 3). The universal zeta modular
form above produces, by the method in section 7, a p-adic zeta function in two

variables )
ord,univ T T
Lp-adic € (b(])\fgw/z](ifgm)[[(;g)]][a}
which displays property (1.1) below. Here I}{fgm C b%gw is a certain ideal

(see3.7 in section 3), and a € h?\};}m [[Gg;)]} is a certain non-zerodivisor.
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390 TAKAKO FUKAYA

Let f be an ordinary p-stabilized newform of tame conductor N (for the def-
inition of an ordinary p-stabilized newform, see 7.2.1 in section 7) of weight
k > 2. Attached to f, we have a ring homomorphism Ky :

K Do [IRpee — Ly 3 T(n) = an(f) (n>1),

with a,(f) such that T(n)f = a,(f)f. Suppose ks satisfies some “suitable”
condition. Then ky induces a homomorphism which is also denoted by Ky :

1

-] — QZIG2)),

. d d
rf (Do /TRpee ) [[Gool]l
and concerning the image L;{‘igﬁiv(l-@f) of L;ﬁi;;rcﬁv under this homomorphism
k¢, we have

L;f‘i;;rcliv(mf) = p-adic zeta function of f € (On[[GP]]) ®o,, M.

(1.1)
Here M is the finite extension Qp(an(f);n > 1) of Q.
For the precise statement, see Theorem 7.3 in section 7.

The above Lgfg&‘;éﬁv is essentially the two-variable p-adic zeta function asso-
ciated to ordinary families of cusp forms which has been already given by
Greenberg-Stevens [GS], Kitagawa [Ki],..., by another method. The signifi-
cance of our p-adic zeta function is that the coefficients in the p-adic zeta
function belong to the ring of Hecke operators as above. Hence our L;fg(ﬁém
is a p-adic zeta function associated with the universal family of ordinary cusp
forms. By another method, Ochiai ([Oc]) has also constructed this kind of
two-variable p-adic zeta function.

The author found that Panchishkin [Pal], [Pa2] gave a new way of the con-
struction of p-adic zeta functions of modular forms by using something similar
to our universal zeta modular form at almost the same time as the author gave
talks in the conferences in the autumn of 2000 as described in the proceedings
[Fu2], [Fu3] in Japanese. Our aim is to obtain p-adic zeta functions of modular
forms by applying K> Coleman power series to the norm compatible system of
Beilinson elements in K5 of modular curves.

1.4. The organization of this paper is as follows.

In section 2, we review the theory of Coleman power series both in the classical
case and in the case for Kj [Ful].

In section 3, we review the theory of p-adic modular forms (cf. [Hil]).

In section 4, we define and study a “universal zeta modular form” which is
obtained from the image of Beilinson-Kato system under Cy appearing in 1.2.
In our construction, p-adic properties of p-adic zeta functions are deduced from
the p-adic properties of the universal zeta modular form and the relation be-
tween the universal zeta modular form and special values of zeta functions of
modular forms.

In section 5, we review the theory of p-adic zeta functions of modular forms.
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COLEMAN POWER SERIES FOR Ko 391

In section 6, we prove our theorem (Theorem 6.2) on the construction of one-
variable p-adic zeta functions of eigen cusp forms which are not necessarily
ordinary.

In section 7, we prove our theorem (Theorem 7.3) on the construction of p-
adic zeta functions in two variables, which are attached to universal families of
ordinary cusp forms.

The author would like to express her sincere gratitude to Professor Kazuya
Kato for his guidance and constant encouragement. She has learned a great
deal from him throughout her graduate course. She is very happy to dedicate
this paper to his celebrated 50th birthday.

She is very thankful to Professor John Coates who gave her comments and
constant encouragement for this study.

In this paper, for a complete discrete valuation field L, Oy, denotes the ring of
integers of L.

For a ring R, Q(R) denotes the total quotient ring of R.

We also fix once and for all an embedding of Q into @.

2. REVIEW OF COLEMAN POWER SERIES FOR K>

In this section we give a brief review of the theory of Coleman power series
both in the usual case (in 2.1 — 2.2) and our Ks-version case (in 2.3 — 2.5).

2.1. We review the classical case of the usual Coleman power series. The ex-
istence of Coleman power series were discovered by Coates and Wiles [CW]
and almost immediately, Coleman [Co| generalized their approach by an al-
ternative method. The theory of Coleman power series has been obtained for
general Lubin-Tate groups, but here we review the theory only for the formal
multiplicative group.

Let H be a complete discrete valuation field of mixed characteristic (0, p) with
perfect residue field k. We assume that H is absolutely unramified, i.e. p is
a prime element of Oy. We denote by Oylle — 1]] = lim Oy[e*']/(e — 1)"

the coordinate ring of the formal completion of the multiTIL)licative group over
Opn, and by Og((e — 1)) the Laurent series ring Oglle — 1]][1/(¢ — 1)]. Let o
denote the Frobenius automorphism of Og. We extend o to an endomorphism
of Og((e — 1)) by putting o(e) = . We define a ring homomorphism

1
&P — 1]

¢:0u((e — 1)) — Onlle — 1]
by o(f)(e) = (of)(eP), and
N:Og((e —1))* — Op((e — 1))~

to be the norm operator induced by the homomorphism ¢. We write (Og ((e —
1))*)N=1 for the group of all units f in Og((e — 1)) which satisfy N(f) = f.
Now let (,» denote a primitive p™-th root of unity, and assume Cg i1 = Gpr
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392 TAKAKO FUKAYA

for all n > 1. Put H, = H((yn). The aim in this case is to study lim H,Y,

n
where the projective limit is taken with respect to the norm maps in the tower
of fields H, (n=1,2,3,...).

THEOREM 2.2 (Coleman [Col). We have an isomorphism

U (Op((e = 1))ON=" = lim H)Y

n

gien by U(f(e)) = (07" [)(Cpr)In=12,...-

2.3. Now we review our case of Ks-version of Theorem 2.2. (See [Ful] for more
details.)

Let H be a complete discrete valuation field of characteristic 0, whose residue
field k is an imperfect field of characteristic p satisfying [k : k?] = p. We
assume that H is absolutely unramified. We fix once and for all a p-base b
of k, and a lifting ¢ of b to H (all of our subsequent constructions depend on
these choices). We define o : Oy — Oy to be the unique ring homomorphism
satisfying o(q) = ¢?, and the action of o on k is given by raising to the p-th
power. For simplicity, let us write

1
€ — 1]'
We extend o to an endomorphism of S’ by putting o(¢) = e. We then define a
ring homomorphism

§=Oulle—1]), 8 =Ou((c—1)) =]

1
ep — 1}
by ©(f)(e) = (of)(eP). For any ring A, let K2(A) denote Quillen’s K5 group
of A ([Qu]). Since S[1/(e? — 1)] is a free S’-module of rank p? via ¢, we have
the K> norm map (see [Qu], §4, Transfer maps)

1
eP—1

p: 8 — 9]

K (S] I) — Ka(S").

The composition of this with

1
1)

induced by the inclusion map S’ < S[1/(eP —1)], gives rise to a K norm map

N: KQ(S/) — KQ(S/)

KQ(S/) — KQ(S[

We consider the following tower of fields above H. We take a p™-th root ¢/?"

of ¢ in a fixed algebraic closure H of H and assume that (ql/pnﬂ)p = ¢'/?" for
all n > 1. We define

Hy = H(Gr q!/7").
Moreover, we define a ring homomorphism

Qn : OH —_— OH(ql/p”)
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by specifying that 6,(q) = ¢'/?", and that the induced map k — k(b'/?") on
the residue fields is the isomorphism x — z'/?". For n > 1, 6, induces a ring
homomorphism
hy,: S — H,

given by hy, (300 am(e—1)™) =3">°__ 05(am)(¢m —1)™. Thus we obtain
a map

U, : K3(S") — K3(H,) (n>1)
which is induced by h,. In order to state our theorem, we need to introduce
certain completions Ky of our Ks-groups (see 2.5 below for the definition).
All of the above homomorphisms give rise to corresponding maps between
the completed Ks-groups, which we can check easily from the definition of
the completions in 2.5 below and which we denote by the same symbol. We
also write Ko(S')N=1 for the subgroup of elements f in K»(S’) which satisfy
N(f) = 1.

Instead of lim H,', we study the projective limit @Kg(Hn) with respect to
n n

the norm maps in the tower of fields H, (n =1,2,3,...).

THEOREM 2.4 ([Ful], Theorem 1.5). We have an isomorphism

v . KQ(S’)NZl ~ @KQ(Hn)
given by U(f) = (V,(f) :n=1,2,3,...).

2.5. We describe the completion§ of the K5 groups appearing in Theorem 2.4.
We introduce the completions Ka(A) in the following two cases by which the
completions in Theorem 2.4 follows.

(i)A=25".

(ii)A is a complete discrete valuation field L.

Let » > 1.

In the case of (i), let U") = 1 4 (p,(e — 1))"S, a subgroup of S*, where
(p, (e — 1)) is the ideal of S generated by the elements in ( ).

In the case of (ii), let U") = Ug"), where Ug) is the r-th unit group of L, i.e.
1+ m} C Of for the maximal ideal my, of L.

We define a subgroup U K5(A) of Ko(A) for a ring A of the type (i) or (ii),
as the one which is generated by {a, A*} for all a € U") ¢ AX, and define

Ky(A) = lim Ko(A) /U™ Ky (A).

3. REVIEW OF p-ADIC MODULAR FORMS

In this section, we briefly review the necessary facts for us on the theory of
p-adic modular forms. We follow Hida [Hil] to which we refer for more details.
(See also Katz [Katzl], [Katz2], etc.)
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394 TAKAKO FUKAYA

3.1. Let L be a finite extension of Q, in @, and we take a finite extension L
of Q which is dense in L under the p-adic topology. For k > 0 and for M > 1,
let My (X1(M); Lo) be the space of modular forms for I'y (M) of weight k£ with
Fourier coefficients in Ly. We define

Mp(X1(M); L) = Mp(X1(M); Ly) ®r, L.

Similarly we define the space of cusp forms Sy (X1(M); Lo) and Si(X1(M); L).
As in [Hil], §1, it has been known that the spaces My(X(M);L),
Sk(X1(M); L) are independent of the choice of a subfield Ly in the evident
sense.

Now for j > 0 we put

) J
MY (X1(M); L) = @ My (X1 (M); L),
k=0

S(X1(M); L) = @D Si(X1(M); L),
k=1

which are embedded in L[[¢]] via the summation of g-expansions, and

M (X1(M); Or) = M7 (X1(M); L) N O [[q]],

§7(X1(M); Or) = §7(X1(M); L) N O [q]].

We define M(X;(M);0r) as the closure of {J;5; M7(X1(M);Or) in
Or[[g]] for the p-adic topology, and S(X;(M);OL) to be the closure of
Ujs1 SI(X1(M);Or) in OL[[q]] for the p-adic topology.
For an integer N > 1 which is prime to p, it has been proven that
M (X1 (Npt);Or) and S(X1(Np');Or) are independent of the choice of t > 1,
as in Hida [Hil], §1, Cor. 1.2 (i), and (1.19a), respectively. For simplicity we
put

My = M(X1(Np"); Zp),  Snp= = S(X1(Np'); Zy)
for any t > 1.
We introduced the above notation in a general situation for our later use,
however in the rest of this section, we always take L = Q,.

3.2. We review the definition of the rings of Hecke operators Hypee and hypee
acting on M npe and Snpe, respectively.
For t > 1 and j > 1, let H/(X1(Np');Z,) (vesp. B/ (X1(Np');Zy))
be the Z,-subalgebra of Z,-endomorphism ring of M7 (X;(Np');Z,) (resp.
SI(X1(Npt); Z,)) generated over Z, by T'(n) (n > 1).
We put
H(X1(Np); Z,) = im WY (X1 (Np'); Zy),
J
h(X1(Np'); Zp) = im b7 (X1 (Np'); Zp),
J
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where the inverse limits are taken by natural homomorphisms given by the
restriction of operators.

As in Hida [Hil], §1, (1.15a) and (1.19a), respectively, H(X:1(Np');Z,) and
h(X1(Np'); Z,) do not depend on ¢ > 1. For simplicity we put

,]_leOo = H(Xl(Npt);Zp)a proo = h(Xl(Npt)§Zp)

for any t > 1. The rings Hp= and hype act on MNpoo and ngoo7 respectively.
The ring hype is, in fact, a quotient of Hppe by the annihilator in Hyp~ of
S

3.3. By the action of Hype on My, in 3.2, we have a canonical map
£ My — Homg, (Hapm,Zy) 5 f = (T(n) = a3 (T(n) f))

(f € Mpyp~) where a1(T(n)f) is the coefficient of ¢ in the g-expansion of
T(n)f € MNpoo .
This map will play an important role later in the construction of our two-

. . . ord,univ
variable p-adic zeta function Lp_adic

34.Forj>1letel =lim ., T(p)™ in H/(X1(Np'); Zy) or b7 (X1(Np'); Zy),
and e = liinej. Then e? = e.

J

We denote by Horgoo the ordinary part e - Hype of Hype and by h%gw the

ordinary part e - hypeo of hpeo.

Let PRide C HY 9w (resp. pliie C b ) be the annihilator of the old forms

(resp. old cusp forms) of level N’pt for all N’ such that N'|N and N’ < N. For
ord

the precise definition of PR (resp. p‘]’\};loo), see [Hil], §3. In the case N =1,
we have

ord __ ord ord __ pord
P =Hpe,  Ppo = bpe.

On PR and pgoe, Hida showed Proposition 3.6 below which is important
for us. Preceding it, we set up notation.

3.5. We define a group Gg,) which is endowed with an isomorphism to Z; and
which acts on the space My, in the following way.

—1 *
Firstly for « € (Z/Np'Z)* we denote by (z) the endomorphism (9&0 2)

—1

on My (X1(Np'); Q) induced by the action of (IO 2) € GLy(Z/Np'Z) on
X (Np',Np'). (The action of GLy(Z/Np'Z) on X (Np', Np') induces an en-
domorphism on My (X;(Np'); Q) by the fact that My(X;(Npt);Q) may be
regarded as the fixed part of My (X (Npt, Np')) by the group {(Z) Z €
GLy(Z/Np'Z) ; uw = 1(NpH),w = 0(Np')}, where My (X(Npt, Np')) is the
space of modular forms on X (Np?, Np?) of weight k as, for example, in [Ka2],
§3 (3.3.1), and §4.)
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We also use the same notation (z) for the endomorphism on M (X, (Np'); Q,)
induced by the above.

For a € ZX let g(l) IS Gg,) denote the element corresponding to a under
the given 1somorphlsm. For f = 3, fr € U; M7 (X1(Np');Qp) with fi €

M (X1(Np');Qp) and t > 1, we define the action of g(l) GV as
1) f Zak 2 fk:a

where o’ € (Z/Np'Z)* is the element such that a’ = a(p') and @’ = 1(N). This

€))

action of G5’ may be extended to M ype

We remark that the relation between this action of G’&) and the action of Zg
in Hida [Hil], §3, (3.1) is

f | a:a2.gc(11) 'f7
where f | a denotes the image of f under the action of a in the meaning of
Hida.
We put A = Zp[[G(l)H By the above action of G$Y on M npe, we have a ring
homomorphism
A — Hpype

We see that via this homomorphism bype HNp”’ and Ord

become also
A-algebras, and Pordm7 and p‘;\fﬁw are A—modules

ProPOSITION 3.6 (Hida [Hil] Corollary 3.3). We assume p > 5.
(1) The rings Hordoo and bordw are finitely generated projective modules over
A.

(2) The ideal Pj'vrgoo (resp. p?\fdm) is a finitely generated projective module over
A. Moreover the intersection of PONrgoo (resp. p?\fg ) and the nilradical ofH‘”d
(resp. BRoe) s null.

Proof. For the proof, see [Hil]. O
3.7. We define an ideal

IR C hN e
to be the annihilator of po’rdoo C h“rd . Then the natural map
PRy @a Q(A) — (D /IRip~) @a Q(A)
is an isomorphism, where the both hands sides are semisimple algebras over

Q(A) (cf. [Hil], §3).

4. UNIVERSAL ZETA MODULAR FORM

In this section, we define and study a“universal zeta modular form” which
is obtained from the norm compatible system of Beilinson elements defined
by Kato [Ka2], via Ko Coleman power series. The p-adic properties of p-
adic zeta functions of modular forms are deduced from the p-adic property of
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the universal zeta modular form and the relations between the universal zeta
modular form and zeta values. In 4.1, we define a map

Cy + lim K(Y (Np",p")) = Q(OW[IGE) x GE2T))

n

(see 4.1 for the details) by using K5 Coleman power series, and Proposition 4.4
shows that

Cn : Beilinson-Kato system — the universal zeta modular form
(reviewed in 4.2) (defined in 4.3).

In 4.5, we explain the properties of the universal zeta modular form concerning
the relation with special values of zeta functions of cusp forms.
In what follows,

H = (im(2/p" 2l )] )

We fix a system ((pn)n>1 of primitive p™-th roots of unity which satisfy (f; 1 =
(pn for alln > 1. For ¢ € H and n > 1, we fix p"-th roots q'/?" of ¢ in H which
satisfy (¢1/?"" )P = ¢'/?" for all n > 1. Let N denote a positive integer such
that (N,p) = 1.

4.1. By using Ky Coleman power series, we define a map

Cn + lim Ko(Y (Np™,p™)) — Q(On[[GY x GP])),

n

where the left hand side is the inverse limit of K5 of modular curves (cf. 4.1.1)
taken with respect to the norm maps, and on the right hand side, the group
G is as in section 2 (we will review this in 4.3) and the group G is the

Galois group Gal(Qp((pe=)/Qp).
We put S = Onl[e —1]] and S" = On[le — 1]][1/(e — 1)]. Let Goo = Z,’. The
map Cy is defined as the following composition:

dlo S (4.1)
5 05(10g)[[Goo]] = —— - dlog(g) A d1og(e)[[Ge]
= (6] — QUOMIIGY x G2,

We explain each term and each arrow in the composition (4.1).
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398 TAKAKO FUKAYA

4.1.1. For My, My > 1 such that My + My > 5, let Y (M7, Ms) be the modular
curve over Q, which represents the functor

S +—(the set of isomorphism classes of pairs (E, ¢)
where E is an elliptic curve over S and ¢ is
an injective homomorphism
Z/M1Z x Z/MsZ — E of group schemes over S).
For M > 3 such that M;|M and My|M, we have

Y (M, Ma) = G\Y (M, M), (4.2)

where G is the group {(:f) Z) € GLy(Z/MZ) ; uw=1(M;),v = 0(My),w =

O(Mg),x = 1(M2)}
We define Y(M17M2) for My, My > 1, My + My < 5, by (42)

4.1.2. We explain A[[G]] for an abelian group A. For a set J, Z[J] denotes a
free Z-module on the set J. We define G,, = (Z/p"Z)*, A[G,] = A ®z Z|G,],
and A[[G]] = lim A[G,,].

4.1.3. Let
Qg /z(log) = (g7, ® S @75 ) /N,

where Qg sz 18 the module of the absolute differential forms and N is the S-
submodule of the direct sum which is generated by elements (—da,a ® a) for
aeSNS*. In Qg/z(log), we denote the class (0,1®a) for a € S'* by dlog(a).
For r > 1, let QY ,(log) = A\ g, (log), and define

(log) = lim g, (log) /p" g (l0g).
Then we have Q% (log) is a free S-module and
Q5(log) = S -dlog(q) ® S - dlog(e — 1), 9Q%(log) = S - dlog(q) A dlog(e — 1),
0% (log) =0 for r > 3.

4.1.4. We explain the definition of the map £y in (4.1) (cf. [Ful], §6).
map is induced by the following map for n > 1 satisfying Np™ +p™ > 5

u€G, weZ/p"Z

This

Here 2 (y,) € K2(Hy,) is the pull-back of x under the following composition:

Spec(H,,) — Spec(Hn(q"/N)) — Y (Np™,p"), (4.3)

where ¢'/N € H is a N-th root of ¢.
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The first map in (4.3) is given by the homomorphism

Hn(ql/N) — Hn ; Z aiqi/Np" g Z aiqi/p".
We define the second map of (4.3). Let &, be the elliptic curve over Oy which
is obtained from the Tate curve over Z[[q]][1/q] with g-invariant ¢. For each
m > 1, we have ,,&,(Op) = {q“/me’n mod ¢ ; a,b € Z}, where ,,&, =
Ker(m : ¢; — &;). Now we define the second map of (4.3) by the open
immersion corresponding to

(€4 @0, Hul(g'™), ¢"/N?" mod g%, ¢"/7" yn mod ¢%)  over H,(¢"/™).
Here v’ € (Z/Np"Z)* is the element such that ' = u(p") and v’ = 1(V).
4.1.5. The second arrow of (4.1), which is an isomorphism, is by Theorem 2.4
in section 2 on Ko Coleman power series.

4.1.6. We explain the map dlog in (4.1). It is the map induced by the map
dlog : K»(S') — Q%(log) characterized by {a1,as} + dlog(a;) A dlog(az),
where aq,as € §% and {ay,as} € Ko(S') is the symbol. (The group K5(S’)
is topologically generated by the symbols. Refer to [Ful], §4, 4.11.)

4.1.7. We explain the last arrow in (4.1). We firstly define a map

SlGu]] — OnllGY x GQ)] (4.4)

to be the Oy-homomorphism associated to

cig, ulgg®,, if (ap) =1
“ 0 if (a,p) # 1,

for a € Z and u € Z. Here for u € Z;, g&l) € Gg) denotes the corresponding
element, and g,(tz) € GSE) denotes the corresponding element to u via the cyclo-
tomic character Xcyclo : Gg) — Z, . Next for an integer d’ which is prime to p,

. _S S
let var @ 25 — 25

T -homomorphism given by sending f(¢)/(e — 1)
(f(e) € S) to f(e¥)/(e? —1). Tt follows from the definition that the image
(1- d’ud/)(e_il) is contained in S. Now the last map in (4.1) is defined as the

composition

S 1—d'vy (4.4)

S[[Gool] —= Ou[[GY) x G|

(1 d/(2) 1
) o04]6D x G2

where 1 — d'vy is applied only for the coefficient % of G . It is easily seen
that the map Cy is independent of the choice of d'.
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4.2. Let ¢ and d be integers satisfying (¢, 6Np) = 1 and (d, 6p) = 1. We review
the norm compatible system of Beilinson elements defined by Kato in [Ka2]
(c.aznpnpr)n € lim Ko (Y (Np™, p")), (4.5)
n
where the projective limit is taken with respect to the norm maps, in the form
which is enough for us here (the details are found in [Ka2]).
For n > 1 satisfying Np™ + p™ > 5, the element (4.5) is given as

¢,dZNpn,pn = {cng”,Oa d40,pm }7

where .gnpno € O(Y(Np™, 1)) and 490, € O(Y(1,p"))” are Siegel units,
and we introduce their properties which are necessary for us here (see, for
example, [Ka2| for the details).

For integers M and c such that M > 3 and (¢,6M) = 1, we have an element
A of O(E \ .E)* which has the following property. Here E is the universal
elliptic curve over Y (M, M), .E = Ker(c: E — E), and O(E \ .E)* is the
affine ring. For 7 € $ and 2z € C\ ¢ 1 (Z7 + Z), the value at z of .0g, on the
elliptic curve C/(Z7 + Z), is

2 c—c? 2 c\—
gD =D (_py(1/2(e=e) Ly )ty (10)T,

where ¢ = exp(27it), t = exp(27iz), and

vt =[Ja -t [Ja—-¢t).
Jj=20 Jj=21
Now the Siegel unit g, 5 for (o, 8) = (a/M,b/M) € (((1/M)Z)/Z)?\ {(0,0)}
(a,b € Z) may be defined by

o8 = to,p(cfr) € OY (M, M))*.

Here

ta,3 =aey +bey : Y(M,M) — E\ .E
with the canonical basis (e1,e2) of E over Y (M, M). In the case a = 0,
cgog € O(Y(1,M))* and in the case 8 =0, cga,0 € O(Y(M,1))*.)
In [Ka2] (cf. [Sc]), it was shown that .gznpnpn (n > 1) form a projective
system with respect to the norm maps.

In the paper [Ka2], Kato always used norm compatible systems (c,a2arpn, am/pn )n
€ lim Ky (Y (Mp", M'p")) (M, M’ > 1, (M + M')p™ > 5) satisfying the con-

n
dition that M|M’ in application. However clearly the system (. qznpn pn)n €
lim K (Y (Np",p™)) which we use does not satisfy this condition. When Kato

uged a system, for example, to construct a p-adic zeta function of an eigen
cusp form f, he considered the “f*-component” of the system, where f* is the
dual cusp form of f (see 6.5.1 in section 6 for the definition of the dual cusp
form, and for the meaning of “component”, refer to section 6). But our method
needs to study the “f-component” of the system. So we must slightly modify
his system in application.
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4.3. We define a“universal zeta modular form”
2Rt € Mup<[[GL) x G(z)]][g](C On[[GL) x G(z)]][g])

which yields special values at s = (r € Z,1 < r < k—1) of the zeta functions
of modular forms of weight k& > 2 and level Np* for t > 0. Here My, is
as in section 3. Moreover Gg) o G(oi) > Gy = ZX, and G(oé) is , as before,
the group acting on the space of p-adic modular forms M y,~ whose action
is characterized by g4 )f = a*=2{a') f for f € Mp(X1(Np');Qp), a € Ly, and
a’ € (Z/Np'Z)* such that a’ = a(p') and a’ = 1(N). Here (a’) is as in 3.5.
The group G& is the Galois group Gal(Qp(¢p=)/Qp).

We define z37% as an element of OH[[GQ X Gg)]][l/g] and in 4.5.5, we will

prove that it belongs to the subspace M ype [[Gg? X Gg)]][l/g].
Firstly we define Fiy 1, Fy2 € H[[Go]] = lim H[G,,] to be

FN 1= Z ZQNZJ g —g- )+ hm( Z Cza(p")(o) 'Qa),

(‘7,>)1 1_]>1 n ae(Z/pn7)*
%,p)=

Fya=( 3, Dd7a— > D49

i>1,i= 1(N )j>1 i>1 z:fl(N )j>1
(i,p)= (i,p)=

im0 Ceanp(0) - ga)-
" ae(Z/Np™Z)*
a=1(N)

Here for a € Z)f or a € (Z/p"7Z)*, g, represents the corresponding element of
G oo or G, respectively. For M,m € Z, M > 1, and a € Z/MZ, (=q(nr)(m) is
the evaluation at s = m of the partial Riemann zeta function

Cza(an)(8) = Z I
jz1
j=a mod M
and 3, ¢ z/nprz)* C=a(vpn) (0) - ga belongs to H[G,,].
a=1(N)

We define the product Fy1 - Fno € H[[Goo X Goo]] naturally (by the rule
2Ga - Ygb — TYGa,19p,2 With 2,y € H, a,b € Z , where g,.1 (resp, gp2) means
the corresponding element of the ﬁrst (resp the second) Goo).
Now we define the universal zeta modular form zun“’ to be the image of Fiv 1 -
Fn 5 under the isomorphism of rings over H

Hl[Goo x Gool] = HIIGY x G5 (4.6)
TGa,19b,2 xgél)gﬁ),l (xeH,abeZy)
univ )

(Fng-Fna e 2Ny
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For integers ¢, d’ such that (¢,p) =1 and (d’,p) = 1, we have
(1—cgPg) (1 = dg)2pmx € Onl[GY) x G, (4.7)
This follows from the fact that
(1=cge) - lim > Ca@vpn)(0) - ga € On[[Gool]-

n ae(Z/Np"Z)X
a=1(N)

By (4.7), we obtain that 237% € OH[[G((;)) X Gg)]][l/g] for a non-zero divisor

g€ Z][GY x G2).
Thus the universal zeta modular form is something like a product of two “A-
adic Eisenstein series” in the sense of Hida in [Hi3], Chapter 7, §7.1.

The following proposition describes the relation between the norm compatible
system of Beilinson elements and the universal zeta modular form.

PROPOSITION 4.4 . Let ¢ and d be as in 4.2. We further assume that ¢ = 1
mod N. Then we have

1 2 univ
Cv((caznpm ) = (& = cgithgl)(d — dgy”) - R
Proof. Firstly we consider a composition Cfv,d/ determined by the relation that
(1- d’g&?)) -Cn = (4.6) o Cyy 4, where d’ is, as in 4.1.7, an integer which is

prime to p. Namely, Cy ,, is as follows:

S
= {[Gae]

= Onl[G]l[[Goo]l,

where the first arrow is the composition of the first four maps in (4.1), and the
map s is defined by the composition

Ci.q : lim Ky (Y/(Np™,p")) —

n

S 1—d/l/d/
1G]

Here the second map is the Oy-homomorphism associated to

cig, wga1gus if (a,p) =1
0 if (a,p) # 1,

fora€Z and u € Z;.

For the proof of Proposition 4.4, by the definition of z}{,‘g;’c, our task is to show
that under the map Cf\hd” the norm compatible system of Beilinson elements
(c,a2Npn pn)n 1S sent to (c? - cgcfl’g)(d2 - dga1)(1—d'ga 1) Fna- Fn,2, where
Fn.1,Fn2 are as in the definition of ZNpoo-

We prove the above assertion by showing the result of the computation of the
image of (,qznpn pn )n under each step in the composition defining C;V’d,.

Step 1. Firstly we compute the image of ¢ gznpn pn = {cgnpn.0,dg0,pn } under
Ko(Y/(Np™,p™)) — Ka(H,(¢*/N)) which is given by the pull-back by the latter
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map of (4.3). Directly from the definition, we have that the image is {A;, B1} €
Ko(H,(¢"/")). Here the element A; € H,,(¢*/V)* is obtained from .0, where
E is the universal elliptic curve over Y (Np™, Np™), by putting ¢t = g /Ne"
with v/ € (Z/Np"Z)* such that v = u(p™) and v’ = 1(IN). The element
B; € Hn(ql/N)X is obtained from 40, where F is the universal elliptic curve

over Y (p",p") by putting ¢t = ¢“/P"(,». From this, it is easy to have the
following result:

ENn((e,azNpn pn)n)
2 ’on 2 N ! Jpt —
= ({ H q(N/12)(C 1)(_q“n/p )(1/2)(C c )/qu(qun/p ) qu(qC n/P ) 17
un€(Z/pnZ)*
2 w'’ n _ g2
H q(N/12)(d 1)(,qN /P Cpn)(l/Q)(d d”)
wy, €EL/p" 7L
’ n 2 ’ n _
Yo (@ P G ) g (NP T g )
€ @KQ(HH)[Gn] = (lln X2(Hn))[[GOO]]a

n n

where for u,, € (Z/p"7Z)*, u,, is an integer such that u,, = 1(N) and u!, =
un (p™), and for w, € Z/p"Z, w), is an integer such that w!, = w,(p").

Step 2. From the definition, we obtain that under the notation in the compo-
sition (4.1)

Col o En((c,aznprpn)n) € K2(S/)N:1[[GOOH

coincides with the image of (A2, By) with Ay € O} [[Goo]] and By € S given
below under the natural map

O} [Gaol] X 8 — Ka(S)[Gool] ; (@ugus ¥) = {u, y}Gu-
The elements Ay, By are as follows:

Ap=tim( [ (g i G, )
" un€(Z/pnL)*

I - JI a-d) g

i>1,i=1(N) i>1,4i=—1(N)
=t (ip)=1
H (1 - qi)_lgcfli . H (1 - qi)_lg—cflia
i>1,i=1(N) i>1,i=—1(N)
(i,p)=1 (i,p)=1

where ], is as before.
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By = lim( H (_qN(—d2<zwn(p")(—1)+Czdwn<p"><71>))

pinininn

" wn€Z/p™ZL

. H(l _ quE)d2 . H(l _ quEq)dZ

i>1 i>1
. H(l _ qugd)fl . H(l _ qusfd)fl
i>1 i>1

(11— €)d2(1 _ ed)71€(1/2)(d7d2)'
Step 3. By the definition of the map dlog, we find easily that
dlog oCol 0 Ex((c.aznpn p)n) € Q%(10g)[[Gool]

coincides with the image of (A3, Bs) with A3 € Ox[[G]] and B; € % given
below under the map

S 02(log)[[Cu] :

(Tgu,y) = zy - dlog(q) A dlog(e) - gu

forerH,UEZ;,yE%.
The elements Az, B3 are as follows:

As=( > D ig") (P gi— ges)
i>1,i=1(N) j>1
(i,p)=1

+0Y Y i g — goei)

i>1,i=—1(N) j>1
(i,p)=1

+lim( Y0 e (D ga = gera))
" a€(Z/Np"Z)*

a=1(N)
By = (Y M - YY)

i>1>1 i>1j>1
OB WAEED DI

i>1j5>1 i>15>1

d
€ € 1
d? — ~(d - d?).

+ 1—¢ 1—¢d + 2( )

Step 4. By the definition of the map s, we see that
sodlogoCol o En((c.aznpn pn)n) € Onl[Gool[[Gool]
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coincides with the image of ((1 — d'gq) By, A4) with Ay € Oy|[[Goo]] and By €
Q(Ou[[Go]]) (1 — d'gar)Bs € On|[G]]) given below under the natural Oy-
homomorphism

Onl[Gooll X Ou[[Goo]] — On[[Gll[Gec]]

(%9asY9) = TY9agp2  (a,b € Z).
The elements Ay, B4 are as follows:

As=( Z Zqij)(cz'gi_c'gc—li)

i>1,i=1(N) j>1
(i,p)=1

— ( Z Zqij)(cz “g—i = €t Goc1q)

i>1,i=—1(N) j>1
(i,p)=1

+1£n( Z CEa(Np")(O)(C2 *YGa 7C'gc*1a))'
" ae(Z/Np™Z)*

a=1(N)
Bi=d(d] > a"gi=> > a"gy)
i>1 j>1 i>1 j>1
(4,p)=1 (4,p)=1
—dy >, =) > 4V 9w)
i>1 §>1 21 j>1
(J:p)=1 (J,p)=1

+dlm( Y Cea,p)(0) - gan)
n a,,LE(Z/p"Z)X

- d@( Z Czan (p™) (O) ' gdan)'
" a,e(Z/pnZ)*
By comparing A4 with F} and By with Fy, we obtain the assertion of Propo-
sition 4.4. ]

4.5. We prove that zj7'Y. which has been defined as an element, of OH[[GQ) X
Gg)]][[l/g}, in fact, belongs to the subspace MNPOC[[GS,? X Gg)]][l/g]. We

further show the relation between z}{,n;& and special values of zeta functions of
cusp forms. Preceding this, in 4.5.1 — 4.5.4, we review the zeta modular forms
in [Ka2], which were defined basing on the works of Shimura [Sh], and whose
period integrals yield special values of the zeta functions of cusp forms. In 4.5.5,
we show that z}{,rg;’o is contained in the subspace M ype [[Gg) X Gg)]] [1/g], and
then in 4.5.6, we describe the relation between z}{};‘o’c and the zeta modular

forms reviewed in 4.5.1 — 4.5.4.

4.5.1. We review some Eisenstein series appearing, for example, in [Ka2], §3.
For My, My > 1 such that M; + My > 5, as before, let M;(X (M, Ms)) be the
space of modular forms on X (M7, Ms) of weight j > 1.
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Let M > 3, and z,y € ((1/M)Z)/Z. We review the g-expansions of Eisenstein
series

EY) ((J,2,y) # (2,0,0)), EY) (j #2), EZ) € M;(X(M, M),

following Kato [Ka2], §4. (In the case = 0, these modular forms are, in fact,
elements of M;(X (1, M)) and in the case y = 0, they are, in fact, elements of
M;(X(M,1)).) For v € Q/Z, we define

()= >, m™ (C(ys) =) exp(2miym)-m ™.
meQ,m>0 m=1
m mod Z = v
For (i) F = FY) ((j,z,y) # (2,0,0)), (i) F = EY) (j # 2), or (iii) F = B3,

we write F = megamq™ (¢ = exp(2mir)).
m>0

In the case of (i), we assume that (j,z,y) # (2,0,0). Then a,, for m > 0 can
be obtained from the equation

Z amm_s = C(.’I?, s ] + 1)C*(y’ S) + (_1)jC(_x’ s ] + 1)C*<_y7 S)

meQ
m>0

In the case j # 1, ag = ((x,1 — j).
In the case j =1, ag = {(z,0) if z # 0, and ag = (1/2)(¢*(y,0) — (*(—y,0)) if
z = 0.

In the case of (ii), we assume that j # 2. Then a,, for m > 0 can be obtained
from the equation

S ™ = C(a, $)C (g5 — 5+ 1) + (=1)7¢ (=, 8)C* (=, 5 — 5 + 1).

meQ
m>0

In the case j #1, a0 =0if  #0, and ap = (*(y,1 — j) if z = 0.
In the case j =1, ag = {(z,0) if z # 0, and ag = (1/2)(¢*(y,0) — (*(—y,0)) if
z = 0.

In the case of (iii), the a,, for m > 0 can be obtained from the equation

Z amm™° = {(z,9)"(y,s — 1) + {(—z,s)*(—y,s — 1) — 2{(s)¢(s — 1).

meQ
m>0

If 2 #0, ap =0, and if z = 0, ag = ¢*(y, —1) — ((~1).

4.5.2. We review the zeta modular forms in [Ka2], §84 and 5, which were defined
basing on the works of Shimura [Sh]. These zeta modular forms yield special
values of zeta functions of modular forms by period integrals (concerning this,
refer to [Ka2], §5).

Let k,7,m,n be integers such that £ > 2, 1 <r <k—-1,1 <m < n, and
N(p™ 4 p™) > 5. Further for an integer M, let prime(M) denote the set of all
of the prime divisors of M.

In the case r # 2, the zeta modular forms are as follows:
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k,r
Z;\/'p"),Np“ (kv T, k — 1)

— -1 n\k—r—2 n\—r (k=) (r)
_(T_]‘)' (Np ) (Np ) .Fl/Np”,O.EO,l/Np"

€ M (X (Np™, Np™)),
A e (7, K —1,0(1), prim(Np))
= Trnpn (20w (ks 7,k — 1,0(1), prim(Np))) € My (X1 (Np™); Q(Cnpn))-

We remark that M (X1(Np™); Q(Cnpn)) may be regarded as the fixed part
of Mp(X(Np™, Np"™)) by the group {<:Z Y) e GLy(Z/Np"Z) ; uw =
1(Np™),w = 0(Np™),ux — vw = 1(Np™)}. In the above

Trypm : Mi(X (Np", Np™)) — Mp(X1(Np™); Q(¢npn))

denotes the trace map.
Let ¢ and d be integers such that (¢, Np) = 1 and (d,p) = 1. In the case r = 2,
the zeta modular forms are as follows:

cdZ N npn (K 2,k — 1)
:(an)k74(an)7262d2
(k—2) 2—k (k—2) (2)
‘ (F1/an,o —-c 'Fc/an,o) ‘ (Eo,1/an - o,d/an)
€ My(X(Np",Np"))),

k, )
Cadz§,]\?1))m,Np7l (k,2,k —1,0(1), prim(Np))

= Term (C,dzj(\'?};i{]\/’p" (k, 2,k -1, 0(1)a pI‘iHl(Np)))
€ My(X1(Np™); Q(Cnpn))-

The above zeta modular forms provide the value at s = r of the zeta functions
of modular forms of weight k by period integrals.

In our method, modular forms whose g-expansions belong to Z,)[[q]] or Q[[q]]
are important. So we analyze zeta modular forms from this viewpoint. Firstly
for j € Z,j>1,and a € (1/M)Z)/7Z satistying (j,a) # (2,0), directly from
the definition we have

> FY)e My(Xy(M);Q).
z€((1/M)Z)/Z

LEMMA 4.5.3 . We assume that r # 2.
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(1) In Mi(X1(Np™); Q(Cnpn)), we have

A e (ko — 1,0(1), prim(Np))

—1 nyk—r— ny—r k=r "
T IR 17 Lo O SR SN v SRV s D
z€((1/Np™)Z)/Z

_ (’l‘ _ 1>!—1 . (an)k—r—2(an)—2
(k=) (r) a
' ( Z ( Z Fl/Np",a: ’ Fa/Np""y) : CNp"'

a€Z/Np™Z z,ye((1/Np™)Z)/Z
(2) Let
Tenpn, npm : Me(X1(Np™); Q(Cnpn)) — My (X1 (Np™); Q(Cwpn )
be the trace map. In My(X1(Np™); Q({npn)), we have
o g (7 = 1,0(1), prim(Np))
= Tenpe Ny (1 N e (87 = 1, 0(1), prim(Np)))
= (r =117 (N ()

(Y TE"T

a€Z/Np™Z
> D (Fnga Fajpe ) S,
xe((1/Np™)Z)/Zye((1/Np™)Z)/Z
Here T'(p) = U(p) is the Hecke operator on the space My (X1(Np™); Q).
(3) Let
trnpm pn + My (X1 (Np™); Q(Cvpn ) — M (X1 (Np™); Q(Gpn))
be the trace map. In My(X1(Np™);Q((pn)), we have

S8 (20 (K7 k= 1,0(1), prim(Np)))

= (=D (YT N

II a-trrr@w-)

l:prime
IIN
(S T (48)
a€L/p"L
(k—r) (r) a
( Z Z (Fl/NpWL’;L‘ : FNa/an’y)) : Cp")?

ze((1/Np™)Z)/Zye((1/Np™)Z)/Z

where for x € (Z/p"Z)*, vy is the corresponding element of Gal(Q((pn)/Q) via
the cyclotomic character.
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Proof. (1) The first equality is direct from the definition. The equality (r # 2)

(r) _ n\r—2 (r) a
EOJ/NP" = (Np") ’ Z Z Fa/Np",y “Cpr
a€Z/Np"Zye((1/Np™)Z)/Z

which can be obtained by computation, shows the second equality.

(2) (3) The results are immediate from the definitions.

The following Lemma 4.5.4 describes the case r = 2.
LEMMA 4.5.4 . We use the same notation as in Lemma 4.5.3.

(1) In Mi(X1(Np™); Q(Cnpn)), we have

ea? 58 o (ks 2,k = 1,0(1), prim(Np))
— (an)k—4(an)—202d2

E k—2 - k—2
Z (Fl(/szl’I_CQ k-FC(/N;zﬂ)l,z)
a€Z/Np"Z z,yc((1/Np™)Z) /L
a#0
(2) 2) d
(Faynpry  Chpr = Ey vy CNpr)-

(2) In Mi(X1(Np™); Q(¢npn)), we have

a3 e (K, 2,k — 1,0(1), prim(Np))
_ (Npm)k74(an)7202d2

T Y

aEZ/;é\gp"Z ze((1/Np™)Z)/Zye((1/Np™)Z)/Z

((F(k—Q) _ 2k 'F(k_Q) ) - (F(Q)

a (2) da
1/Np™ c/Np™ w/Npmy SN~ Fayvpn gy CNpr)):

(3) In M (X1(Np™); Q({pn)), we have

k, .
g (e.d2y Ao v (K3 2,k — 1,0(1), prim(Np)))

_ (Npm)k—4(an)—262d2 . N
II a-1rr@w-)

l:prime
N

e Y 3 (4.9)

aGZQ(g)"Z z€((1/Np™)Z)/Zye((1/Np™)Z)]Z

(k—2) —k | p(k—2) (2) a (2) da
((Fl/Npm,ac - C2 'Fc/Npm,;c) : (FNa/Np",y : CP" - FNa/Np",y ’ CP"))))
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Proof. (1) The equality follows from the equality

(2) (2) _ (2) a Jas)
EO,l/Np” 7E0,d/Np" - Z Z (Fa/Np",y'CNp" a/Np” y C )
GEZ/;Z)p"ZyE((l/NP")Z)/Z

which can be obtained by computation.

(2) (3) The results are immediate from the definitions.

4.5.5. We prove that z“mv € Myp= [[Gg? X Gg)]][l/g].
For any j € Z, we deﬁne an isomorphism of rings

X 1 ZpllGooll = ZpllGooll 3 ga = a9 (a € L),

and for ay,as € Z, we define an isomorphism of rings over Oy

Onl[GY x @7 XX, o160 « @)

2 a a 2
g gD o abirp gD g

for x € OH, b1,bsy € Z;
Let ¢ and d’ be integers which are prime to p. We put

ca gl = (1= g tig®) (1 - dgi)2i € OnllGY) x GR)).

Let a; and as be integers such that 0 < ay < a;. We regard ((1 —

¢tz 19(1,) ggz))( d a2 tt (2)))_1 e 2N (X, X)) as an element of
H[[G(l) G(z)]] and write z“n“’ (x*t, x*) for it. Then directly from the defini-

tions, z}{,‘;; (x™, x*2) comc1des with the image of the product

(X0 > i2d")(gin = (1)2g-in) +m( Y Coapr)(—a2) - Ga))

=1’ " e/
»,p)=
(DD DT gip = (F)MTE Y Y i T2 g y)
i>1,4=1(N) j>1 i>1,i=—1(N) j>1
(i,p)=1 (4,p)=1

Hlm( > Czavpr) (a1 +a2) - ga2))

" ae(Z/Np"Z)*
a=1(N)

under the map (4.6). Hence concerning the image z}{,”‘;’o (X", X*)|(n,n) of

2R (x*, x*2) under the projection H[[Gg) X Gg)]] — H[Gnl) X Ggf)}, we
find that
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SR X Gy = (NP0 TN ()0

a1—az+1 as+1 1 9

Z Z ( Z Fb(l/NPi—; : ’ F](Vlf:/_N)p"’y) ’ gé1) ’ g£7)1b2

by €(Z/Np"Z)* b2E(Z/p"T)* w,y((1/Np™)L)/Z (4.10)
blzl(N)

with Fb(f/l];;lf;l) and F](\?bj]lv)pn,y in 4.5.1. From this, we obtain that

2Nt (XX ™)) € May12(Xa (V") Q)IGEY x GRN(C HIGR x Gi2))

and hence

univ

a
c,d’ ZNp°° (X

5 X )l nm)

€ M, 42(X1(Np"); Z) )G x GP](C O[G x GIP)).
Here My, +2(X1(Np"); Z(p)) = Ma,+2(X1(Np™); Q) N Zy,)[[g]]. The latter fact
implies that 3% € M ypoe G x G2N1/g).

4.5.6. We see the relation between z“Nr;Zo and special values of zeta functions
of cusp forms. This relation is described by the relation between the universal
zeta modular form z}{;;;’c and the zeta modular forms reviewed in 4.5.2 — 4.5.4.
This relation will play an important role in sections 6 and 7.

Let

G 1 QG — Q(Gpr) (4.11)
be the Q-linear map given by the action of Gg) on (p» such that g,(l2) = Cpn
(a € (Z/p"Z)*). We consider the image of zj7,% (X**, X**)|(n.n) under the map

G+ Moy 42(X2 (Np"); QG x G — mz(Xl(Np");@(@«J)[G(&”} |
4.12

induced by the map (4.11). By the caluculation until now, we see that the
above image is

(an)al—ag—lN—l(pn)ag—l

2 by

by €(Z/Np™Z)* b2€(Z/p"L)*
bl El(N)

(a1—az+1)  p(az+1) bytbe (1)

( Z Fbl/Npi,z ' FNsz/Np",y) “Cpn ’ “Ib,
z,ye((1/Np™)Z)/Z

We assume ag # 1. Putting a1 =k —2, ag =r —1in (4.13), m = n in (4.8)

in Lemma 4.5.3 (3), and comparing (4.13) with (4.8), we see that the element

(4.13) is closely related to the element (4.8) in Lemma 4.5.3 (3). Roughly speak-

ing, for an eigen cusp form f, “f-component” of er(Z/an)X Y(x)v, - (4.8),

with a character ¢ : (Z/p"Z)* — Q  (n > 0), yields Linpy(f,2b,7) by

period integrals. Here L(np)(f,v,s) denotes the function obtained from

(4.13)

DOCUMENTA MATHEMATICA - EXTRA VOLUME KATO (2003) 387-442



412 TAKAKO FUKAYA

L(f,h,8) = 3272, ai(f)v(i)i=, where a;(f) is given by T(i)f = ai(f)f,
by removing prime(Np) factors of L(f,v,s). We will see in section 6 that
Yve(@jprzyx V(@)ve - (4.13) yields L, (f, ¥, 7). For the details, see section 6.

In the case as = 1, the above statements must be modified as follows.

The image of (lfcfalggl,)1 g£2))(lfg(82))z}{}g& (X, X)|(n,n) under the map (4.12)

is closely related to the element in Lemma 4.5.4 (3).

5. REVIEW OF p-ADIC ZETA FUNCTIONS OF MODULAR FORMS

In this section, we review the result of Amice-Vélu [AV] and Vishik [Vi] (The-
orem 5.5) which concerns the existence and the characterizing properties of
p-adic zeta functions of modular forms.

As referred above, in the rest of this paper, N denotes a positive integer which
is prime to p.

5.1. Let
=Y an(f)g" € My(X(1,Np')) @ C

n>1

be a normalized eigen cusp form of weight k > 2 of level Np® for some t > 0.
We assume that the conductor of f is divisible by N. We further assume
that ¢ is the smallest integer > 0 such that f € My(X(1,Np')) ® C. Set
K = Q(an(f);n > 1). We take a prime X\ of K which is above p, and let K
be the completion of K by A.

Suppose that there exists an element o € K—AX satisfying v, (o) < k —1 for the
additive valuation v, of K, normalized by v,(p) = 1, and

1—ap™ | (p-factor of L(f,s))™" in Qp[p~],

where L(f,s) =), <, an(f)n™* is the complex zeta function of f. Then the p-
adic zeta function of f may be defined for each « satisfying the above conditions.
We fix such a and suppress « in the notation of p-adic zeta functions. We will
review the characterizing properties of a p-adic zeta function in 5.5.

5.2. We give a review of the space Hg, r—1 to which the p-adic zeta function
of f belongs. We first set up the notation. For the natural decomposition
Zy =TF) x (1+pZy) in the case p # 2 (resp. Zy = {F1} x (1+4Zy)), let u be
a topological generator of the second component 14pZ,, (resp. 1+47Z,). We de-
note F )X (resp. {£}) by A. As before G is the Galois group Gal(Q,(Cp=)/Qp)
which is endowed with an isomorphism to Z via the cyclotomic character. Now
for a finite extension L of Q, and for a positive integer d, we define

Hea={Y ena- 92 (4@ - 1" € L[A][[g) — 1)) ;
n>0
a€EA

lim |cpalpn @ =0forall a € A}
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Here | |, is the multiplicative valuation of L normalized by |p|, = 1/p. The
space Hy, 4 is independent of the choice of u in the evident sense.
We have

OLHG(()%)]] ®OL L C I‘IL,l7 and HL,i C HL,J* fOI“ 1 S 7 S _]
Here the first inclusion is given by the natural map.
We put
Hr oo = U Hyq,

d>1
then Hy, o is a ring.
For any positive integer d and for any subset U of Z, we define a map

iv:Hya — [[ LIGYN = [] lim LG
jeU Jeu n

D na 98 (9P =1 (Y ena - d?gl? - (W g — 1)M);
n>0 n>0
a€A a€EA

It is known that for any d > 1, the map iz is injective. Moreover for any
different d integers ry,...,rq, the map iy, . .,y is already injective:

itrray Hoa— [ LUGRN(C [T LUGRD.
j€{ri,...,ra} JEL

Concerning the above injection, we have a proposition (cf. [AV]).

PROPOSITION 5.3 . Let

Heac ] WmZlaP]= [ LG
je{l,...d} ™ je{l,....d}

be the subspace consisting of elements
p=(); = ((mjmn)j € [ lmLIGP)
je{l,..,d} ™
satisfying conditions (i) and (ii) below. Then the map
i1, ay: Hoa — H LIGY]]
je{l,....d}
induces a bijection from Hy, 4 onto Hy, 4.
(i) For any j=1,...,d,
lim pd"/,ij =0.

n—r0o0

(ii) Forn > 1, let ¢n : (Z/p"Z)* — Z, be a lifting, namely it is a map such
that the composition (Z/p"Z)* RN Zy prol, (Z/p"Z)* coincides with the

identity map. For j € Z, let X;n : L[G’g)] — L[GSZQ)] be the L-homomorphism
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induced by gt(f) — d)n(a)jgg) for any a € (Z/p"Z)*. Now for 1 < i < d and
for any ¢, satisfying the above condition,
i—1

L S o (Z J 1) piv1n(X;7) = 0.

n—ro0 .
7=0
Here Mj,n(Xd?j) € L[Gg?)] is the image of p;n under X;j.
Proof. For the proof, see [AV]. O

In section 6, we will construct the p-adic zeta function of f as an element of
[licjcr KA(a)[[GgZ)]], and we will prove that it is contained in Hg, () k-1
by using Proposition 5.3.

5.4. In this subsection we give a preliminary discussion to introduce Theorem
5.5 concerning the existence and the characterizing properties of p-adic zeta
functions.

In the rest of this section, we assume that a,(f) # 0.

5.4.1. As in [Ka2], §6, we define S(f) to be
S(f) = (Me(X1(Np"); Q) ®¢ K)/(T(n) ® 1 = 1® an(f) 3 n > 1),

which is the quotient of My (X;(Np'); Q) ®g K by the K-subspace generated
by T(n) ® 1 — 1 ® a,(f) for n > 1. This S(f) is a one dimensional K-vector
space.

5.4.2. We define Vi (f) to be the quotient of H'(Y (1, Npt)(C), Syms 2(R'\.
(Z)) ®7 K) by the K-subspace generated by the images of T'(n) ® 1 — 1 ® a,,(f)
for n > 1. Here A\ : E — Y (1, Np') is the universal elliptic curve. This Vi (f)
is a two dimensional K-vector space.

5.4.3. We put Ve(f) = Vi (f) ®k C, and let

pery : S(f) — Ve(f)
be the one induced by the period map (cf. for example, [Ka2], §5, 5.4)
pery npe : Mip(X(1,Np')) ® C — H'(Y (1, Np')(C), Sym} *(R'\,(Z)) ®z C).

5.4.4. For the C-linear map

v Ve(f) — Velf)
induced by the complex conjugation on Y (1, Np*)(C) and E(C), and for x €
Ve(f), we define
1 1
vt =51+ 0@, 27 =50=-0@)

Now we take an element v € Vi (f) such that v # 0, v~ # 0. For w € S(f)
and for the above v € Vi (f), we define Q(w, )+, Q(w,v)- € C as

per;(w) = Aw, 7)1 -7 +Qw,7)- -7
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5.4.5. For z € (Z/Np'Z)*, let (x) be as in 3.5 in section 3.
Let

e (Z/NP'Z) — T
be the character defined by (z)f = €s(z) - f for x € (Z/Np'Z)*.
2)

o~

5.4.6. As before, let xcyclo : go — Z, be the cyclotomic character. For j € Z,

we regard
XZyclo : G(2) - Z;)( ; g((12) . aj (CL € Z;)

oo

also as a character Z; —ZX: a—adl.

P )
For pt = 3 n>0¢Cnya - gf) -(gy —1)™ € Hy 4 and a continuous character ¢ :
a€EA

ZX — Q,", we define

N(w) = Z Cn,a * w(a) : (1/1(“) - 1)71
n>0
a€A

Let « be as in 5.1.

THEOREM 5.5 ([AV],[Vi]). Let h =min{n € Z ; n > 1,v,(a) < n}(< k —1).
For v € Vi(f) such that v© # 0, v~ # 0, and for a non-zero w € S(f), we
have a function

Lp-adic(f)w,’y € HKA,h C HKk,kfh
characterized by the properties (1) and (ii) below. In particular, if v,(a) = 0,
Ly-adaic(f) belongs to the subspace

Lp-adic(f)wr € Ok, [[GR)]] @0y, Kx C Hi 1.

(i) Let v : (Z/p"2)* — Q" be a character with conductor p" (n>1). We put
+ = (=1)*""Y(=1)es(=1). Then for any integer r such that 1 <r <k —1,
we have

Lp-adic(f)w,’y (X;yclow_l)

= (= )" G ) (2w

M'L(fﬂﬁﬂ“%

where G(¢, Gpr) denotes the Gauss sum Y-, ¢z /,nzy< Y(@)Cgn and L(f,¥,r) is
the evaluation at s =1 of the function L(f,,s) =Y oo a;i(f)v(i)i™*.

(ii) We put + = (—=1)*"""Les(—1). For any integer r such that 1 <r <k —1,
we have

Lp—adic (f)wﬂ’ (XZyclo)

= (r—1)!- m'kfrfl.;

c1=pra YA —ep(p)p* T e L(fo 7).
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REMARK 5.5.1 . (1) In fact, both hands sides of the above equality belong to
Q.
(2) The function in Theorem 5.5 can be characterized by only property (i).

The function Lj-adic(f)w,~ in Theorem 5.5 is called the p-adic zeta function of
f.

5.6. We have a canonical isomorphism
i, a2 Hiy 0/ (9% = 1) x Hig, /(6% +1).

For z € Hg, 4, we call its image in HKMd/(g(fl) — 1) (resp. HKA,d/(g(,zl) +1))
under the above isomorphism the +-part (resp. —-part) of . Moreover we call

HKA’d/(g(_Zl) — 1) (resp. HKMd/(g(_Ql) + 1)) the +-part (resp. —-part) of Hg, 4.

5.7. As in [Ka2], §6, we define §(f,k — 1,0(1)) € Vi (f) to be the image of
5k, k—1,0(1)) € H (Y (1, Np*)(C), SymE2(R'\(Z)) ®2 Q) in [Ka2], §5, 5.4.
It is known that §(f,k—1,0(1))* =0, and if L(f,k—1) #0, 6(f,k—1,0(1)) =
0(f, k —1,0(1))" # 0. In what follows, in the case L(f,k — 1) # 0, we take
§(f,k —1,0(1)) € Vk(f) as v € Vi (f), we consider (—=1)* - €;(—1)-part of
the p-adic zeta function of f, and we suppress 7y in the notation of p-adic zeta
functions.

6. THE RESULT ON ONE-VARIABLE p-ADIC ZETA FUNCTION

Let the notation and the setting be as in section 5. Suppose f is an eigen cusp
form of weight k& > 2 and of level Np® with ¢t > 1 which satisfies the condition

in 5.1. In 6.1, for a certain subspace A of M e [[Gg) X Gg)]] B 16D xa@7]
P oo oo

Q(Zp[[G((;)) X Gg))]]) to which the universal zeta modular form zj% belongs,
we define a map “to take f-component”

o A— [ KIGRNG")
re{l,....k—1}
The main theorem (Theorem 6.2) of this section is, roughly speaking, that if
L(f7 k — 1) 7é 07
L fk=2},{0,0 k—2},t ° z}lvrgi’.o — p-adic zeta function of f
(see Theorem 6.2 for the precise statement).

6.1. We define the subspace A and the map £ (12} 10,...,k—2},+ in a more gen-

eral forms M[[Gg})) X G’Efj)]]]h]2 (see 6.1.4) and L5 1, 1,,; (see 6.1.6), respectively.
(For simplicity we assumed that ¢ > 1 in the above, but in fact, we can treat
also the case t = 0, as seen below.) We begin with some preliminaries. Let f,
K, and the other setting be as in 5.1 in section 5.

6.1.1. As in 5.1, we fix « under the notation there. We first consider the case
that t = 0. We denote the p-factor of L(f, s) by (1—ap=%)~1(1—pp~%)~! with
BeRy".
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Let
where @q(f) =3 2,51 an(f)g?" with f =37 5, an(f)g". We have

T(p)fa =a- fom

L(faas) = (1 - 6p78)L(fa 5)3

and €7, : (Z/NpZ)* — Q" is the one induced by (Z/NZ)* <5 Q. This f,
is an eigen cusp form but is not a newform.

6.1.2. For f in 5.1, we put f = f in the case that ¢ > 1 with ¢ in 5.1, and f = f,
in the case t = 0, where f, is as in 6.1.1. Moreover let Np™ denote the level
of f. (Namely m =t in the case that f = f and m = 1 in the case that f = f,
as above.) Further put

LBt
- Ky(a) t=0.

6.1.3. Let j,s € Z, and let M’(X;(Np®);Q) be as in section 3. The space
(Uys2.51 M (XL (ND*);:Q) @ L)/(T(n) © 1 = 18 an(f) s n > 1) is a one
dimensional L-vector space in which the class of f is a base. We define a
map pr; by the following composition

pri: | MWV Q)

=~ (U MEWNy):Q e L)/(T) @1 -1®a(f) ; n > D
— L: o

where the first map is the natural projection and the second map is by sending
the class of f to 1.

6.1.4. Let I;,Is C Z be subsets. We denote by M[[Gg) X Gf,?}][hb the
Z,[[GY) x G2)])-submodule of My [[GE x G2]] defined in the following
way:
M[[G((;)) X Gg)“h,b
= {z € Myp=[[G) x G ;

(XN € |J  MI(X2(Np*); Z,)) G x G

j>2, s>1
for any (ay,a2) € Iy x Iy and n > 1}.
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6.1.5. Let ¢, d’ be integers which are prime to p. By the result in 4.5.5, we find
that for any k > 2,

niv - 1 2 niv

e =(1 = c7tg{M o) (1 — d'g(D)

(6.2)
€ M[[GY) x G tk-2},40,....k—2}-

6.1.6. Let i be a positive integer. We define a map “to take f-component”
Srnna MIGY x G, — T ZIGRNIGY]
(a1,a2)€l1 X 12

as follows:
Ltz = H Lf,a1,a,i

(a1,a2)€I1 X1
for
Lot MG x GRNIr, 1, — LIGENG)
The map £¢ 4, .4,,; is defined as the composition

(x“1,x*2
_

)
Ltarsani t M[[GY x G, 1, M[[GY) x Gl 101.10y

2 MIGRNIG N oh 10y
5 LIGRNE),
() (1) : ) ()
where M[[G]][G; 103,401 denotes the image of M[[Gs’ x Gd']]10y,{0} under

%

the natural projection M ype [[G((,i) X Gg)]] — M yp [[G(()%)]] [GZ(»U], and the last
map is given by pr; (6.1) for each coefficients of G and by taking lim.

For o € M[[GE x G, @, (o0, goy QUEIGE x GR))), if there is
a non-zerodivisor g € Zp[[G&) X Gg)]] such that g(x®', x*?) is invertible in
Qp[[G(oi) X Gg)}] for all (a1,a2) € I; x Iy and gz € M[[G&) X Gg)]]jl,fz, then
we define

i@ =Lrnnailgr)- [ 9lar,a0)7

(a1,a2)€l1 xI2
1
e I cie@ne.
(a1,a2)€l x 12
6.1.7. By (62)7 we find that Sf,{k*Q},{O,,,,,k:72},m(Z]u\/'r;;/o) =
Ha2€{07___7k_2} L[[GQ]][G,(%)] can be defined in the sense at the end of 6.1.6.
In what follows, by putting as = r — 1, we write HT'E{L...,k—l} L[[Gg)]][G%)]

instead of [], c0,. k—23 L[[Gé?}] [GSL)]. Furthermore for L[[Gg;)]]v we
define + and — parts in the same way as in 5.6, and we define
the s-part of [[cq  ,1y L[[Gg)]][G%)] with * = 4+ or * = — by

.....
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Hre{17.__,k_1} L[[Gg?ﬂ*-(flf[aﬁ,?], where L[[Gg)]]*'(*l)r is the * - (—1)"-part
of LI[GP]].

We state our main theorem in this section.

In the situation of Theorem 5.5, we take the class of f as w € S(f), and suppress
the w in the notation of p-adic zeta functions appearing below. Since we will

assume L(f, k—1) # 0, we take 6(f, k—1,0(1)) € Vi (f)\ {0} as -, and suppress
~ in the notation of p-adic zeta functions, as referred in 5.7.

THEOREM 6.2 . Put + = (—1)Fe;(—1). Let h =min{n € Z ; n > 1,v,(a) <
n}(< k—1), as in Theorem 5.5. Then we have
Ef,{k—g},{o,...,k—z},m(Z}lvrgxo)i € H LI[GONGM] (6.3)
re{l,...,k—1}
is contained in the subspace

i{1,...,kf1}(HL,h)[G£i)]-

univ

Here Ef){;g_g}’{o,wk_g}m(ZNPOQ)i represents the £-part. Moreover if v,(a) =

0, (6.3) belongs to i{ly___yk_l}(OL[[Gg)H ®oy, L)[valz)]~
Concerning the relation with p-adic zeta function, we have the following result.

Suppose L(f,k — 1) # 0. In the rest of this theorem, we identify an element of

Hp n with its image under igy. p—1y : Hpp — Hre{l,‘..,kfl} L[[G(@]].

(1) In the case f = f, we have

L1 {k—2},40,..., kfz},m(zzl{rr;&)i

=a™ Y LpanelNFega ) g e [ LIGRNGER).
a€(Z/p™Z)* re{l,....,k—1}
Here o' € (Z/Np™Z)* is the element such that o' = 1(N) and o' = a(p™).
(2) In the case f = f., we have

L1 (k—2},10,..., 1#2]»,1(Z}l\rr;i\o]o)i

=a > Lpaaclfa)*-9Pe [ LIGANGY).

a€(Z/pZ)* re{l,....k—1}

(3) In the above, we only considered the (—1)ke;(—1)-parts of Ly aaic(f), and
we put the assumption that L(f,k — 1) # 0 which always holds in the case
k > 3. However we can obtain by the method in 6.7 below, the whole Ly_qqic(f),
including the (—1)*~Ye;(—1)-part, without the assumption that L(f, k —1) # 0.

REMARK 6.2.1 . In Theorem 6.2 (2), we present the p-adic zeta function of
fa instead of the p-adic zeta function of f. By the characterizing property of
p-adic zeta functions in Theorem 5.5, their p-adic zeta functions are a multiple
of the other by a non-zero constant.
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The rest of this section is devoted to the proof of Theorem 6.2. In 6.3, we prove
that £f 5—2} {0, k—2}.m (2N )T {
in 6.4 - 6.7, we prove that £ (19} f0,..., k,g},m(z}{};;’o) displays the characteriz-
ing property (i) of the p-adic zeta function in Theorem 5.5. (Cf. Remark 5.5.1

in section 5.)

is contained in i{ly___,k_l}(HL,h)[Gsyll)]. Then

univ

6.3. We show that ,Sf’{k_z}){07'..7k_2}7m(ZNp(x,):l: belongs to igy,.. x—13(Hr,n)
[G)).

First, we give a preliminary discussion which will be important also for the
proof on the characterizing properties of p-adic zeta functions.

6.3.1. We define a homomorphism

@g:H—H
by 0,3 aig’) = >0 aig’" (a; € Qp, the valuation of a; is bounded
below, and a; — 0 when ¢ — —00). Let

Trg:H—H
be the trace map associated to .
We use the same symbol Tr,
HIGEY x G — HIGE x G (41,022 1)

for the map induced by Tr, on the coefficients.
For an element = of L[[Gg) X Gg)]] and for positive integers a;, as, we denote
by (4, ,a,) the image of 2 under the natural projection

LIGY x GQ)]] — LIG x G,
PROPOSITION 6.3.2 . Let ay,as be integers such that 0 < as < ay. Then for
all positive integers n and m such that n > m, we have

Trg ™" (2% (¢ X)) € May2(X1 (Np™); Q)G x G2,

Ty~ (e 2R (X X imm) € Moy +2(Xa (NP™); 2 ) [GR) x G

univ

where z\j, % (X, X*) is as in 4.5.5.

Proof. Clearly *|(p ) is the image of *|(,,) under the projection H[Ggll) X
G — HIGW x GP). By (4.10), we know z{% (x*,X%)|(n.n) which is
an element of Ma1+2(X1(Np”);Q)[G5Ll) X G%Q)] precisely, and hence we can

calculate Try ™™ (2j5% (X**, X**))|(m,n)- By this calculation, we find that the
element T~ (ZR5% (X, X*2))| () belongs to Mo, 12(X1(Np™); Q)[G) x
G'?)]. The assertion for . g Zj¥ follows from this. O

univ

In 6.3.3 — 6.3.6, we show that the element £y (12} (0,....k—2},m(2Npx ) belongs

..........
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(C (i py(Hon) @, poy QEZ[GE)GW]) with a certain non-
zerodivisor a € Zp[[Gg))]] which satisfies that a(x") (r = 1,...,k—1) are invert-
ible in Qp[[Gg)]]. In 6.3.7 - 6.3.12, we prove that £ (x_21 f0,..., k,g}ym(z}ifglo)i
is, in fact, contained in i{17.__,k_1}(HL7h)[G£,1I)].

6.3.3. We prove that

.....

with a non-zerodivisor a € Zp[[ng)]] (which satisfies that a(x") (r=1,...,k—

1) are invertible in Qp[[Gg%)]]). It follows directly from the definition that the
projection My (X1(Np™); Q) — S(f) (n > m) commutes with the Hecke opera-
tor T'(p) = U(p) = Try. By this and by the fact that the action of T'(p) on S(f)
coincides with the multiplication by «, we obtain

L4 (k—2} {r—1},m e 2N ) (mon)

m—n n—m univ — r— (65)
=« : prf(Trq (C,d"ZNpOo (Xk 23 X 1)|(m,n)))
Therefore for the proof of (6.4) it is enough to show that
[T (e pny (T 2R 02 imm)
re{l,...k—1} ™
S i{l,“.,k—l}(HL,h)[Ggyll)]- (6'6)

We denote the r-component (r € {1,...,k — 1}) of the left hand side of (6.6)
by
() = (pron () € lim LIGDNGLY]) = LIGNG)-

n

In order to prove the assertion (6.6), by Proposition 5.3 in section 5, it is
sufficient to show the following two assertions:
One is to show that

lim p"purn(f) =0 forallre{1,....k—1}. (6.7)

n—>:00
The other is to prove that for any d € Z such that h < d < k—1, (tr(f))r=1,....a
satisfy the condition (ii) in Proposition 5.3.
6.3.4. We check that (p,(f))r=1,...x—1 satisty (6.7) above.
By Proposition 6.3.2 which shows
Ty ™" (e 28 (72X Dlmmy) € Mi(Xa (NP™); Zy ) GRGEY]

for all n > m and by the fact that My(X1(Np™);Z,) is a finitely gen-
erated Zyy-module, we have that the image of My (X(Np™);Z,)) under
pry : My (X1(Np™); Q) — L is contained in a - Or, for some a € L*.
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From this, p™* times p,,(f) is contained in p™* - o "a - OL[G%)][G%Z)].
As vp(a) < h, we obtain lim, oo p™* - @ ™a - O = 0 which implies
lim,, 0 p”hunn(f) = 0 as desired.

6.3.5. We show that (p,(f))r=1,... ¢ satisfy the condition (ii) of Proposition 5.3
for any d € Z such that h < d <k — 1.
We use the notation in Proposition 5.3 (ii). We write

e 2 O 2 X X Doy 08 (e 2B 20 o) (1, X5 ) €
n 1 2
My (X1(Np"); Z) (G 1G]
We can prove that
i—1 P '
ZHY‘H( ; )u(f)jﬂ,n(X;j)
j=0
i—1 o I . | |
- (1)”1( j >'an'prf(Ter(c,d'Zzuv%(XkQ,XJXas:)I(m,n)))
0

in Proposition 5.3 coincides with

i—1
_ _ Y | iv B S
o1y D0 () st RN

j=0
Moreover we have
= i—1 -
S0 () s X o)
§=0
€ My(X1(Np");p" V2 ) [GDGP)]
which follows from the general argument that

i—1

i (i1 i i
S (1) X €2

3=0
for any x € Z,)[[G]]. Here x(Xdejjﬂn represents x(XJ)|n(X(;nj) for the
image x(x7)|n € Z)[Gn] of 2(X?) € Z()[[Go]] under the projection. By this,

we find (6.8) is contained in o™ - a~p"(i_1)0L[G$)][Gg)] with @ € L* in 6.3.4.
As vp(a) < h < d, we obtain

7—1
. —it+D)n i—jo1 (1—1 —j
lim plt-ttDn § ()i ( . )u(f)j+1,n(X¢j)=07
n—oo =0 ]

da (h < d < k—1) satisfy the condition (ii) of

.....

Proposition 5.3, as desired.

The above arguments conclude our claim (6.4) in 6.3.3.

6.3.6. The argument in 6.3.4 shows that if v,(a) = 0,
ue(f) € (OL[[GRN @0, DGR
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This and the argument in 6.3.5 show that in this case,
univ

Sfy{k_Q}w{O’,__yk_QLm(szoo) is contained in i{ly___yk_l}((OL[[Gg)]] ®o,,
L)[1/a])[G).

niv

Now we show that £f7{k_2}7{07“_,k_2}7m(z}{,znoo)i € i{ly__wk_l}(HLyh)[GS,ll)]. The
main line of the proof is roughly as follows. Let M be an integer > 1 which is
prime to Np. By using . a2y, np Which is similar with the element . 4 z}{}g;’o
in 4.5.5 and which is defined in 6.3.7 and 6.3.8, we will construct a function
£¢,f,{k—2},{0,...,k—2},m(c,d’ZM,NpOO) S i{l,...,kfl}(HL(¢),h)[G£7}L)] in 6.3.9. Here d)
denotes a character (Z/MZ)* — Q. Assertions in 6.3.11 and 6.3.12 say that
Ly ¢ 1k—2},{0,....k—2},m(e.d ZM,Np>=) 18, in fact, a function which is a multiple
of our £ 1x—2} 10,...k—2},m (2N ) by a non-zerodivisor in Zp[[Gg)H which is
prime to a € Z,[[G]] in 6.3.3.

6.3.7. Let M be a positive integer such that (M, Np) = 1. We define an element

— 1
2aNpe € Magnpe= [[Garpe™ X Garpee <2>m?]

with a certain non-zerodivisor

g € Z[[Crrpe™ X Garpee D] € Marnp=[[Grrpe ™ X Garp @],

univ

which is similar to the universal zeta modular form ZNpoe - In fact, in the case

univ

M =1, we have 21 np= = zj,%. Here
Garpe M 2 Gppee @ = Gippee = (Z/MZ)* x L,

the group GMpoo(l) is the one acting on the space MMNPOO in the following
way. For a = (a1,a2) € (Z/MZ)* x Z), the action of the corresponding
element g4 € Grp= on f =3, fr € U, M7 (X1 (MNp'); Qp) with fi, €
My (X1(MNp');Q,) and t > 1 is given as

ol - f =" a5 d) fre
k

where a’ € (Z/MNp'Z)* is the element such that o’ = a(Mp') and o’ = 1(N).
The group Gasp~? is the Galois group Gal(Q,(Carp=)/Q,) which is endowed
with an isomorphism to (Z/MZ)* x Z via the cyclotomic character.

The element zp7np~ is the image of the product Fy, - Fy, €
H{[G rpe< I[[Gapee]] With Fyy 4, Fy 5 € H[[G ape<]] below under the isomorphism
of rings over H

H[Gatp= ]| [[Garp=]] = HI[Garpm V[ G ] 5 201802 — gy g2,

x€H a,beZX x(Z/MZ)*), where g, € Gppe is the corresponding element
P p
to a. Here
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Faa=0 > > d")gi—g-)+lm( Y Capm(0) - ga),
1>1

>1 j>1 N ae(Z/MprL)*

(i,Mp)=1

Fra=( > D a7 > > a9
i>1,4=1(N) j>1 i>1,i=—1(N) j>1

(i,Mp)=1 (i,Mp)=1

+lm( Y Ceaimpn(0) - ga)-
"™ a€(Z/NMp"Z)*
a=1(N)

Originally 2y np belongs to H[[Garpe Y x Gprp ?]], but we can prove that
ZarNp € Marnpe<[[Garp~ ™ x Garpe @])[1/¢]. This follows from the follow-

univ

ing lemma which can be proven in the same way as for z Npoe-
For n > 1, we write Garpn for the group (Z/MZ)* x G,,.

LEMMA 6.3.8 . (1) Let ¢,d’ be integers which are prime to p. Then
earannpe = (1= g g (1=d'a3)) 2n N € Onl[Garpe M) X Gargee @],

(2) Fori € Z, let us denote by X' : Garpe — Grrpeo the map induced by X'

on the component Z, . Let ay,az be integers such that 0 < az < a1. We define

Zm,Npoe (X™, X*2) in the same way as for z}{}gé’c in section 4. Concerning the

image of the natural projection, we have
a a n 1 2
ear g (X1 X)) €M +2(X0 (MND"); Q)G % Gi7n]
(1) (2)
(CHIGypn X Ghppnl);

e.d 2, Np (X X") | (nm) GMa1+2(X1(MNP");Z(p))[Gg\?pn X Gﬁ)pn]
2
(C OnlGiin,. x G-

(3) Let a1 and ag be as in (2). For any integers n,m such that n > m > 1, we
have

T (2,5 (X X)) ) € My 2(X2 (MND™); Q)G 1G5

n—m a a m 1 2
T (e 2t vpm (X X (o)) € May+2( X1 (MND™); Z)) (G5 IG5 0]

6.3.9. Let ¢ : (Z/MZ)* — Q" be a character whose conductor is M. Let f,
be the modular form given by

fo =Y an(f)d(n)g™

n>1

It is an eigen cusp form of level M Np™ with zeta function L(fs,s) = L(f, ¢, s).
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In the same manner as in 6.3.3 (6.5), we can show that
(" p(p)™" - pry, (Trh ™ (c.arzaanpe (XX D)) (6.9)
belongs to lim L(¢) [Gg\i)p] [Gg\?pm}, where L(¢) is the field generated over L by

the values of ¢. Here remark that a,(fs) = ap(f)o(p) = a¢(p). We consider
the image of the element (6.9) under the L(¢)-homomorphism given by

LG <GS m] — L@[GRNGED] ; 2gPg” s zg(ab?)gP gi")
(6.10)

(l‘ € L(¢)ag* € GMP‘X’ag* € Goo) We write £¢,f,{k—2},{r—1},m(c,d/ZM,NpW) €
L((b)[[ng)]][Gg)] for this image, and we put
Ly 5 1k—2},{0,....k—2},me,d 20, Np= ) =

[T  Zorvonpnmlomm=)e [ LOUGING).

ref{l,...k—1} ref{l,...k—1}

Concerning Ly r (r—2} fo.....k—2},m(c,d’ 20, Np= ), We have the following proposi-
tions, which are crucial to our purpose.

PROPOSITION 6.3.10 . The element Ly r (1—2} {0,....k—2},m (c,d’ 20, Npo ) is con-
tained in the subspace i{17.__,k_1}(HL(@’;I)[G%)],

Proof. We can prove Proposition 6.3.10 in the same manner as in 6.3.1 — 6.3.6.
|

In the rest of 6.3, we identify an element of Hp 4y, and its image under

.....

PROPOSITION 6.3.11 . Assume L(fy,k—1) = L(f, ¢, k—1) # 0 and ¢(—1) = 1.
Then we have

+
Lo, f1k—2},10,.. k—2}m (e,d 20, Np>)

= H ( H (1- al(f)l_rgl(g)l + ef(l)lk‘l—%gl(ﬂ)
re{l,...,k—1} l:prime
UM

(1= (e )p(e)gD) (1 — dT(d)g )
™ Efa{k72},{0,...,k:72},m(ZR[I;i‘o/c)):t
€ Hyo)n[G1)]
for some x € L(¢)*, where & = (—1)*¢;(—1).

Proof. An element of Hy ) »[1/e](C Hrg)n ®4, 1162 Q(Zp[[Gg)H)) can be
characterized by specializations Hp, ) »[1/€] — L induced by 1) o X" : G% —

@X for different h integers r; (¢ = 1,...,h) and all but finitely many Dirichlet
characters . So we can prove Proposition 6.3.11 by comparing the images of
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both hands sides under such specializations. The image of the right hand side
under specializations will be studied in 6.4 — 6.6 below. The image of the left
hand side may be obtained in the same way as for the right hand side, but we
omit the details. O

6.3.12. We finish proving that the elements in Theorem 6.2 are contained in

i1, k—1} (HL,h)[Gsrll)]-
‘We have

univ
L5 {k=2},40,....k—2},m (c,d ZNp)

=( JI - FeehHe®)a—drgl))

re{l,....k—1}
< Lf {h-2} {0, k—2}.m (ZNp)
€ Hyn[GRI(C Hen @, gy QEZIIGRDMIGH)),

which follows directly from the definition.

Since (1 — al(f)gl(g)l + ef(l)lkflgl(g)z) for all of the prime numbers ! which are
prime to Np do not have a common divisor, by Propositions 6.3.10 and 6.3.11,
it is sufficient to show the following assertion.

There exist ¢,d’, M, and ¢ which satisfy the above given conditions and the
following condition. For some characters 1,9 : (Z/p"Z)* — @X with con-
ductor divisible by p, ¢(c) = 11(c) # 1 and ¢(d') = 92(d') # 1, and ¢(—1) =1
hold. We can take such elements, therefore we obtain the desired result.

6.4. We prove that our elements in Theorem 6.2 (1) and (2) satisfy the charac-
terizing properties of Ly aqic(f) in Theorem 5.5. In fact, the difference between
Theorem 6.2 (1) and (2) comes from the fact that we take pr; instead of “pr”
We treat the cases Theorem 6.2 (1) and (2) together.

We use the notation in Theorem 5.5.

6.4.1. As referred earlier, for L[[Gg,)]}, we define + and — parts in the same
way as in 5.6, and for * = + or —, we define the x-part of L[[Gg)]][G%)] by
LG GH).

In both cases of Theorem 6.2 (1) and (2), we have

L1 (k=2}{0,. h—2},m (2N )
— H l(i_m(am_" . prf(Tl"Z_m(ZR]r;iZo (Xk—Z7 Xr_l)‘(m,n))»
; @1 @qw{6-11)
e [ tmre?eM= [ LIGRNELT

re{l,.. .k—1} ™ ref{l,...k—1}
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This follows from the equality (6.5). We will prove the assertion that the image
of the coefficient belonging to @L[Gg)] = L[[GP]] of g(l)

n

—r (2 . —-n univ — r— (=1)"
(T (@ = a7 g2 tim(a™™ - pry(Tep =™ (245 (2, X ™) ) E
l:prime n
N

€ lim LIGPNG)] = LIGRNIGHT, (6.12)

m
n

where £ = (—1)¥¢;(—1) and ( )*(=1)" represents the + - (—1)"-part of the
element in ( ), under the map ="' : L[[ng)]] — L coincides with the image of

(I] - a®g2)  Ly-aaie(f)*
l:prime
N
under xgyclow_l :Hp, — L.
By the following facts, this assertion deduces Theorem 6.2.
Firstly we have the equality (6.11).

Secondly ;:prime(1 — (f)gl 1) € OL[[G ]] ®o, L is a non-zerodivisor of Hy, 5.

N
Finally by the results in 4.5.5, we have
(T " R X D)) = Y (@ -l
a€(Z/pmL)*
€ Mi(X:(Np™); Q)[GW G, (6.13)

where z is the coeflicient of g%l) in the left hand side, and o’ € (Z/Np™Z)*
is the element such that o’ = a(p™) and o’ = 1(N). Hence the coeflicient in

@L[Gg)] = L[[GP)]] of g8 in (6.12) is €j(a’ ") times the coefficient of ggl)

in (6.12). (Remark that in the case of Theorem 6.2 (2), €(a’) =1 holds.)
Thus we prove the assertion above.

6.4.2. We use the same notation as in Theorem 5.5. We consider the following
composition

Ve LGN 25 LIGP) - T, (6.14)

where the second map is defined by

> auwgd Z v@) S el (aw€ L),

u€E(Z/pn )™ E(Z/pn1L)* u€E(Z/pn L)
LEMMA 6.4.3 . Let p be an element of L[[G(oi)ﬂ. Then we have
pW™h) = g, (1) - G, Gpn) ™!

Proof. We can prove the lemma by direct computation. (|
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6.4.4. We assume ¢)(—1) = (—1)*""¢;(—1). By Lemma 6.4.3, our task is show-
ing that the image of the coefficient of ggl) in (6.12) under the map (6.14)
is

1
(fa 6(f7 k— 1) 1(0))>

(=1 p e 2m) T — Loy (7).

6.5. In order to prove our claim in 6.4.4, we need to review the result in [Ka2].

6.5.1. As in [Ka2], let
ZNpn (fﬂ’, k-1, O(l),prim(Np)) € S(f) ® Q(CNP") (T # 2)3

c,dZNp™ (f) 27 k — 1,0(1),pr1m(Np)) € S(f) by Q(CNP")

. (k,r)
be the images of 2y Nom npn

(k,r,k — 1,0(1), prim(Np)) in the case r # 2,
and c,dZYf}\i),m,an (k,2,k —1,0(1), prim(Np)) in the case r = 2, both of which
are elements of M (X7 (Np™); Q) ®g Q(Cnpn), respectively, in 4.5.2 under the
projection

M (X1 (Np™); Q) @q Q(Cnpr) — S(F) @ Q¢npn)- (6.15)

Let f* = 3,51 @n(f)¢" denote the dual cusp form of f. Here @,(f) are the
complex conjugates of a,(f). This is also a normalized eigen cusp form. For
n > 1 such that (n, Np) = 1, it is known that

(T(n){n= 1)) = an(NF- (6.16)

For x € (Z/Np"Z)*, let us denote by v, the corresponding element to x of
Gal(Q,(¢npn)/Qp) via the cyclotomic character.

PROPOSITION 6.5.2 . Assume r # 2. Let 1 : (Z/Np"Z)* — Q" be a charac-
ter. We put + = (—=1)k="=1y)(=1). Then we have

Y @) perg(((z7h) @ wi) (zwpn (.7, k = 1,0(1), prim(Np))))*

z€(Z/NpnZ)*
= L(Np) (f*vwar) ' (27.(.2-)16—7’—1 ' 5(f7 k — 170(1))ia

where Lnp) (F*, 9, s) denotes the function obtained from L(f*,1,s) by removing
prime(Np) factors.

Proof. Remark that the definitions of the actions of Galois group
Gal(Q(¢npn)/Q) are different between in [Ka2] and here: The action of
o, in [Ka2], §6, Theorem 6.6 on S(f) ® Q(¢npn) is equal to the action of
(r7!) ® v, in our notation. By this relation we see that the above equation
is equivalent to 6.6 in [Ka2] which can be deduced from the work of Shimura
[Sh]. O
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In the case r = 2, Proposition 6.5.2 must be modified as

Yo W) -pery(((z7h) © va)(c.aznpn (F,2,k — 1,0(1), prim(Np))))*
z€(Z/NpmZ)*
=c2d? - (1 - () ) (1 — v (d) " ei(d))
: L(Np) (f*ﬂ Y, 2) ’ (27”.>k_3 : 5(](7 k—1, 0(1))i

The above proposition induces the following corollary.

COROLLARY 6.5.3 . Assume r # 2. Let ¢ be as in Proposition 6.5.2. We put
+ = (—=1)* " 1p(—1)e;(—1). Then we have

Y W@ -pery((1®@ve)(znpn (f,r,k — 1,0(1), prim(Np))))*
z€(Z/NpnZ)*
= L(Np) (f7’(/)77") ' (271_7;),6—7‘—1 . 6(f7 k— 170(1))i

Proof. By the definition of €;, we have the equality
DORC)
x€(Z/NpnZ)*
. _1)k—r—1 —
-pery(((z71) @ vi) (2wpr (f, 7, k — 1,0(1), prim(Np)))) 0" " ¥
= Y d@eh)

xz€(Z/NpnZ)*
-pers(1® v,) (znpn (F, 7y k — 1,0(1), prim(Np))) D" (D),

By Proposition 6.5.2 and by this, we see that the left hand side of the equation
in Corollary 6.5.3 is equal to

Ling) (F 9 - €5,7) - (2mi) 771 6(F,k — 1,0(1))*.

By (6.16) and by the fact that €;(n) = - (n™!) for n € Z such that (n, Np) = 1,

we have

Linp) (T, % - €5,8) = Linpy (F, 7, 5).
This shows the result. 0

With a suitable modification, we have a similar result with Corollary 6.5.3, in
the case r = 2.

As a corollary to Corollary 6.5.3, we obtain the following Corollary 6.5.4 which
is important for the proof of our Theorem 6.2.

For r # 2, let A(k,r) be the element of My (X1 (Np™); Q) ®g Q(¢n) obtained
from the right hand side of (4.8) in Lemma 4.5.3 (3) in section 4 by replacing
“a € Z/p™7Z" in the right hand side of (4.8) by “a € (Z/p"Z)*”. Namely,
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A(k,r) =(r = )17 (Np™)F " =2(Np™) - N
II a-1rrw-)

l:prime
I|IN
(> TE""
a€(z/pnZL)*
(k—r) (r) a
( Z Z (Fl/N;’”,r ' Fl\;a/Np",y)) “Gpn)-

z€((1/Np™)Z)/Zye((1/Np™)Z)/Z
We define A(f,r) to be the image of A(k,r) under the projection (6.15).

COROLLARY 6.5.4 . Assume r # 2. Let ¢ : (Z/p"Z)* — @X be a charac-
ter which does not factor through (Z/p" 1Z)* and which satisfies ¥(—1) =
(=1)*="€;(—1). Then we have

Y @) pery((1@w)(A(f, 7))~

z€(Z/p™L)*
= L(Np)(fa'l/}v'r) : (27Ti)kiril ’ 5(f7 k— 170(1))7

Proof. We take v as a character which factors through (Z/p"Z)* — @X and
does not factor through (Z/p"~1Z)*, and apply Corollary 6.5.3. Then the part
of the sum ZmG(Z/NZ)X is equivalent to take the trace map trypn p» in Lemma
4.5.3 (3). Concerning the problem of changing a, since ¢ in Corollary 6.5.4
is primitive, the iterated sum over Z:L’E(Z/p"Z)X Y(z)(i for (a,p) > 1 become
Z€ro. O

In the case r = 2, Corollary 6.5.4 must be modified as follows. We take
c.dA(k,2) as the element which is obtained from (4.9) by replacing “a €
Z/p"Z,a # 0" in the right hand side of (4.9) by “a € (Z/p"Z)*”. We also
define . 4A(f, 2) to be the image of . 4A(k, 2) under the projection (6.15). Then
we have

Do b@) - per((1 @) (eaA(f,2))”
z€(Z/pnL)*
=2 (1= Pej(e) (o)A = v(d) )
L(Np)(f7wa 2) . (27Ti)k_3 : 6(f7 k — 170(1>)_'
6.6. Now we prove our claim in 6.4.4.

Since T'())f = a;(f)f, (6.12) coincides with

(lim(a™"

R N R O e O O R R

l:prime
I|N
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So to analyze (6.12), we consider the image of

—r (2 n—m/ _univ — r—
[T -7 g@) e (F2 ™) )

l:prime
N
€ My(X,(Np™); QG x GP)] (6.17)
under the map
G+ Mi(Xai(Np™); Q)G < G — Mi(X1 (Np™); QG )G
(6.18)

defined in the similar way as (4.12).

In the case r # 2, by comparing (4.8) in Lemma 4.5.3 (3) and equation (4.13)
in 4.5.6 with a; = k—2 and ay = r— 1, we see that the coefficient of gil) € G%)
in the image of (6.17) under the map (6.18) is

(r=1"-p"" - A(k,r)
with A(k,r) in Corollary 6.5.4. Thus under the composition
LGPNGP] 2% LIGPNGP] 2 L(Gm)[GY)
f
= (L(Gm) - NIGH),
the coefficient of gil) in the element (6.12) is sent to
™" (r =1t p" - A(f, 7).

Hence by Corollary 6.5.4 and by comparing the definition of the map (6.14)
and the map in Corollary 6.5.4, we obtain that under the assumption in 6.4.4,
per;(f)~ times the image in question in 6.4.4 equals

a " (r=1)-p" - Linpy(F,20,7) - (2772')’“_7’_1 <O(f, B —1,0(1))".

Since L(f,k — 1) # 0, we have 6(f,k — 1,0(1)) = o(f,k — 1,0(1))~ # 0. As
per;(f)~ = Q(f,6(f, k —1,1(0))) - - 6(f, k — 1,0(1))~, we find that the claim in
6.4.4 is true in the case r # 2.

In the case r = 2, in the same way as for r # 2, we can show that the coefficient
of gt in the image of ¢2d2 - (1 — cQ*kef(c’l)gg))(l fg((f)) times element (6.17)
under the map (6.18) is p?" - . 4 A(k, 2) with . 4A(k, 2) just after Corollary 6.5.4.
Hence the image of the coefficient of ggl) in c2d?-(1— 02’kef(c*1)g£2))(1 — gc(lz))
times (6.12) under the composition (6.19) is a™" - p** - . 4A(f,2). From this,
in the same way as for r # 2, we can show that the claim in 6.4.4 is true for
r=2.

The above arguments conclude our desired result that the left hands sides of
the equations in Theorem 6.2 (1) and (2) satisfy the characterizing property of
the right hands sides of them.

(6.19)

6.7. We explain that by our method, we can obtain the whole p-adic zeta
function L, aqic(f) without assuming that L(f,k — 1) # 0.
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univ

Similar with ZNpee s elements zpr,np~ in 6.3.7 may be obtained via K> Cole-
man power series from the system of Beilinson elements (c,qza Npn Mpn)n €

lim Ko(Y (M Np", Mp")), with ¢,d € Z such that (c,6M Np) = (d,6Mp) = 1
and ¢ = 1(N). In this case, we take the field H(Cs) instead of H.

We define £, 7,123, (0,.. 42 m(231.8p) € [reqr,.. ooy LOGLGW] by
replacing .4 Zy,npee DY Za,npee in (6.9) in the construction of the function
Ly ¢ 1k—2},{0,....k—2},m (e,aZM,Np>=). Then in the same way as for Theorem 6.2,
one can show that if L(fs,k — 1) = L(f, ¢,k — 1) # 0,

Ly ¢ {k—2}{0,....k—2},m (ZM,Npo> )i'qﬁ(_l)

=z > (I C(II @-a®ime® +ea@i=1"2g2))

a€(Z/p™Z)* re{l,...,k—1} l:prime
M

. Lp-adic(f))i‘(b(_l)Ef(a’/_l)gt(zl) € H L((ZS)[[G&?]][G%)]
re{l,....,k—1}

with some z € L(¢)*, and &+ = (—1)*¢;(—1).
Moreover by replacing the pair (M, Np) by (N,p), we define a function. Let
¢ : (Z/NZ)* — Q" be a character whose conductor is N. Now we define

Lo 1. 0-2} (0, do—2pm (2N p) € [lreqr. ey LOIGLNGH] to be the im-
age of

II @) pry, (T (e znpee (72X mam))n
re{l,....k—1}

e I L@len~lIch]
under an L(¢)-homomorphism given by

LG NG m] — LOCINGCD] ; 2gPgf") — wp(ab?)gP gf"

( € L(¢), 8« € Gnpe, s € Goo).
One can show that if L(fs,k — 1) = L(f, ¢,k — 1) # 0,

L ¢ k—2}.{0,....k—2},m (2N poo yEen

=z > IT CIT a=ami—rg2y)

a€(Z/pmZ)*  re{l,..,k—1} l:prime
1IN

LpadicMF @ g e T LOICKNGHY]

red{l,....k—1}

with some z € L(¢)*, and &+ = (—1)*¢(—1).
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From the above equalities, we find that by taking various ¢ which satisfy
L(f, ¢, k—1) # 0, the whole (i.e. including the (—1)¥~1e;(—1)-part of ) Ly aqic(f)
can be obtained by our method without assuming L(f, k — 1) # 0.

7. THE RESULT ON TWO-VARIABLE p-ADIC ZETA FUNCTION

For a module A over Zp[[Gg? X Gg))]], we put Ag = A ®, (6D <62
P ) oo

Q(Zp[[Gg? X Gg)]]) In 7.1, for a certain subspace B of M ype= [[G’&) X G@}]Q
to which the universal zeta modular form z}{}g; belongs, we define a map (in
7.1.3)

Ly : B — (0= /TR) @2 QA)[GR e
The main theorem (Theorem 7.3) of this section is that

Ly @ 2zypx = a “universal ordinary p-adic zeta function”,

where the universal ordinary p-adic zeta function is a p-adic zeta function in
two variables associated to the universal family of ordinary cusp forms (see
Theorem 7.3 for the details).

7.1. We define the subspace B and the map L.

7.1.1. We put A = Zp[[Ggé)H as in 3.5. Let us define a subspace my of
M npee [[Gg?]] in the following way:

mia = {2 € Map=[[GU]] 5 ¢ - 20p =2 for all a,b € (Z/p"Z)"}.
Here z,,, € M yp= are defined by x|, = Zae(Z/p"Z)x xn,aggl) € M npeo [G%l)]
with the image |, of z under the projection M ype [[G%]] — Mype [GS].

PROPOSITION 7.1.2 . (1) We have
univ == 1 AT
iNp> € mAHGSf?]][E](C M= [[GS) x GRI[-]),

where g is as before.
(2) Leti: Mypo — Homg (Hype,Zy) be as in 3.3. We denote by the same
symbol i the map

£ My [GD)] — Hom, (Havpe, Zy)[[GD)]
= HOIDZP (HNp‘x’ ) A)

induced by i in 3.3. Then
i(mA) C HomA(HNpoo , A)

Proof. (1)The results in 4.5.5 deduce the assertion.
(2) The result follows directly from the definition. O
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7.1.3. We define a map

M — (Do /o) @a Q(A) (7.1)
which induces

Ly : mA[[G(@]][;] — (B /TR) @ Q(A))HG&?H[;]

for a non-zerodivisor g € Zp[[Gg,) X Gg)]].
The map (7.1) is defined as the following composition:

ma > Homp (Hpee, A) 222 Homa (K3, A)
— Homga) (PR ®a Q(A), Q(A))
— HomQ(A)(p?\fgoo @A Q(A), Q(A))
— ordoc ordoo) 24 Q(A).

The second arrow is by the natural projection. The third arrow is the evident

one. The fourth arrow is given as follows. By the definition of Pj‘\fgm and

(7.2)

p?\fﬁm, it follows that the natural map Pord — p?\}gm is surjective. The

fourth arrow is given as the unique section pordoo @A Q(A) — P?\fgw @A Q(A)
as algebras over Q(A) of the surjective homomorphism between semisimple
algebras P"rdx, ®r Q(A) — p%goo ®a Q(A) which is induced by the above
surjective map. Finally the last arrow in (7.2) is defined in the following way.
By Proposition 3.6, pJife @ Q(A) = (h¥9 /ZRige) @ Q(A) are finitely gen-
erated semisimple algebras over Q(A). Hence we have an isomorphism

(699 /) @4 Q(A) 22 Homga) (3o /%) @4 Q(A), Q(A)) ;(7 .

a— (x— Tr(a-x)),
where Tr is the trace map
LD /TR @4 Q(A) — Q(A).
This map gives the last map of (7.2).

7.1.4. We define a universal ordinary p-adic zeta function
1

ol
g

where h € bordm is a certain non-zerodivisor and g is as before, as

ord,univ __ univ
Lp—adic - LN(ZNp )

Lord univ ( ord ord )[[ )]][

p-adic p

From the definition, one can see that universal ordinary p-adic zeta function

Lgr:d‘fénv is an element of (1/h)(hY 9 /Lo MIG)[1/g], which is contained in

(0% /TR L) [GR][L/ hg).

7.2. We review basic facts and results of Hida about ordinary eigen cusp forms.
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72.1. Let £ > 2 and m > 1. Let f € My(X(1,Np™)) ® C be a normalized
eigen cusp form. We recall that f is called ordinary if the eigenvalue of T'(p)
on f is a p-adic unit. Further f is called an ordinary p-stabilized newform
of tame conductor N when f is ordinary, the conductor of f is divisible by
N, and m > 1 (cf. [GS]). We call Np™ the level of an ordinary p-stabilized
newform f of tame conductor N if m is the smallest (positive) integer such
that f € Mp(X(1,Np™)) ® C.

An ordinary p-stabilized newform of tame conductor N of level Np™ is either
it is already a newform of level Np™ or it is an ordinary eigen cusp form f,
obtained from a newform f of level N when « is a p-adic unit by the method
in 6.1.1 (ct.[GS]).

7.2.2. We call a ring homomorphism & : ‘]’\}200 — Z, satisfying the following

conditions an N-primitive arithmetic point (cf. [GS]). For an integer ¢ such
that ¢ > 0 and a Dirichlet character ¢ of conductor p™ (n > 0), let B,  be the
kernel of the Z,-homomorphism A — Z, induced by ¢ o " : Gg) — Tpx. The
condition for an N-primitive arithmetic point is that it factors through

K1 e = Opee /(Bivy + Iipw) — Zy (7.4)
for some 7 > 0 and some 1. Here Ijo\,rgoo is the ideal defined in 3.7 in section 3.

7.2.3. In the case p > 5, Hida [Hi2], §1, Corollary 1.3 proved that for an N-
primitive arithmetic point £ which factors as (7.4), we have a unique ordinary
p-stabilized newform f =" ., a,(f)q" of weight ¢ + 2 of tame conductor N
such that k(T'(n)) = a,(f).

THEOREM 7.3 . We assume p > 5. The universal ordinary p-adic zeta function
ord,univ or or 1
Lyt € O3 /TR ) IG2 )
defined in 7.1.4 displays property (7.6) below. Let
K DR /T — Zp
be an N-primitive arithmetic point. We write f, = > <1 an(fe)q" for the
ordinary p-stabilized newform of tame conductor N attached in the sense of
7.2.3 with k. We denote the weight and level of f, by k and Np™ (m > 1),
respectively. We always have that k(g) € Z_p[[Gg%)]] is a non-zero divisor. We
assume that k(h) # 0. Then k induces the following homomorphism which is
also denoted by & :
or! oT' 1 7
K (bNgm/INﬁm)[[Gé?H[h—g] — QZ,[GR)). (7.5)
Now if L(fx,k — 1) # 0, then concerning the image L;{igziv(n) of LZfi’d‘;ziv
under (7.5), we have

L2 ()% — g (p — 1) R(T ()™ - Ly-atic(fi) = (x) € Ou[[G2] oS
7.6
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Here concerning (one-variable) p-adic zeta function Ly qqic(fr), we take the
class of fx as w € S(fs) in the situation of Theorem 5.5. Moreover + =
(—DFr((—1)), Lgfi’dlzzw(n)i and Ly_aaic(f<)T are the L-parts of L;fi’d‘zw(n)
and Ly_qqic(fx), respectively, and M is the finite extension Qp(a,(fs);n > 1)

of Qp.

REMARK 7.3.1 . (1) Recall that as in Theorem 6.2, even for p = 2,3, the

p-adic zeta function Ly qqic(f) of each ordinary p-stabilized newform f was

constructed from zpp%.

(2) By the argument in 4.5.5, we obtain c,d/z}{};;; € HNPOO[[G&) X Gg)]]. From
this and from the fact that x((1 — c’lg((:l_)lgé?))(l - d’gc(ﬁ))) € Z[[GS,?]] is a
non-zerodivisor for any N-primitive arithmetic point k, we find that x(g) €
Z_p[[Gg)H is a non-zerodiwisor for any N -primitive arithmetic point k.

(3) In the above, we put the assumption that L(f.,k — 1) # 0. (As referred
before, L(f., k—1) = 0 occurs only in the case k = 2.) Moreover we only consid-
ered the (—1)*k((—1))-parts of Ly-qaic(fx). However as explained briefly in 7.7
later, by using zuyr,Npe, ZN,p>, and ¢ in 6.7, with some device, we can construct
a two-variable p-adic zeta function which can provide the (—1)*+1k((—1))-part

of Lp_adic(fx) for k satisfying some conditions (see 7.7 for this condition) even
though L(f.,k—1) =0.

We prove Theorem 7.3 by using Theorem 6.2 and the argument in the proof of
it.
We use the notation in Theorem 7.3 and we assume x(h) # 0.

7.4. For integers ¢, d’ which are prime to p, we put

rd,univ — 1 2 rd,univ or or 1
carlyie™ = (1= lg D g (1 = dgg ) LA € (05 /TR ) [5 [[Goc))

One can see that . 4 L;f:é‘il:iv
e Lpeaaie(F) = (1= ¢Fep (Do) (1= 97)) - Lpeadie ().

In 7.5 — 7.6, we will prove that under an N-primitive arithmetic point x satis-
fying the condition in Theorem 7.3,

ca Lyaie (8) =" (p = 1) - K(T(P)™ - et Lipactic(f) (X)-

= Ly (carzify). We also put

(7.7)
The result in Theorem 7.3 will follow from this.
7.5. We consider some consequences of Theorem 6.2 for the proof of (7.7).

7.5.1. Since fy is ordinary, Ly aqic(fx) may be characterized by the specializa-

tion property in Theorem 5.5 (i) for only one r among 1,...,k — 1 under the
notation there.

We have that S(f.)y = Mip(Xai(Np");M)/(T(n) — k(T(n)) ; n >
1) is a one dimensional M-vector space with a base f,. We define
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pry. @ Mg(X1(Np"); M) — M as the composition M (X1 (Np"); M) el
S(fs)m — M, where the second map is the one given by sending the class of
[ to 1. (In the case that f is a newform, the map pr;,_ coincides with the
map pr; in section 6. In the case f; = fo for some newform f of conductor N
and « as before, in section 6, we took f as the base of S(f.)n. So if we use
pry, in Theorem 6.2 instead of pr;, we obtain the p-adic zeta function of f,
which takes the class of f,; as w in the notation in Theorem 5.5.) By Theorem
6.2, we obtain

(limpry (e 20 (72X ) 5D

=a™- Z 7;{7"}(c,d’Lp-adiC(fK)i)efn (a/_l)gt(zl) € @M[Gg)][G%?ﬂg)
a€(z/pmL)* "
with + = (=1)*x((~1)), where a’ € (Z/Np™Z)* is the element such that
a' = 1(N) and o/ = a(p™) for each a.

7.5.2. Let ¢, : Gg,) — Z; denote the character such that the restriction of s to
G coincides with €p 0 X*~2. Then ep(g((ll)) = ¢y, (a) for any a € (Z/p"Z)*,
and o' € (Z/Np™Z)* is the element such that o’ = a(p™) and o’ = 1(N).
Clearly the image of (7.8) under ¢, : M[[GS@]][G%)] — M[[Gg)]] is

pmil(p —-1)-a™- i} (C,d’Lp—adiC(fm)i)-

As f, is ordinary, by Theorem 6.2, we know Ly aqgic(fx) € OM[[Gg;)]] ®oy M,
and hence we have

Z{r} (c,d’Lp-adic(fn)i) = c,d/Lp—adic(fn)i(Xr) € OMHG(()Z)]] ®OM M.
7.5.3. By the commutative diagram

Mi(X1(Np™); Zp)[Gi)] —2— Miu(X1(Np™); Ziye))

J/prfm lprfﬂ
MG _ M,
and (7.8), it follows that
pry, (car i (6 0 XM 72 X)) F Y = p" T (p = 1) - 0™ - Lpadic () * (X)
€ Onl[GR ®o,, M. (7.9)

univ

Here we denote by pry (c.a2jps (€p © X2, x" ) E (DT the inverse limit

(lﬁl Pry, (c,d'z}l\fr;go (Gpoxk_27 Xr_1)|n))i'(_1)r with ¢, qr ZRTI;V“’ (Gpox’“_Q, Xr_1)|n €
n

Mi(X, (Np"); Zp) [ep)) G5
Furthermore by (6.13), we have

c,d’z}l\;;;Zo (Ep © Xk_ga Xr_l)|n € My(Xy (an)7 €p; Z(p) [%])[Gg)]a
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where My (X1(Np"), €p; Zp)lep]) is the sub Z,)[ep]-space of
My (X1(Np™); Zpylep]) on which G acts via €po X2

Lord univ

7.6. Now we study . 4 padic

7.6.1. The following composition of A-homomorphisms
Do /I oe — PR ®a Q(A)
— PRt @5 Q(A) — HRhee @p Q(A)

induces the A-homomorphism

1
HomA(H‘]’\}r;}m,A) — HomA(hordoo/ 3

R, ) (7.10)

with some non-zerodivisor A’ € A. It is easy to see that the composition of
(7.10) and

1
Hom (h3pe /Zpee s 7 A = (b Do /Lipee ) @4 Q(A),
which is given by (7.3), coincides with the composition in (7.2). From this, we
see (W)=t c (k)7L
The A-homomorphism mA[[Gé?]] = HomA(HNpoo,A)[[G’g;)H and (7.10) give a
A-homomorphism
mA[[G2)] — Homa (h% g /TR » A [h,D[[G(Q Il
and this A-homomorphism induces

A/, ([G2]

or or 1
— Homa g,y ., (085 / (Br-2., + TR )y Al 1/ P26 [CE7.11)
where MA Py s, denotes the image of my wunder the map

JE— €,0 k—2 P
Mo [[GE])) 22— My~ ©z, Zyley). The map (7.11) is well-defined

as k(h) # 0.
We put L = A[1/h']/Br_2,,. Now the result of Hida [Hi2], Corollary 1.3 affirms

that Homp /g, , (hordw/(‘nk_%p —I—.'Z]O\}"Soo), A[1/1]/Br—2,c,) is contained in
SN (X (Np™), €p; L), where SP™N (X1 (Np™), e; L) is the sub L-space of
e Mi(X1(Np™),€ep; L) with e = @T(p)”!, consisting of cusp forms with

n
conductor divisible by N. Hence (7.11) induces a homomorphism
A /32,0, (G — ST (G (ND™), e DG (7.12)

7.6.2. We define my[G2]] = ma[[GE]] 0 MG x GLljx—2) 10, k—2y(C
My [[G) x GR])) with i in 7.1.1 and M[[GY x Gtk 2.0, ko) in
6.1.4. We see that cd/z}i};é’o c mA[[Gé?]].
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We define my /g, , [[Gg)]} to be the image of of mA[[Gg)]] under the map

—_— e ox 21 -_—
My G x G 122 D F7 @ Z, e, [[GR)). Then the map (7.12)
induces a map

i mas ., (G2 — STON (X (ND™), 6 L)[[GR)]].
(7.13)

By definition, the following diagram is commutative for each n > 1:

Ma/pa_a, (G —— SN (X1 (Np™), €3 L)[GE]
lprfm lpm (7.14)

M _d M.

We write  pry (j(caziie(e, o x*72,id))) for the inverse limit
liLn(prfN(j(qd/z}‘VIﬁZo(ep o X*72,x""H)|n)). By the commutative diagram

(7.14), we obtain

pry, (e, ZJI{II;ZC (epo Xk_Qa id)) = pry, (j(c,d’z}l\fr;i;]o (epo Xk_27 id))).
Hence by this and by (7.9), if we prove the assertion in 7.6.3 below, Theorem
7.3 follows.

7.6.3. The assertion in question is as follows.

We have
. iv —2 . rd,uni
Prg, (J(Qd’z}l\lr;“ (ep ° Xk Q’Id))) = C,d’LZ-adlilc ( )
We prove this assertion. As an element of the right hand side of (7.11),

univ

) e 27% (ep 0 X¥72,1d)) is the element
o Trpe, (. LYGEY - 2) (0 € B /(Brozie, + L)),

where Try e, : Homyp g, , (b%gm/(mk72,6p + I?Vrgoo),A/mk,g,gp) is the trace
map as A/Br_2.,-modules. By the result of Hida [Hi2], Corollary 1.3, we find

that
Trk,sp = § fn/v
n/

where f,. runs over all ordinary p-stabilized newform € Szrd’N(X 1(Np™), ep; L)

of tame conductor N attached to &’ : b9 /IR — Z, satisfying g =
k—2

€p o X 2.

By the definition of Cyd/Lng(’i?: IV we obtain

J(earzips (p 0 X" 72,1d)) = car LT (Y fur) = Y e LIS (K) for
K’ K’

where in ), ' runs as above. This concludes the assertion.

Therefore Theorem 7.3 is proven.
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7.7. We briefly explain how to obtain a two-variable p-adic zeta function at-
tached to the universal family of cusp forms which can provide (—1)**1x((—1))-
part of Ly aqic(fx) for s satisfying a certain condition, even though L(f,k —
1)=0.

We use the notation in 6.3.7 — 6.3.12 and in 6.7. As before, let M be a positive
integer which is prime to Np.

We consider the image of zpr, yp~ under the My Npee-homomorphism which is
similar to (6.10) and which is given as follows

Marnp[[Garpe M x Garpoe @] — Marnp=[[GY) x GP)]
(7.15)

a?g((f)gél) — xq[)(abQ)g((zQ)gz(;l) (z € MMN;DOO,Q* € Gup=, 9« € Goo).

We write 2, np=, for the image of zpr, np~ under the above map.

Now by replacing N by NM in the definition of my, we define my. Then for
this my, the following which is similar to the result in Proposition 7.1.2 (1)
holds. Namely we have

orNye s € FA[[GE >mg J(C Myarp=[[GL x G| gl,,D

where g is the image of ¢’ in 6.3.7 under the homomorphism (7.15). We study
the image of zps, Np,¢ under the map

ﬁA[[Gé?H[%] — (0 /T ) @4 QUANIGRN] ,,]
g g (7.16)

which is defined as L. We denote this image by

I' T T 1
LO p-adic,M ,¢p 6( (])\7(]{4p / ?\/%p )[[Gg)]][h/g/,]v

! ord : : CC : : ord
where h' € by, is a certain non-zerodivisor. This function L7 1 4

displays the property (7.17) below. For an N-primitive arithmetic point & :
Ordoc/I]OVrg — Ly, let Ky : bNMpoc/I})\,r]‘t[pw — Zp be the N M-primitive
arithmetic point characterized by k(T (n)) = k(T(n))¢(n). We always have
that ke(g") € ZT,[[G(()%)H is a non-zero divisor. We assume that k4(h') # 0.
Then k4 induces the following homomorphism which is also denoted by x4 :

1
h/g//

o+ (0805 /TR IGRN[7 ] — QUZIIGRD.

Now if L(f,, ¢,k — 1) # 0, we have
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Lgfgdic,M,¢(’i¢)i'¢(71)
= ((I] = a®g® + O g%) - Lpaae(£)) V()
l:prime
Ui
(7.17)

€ On(p)[[GR ®04,,) M(9)

with some z € M(¢)*, and £ = (—1)*¢;(—1).

By using the arguments in 6.3.7 — 6.3.12 and 6.7, we can prove the above
assertion in the same way as for Theorem 6.2. Furthermore, by using zy pe,
we can produce another two-variable p-adic zeta function attached to universal
family of ordinary cusp forms in the same manner.

In this way, by taking various ¢, we can construct two-variable p-adic zeta func-
tions which can provide not only (—1)*k((—1))-part but also (—1)**1x({—1))-
part of Ly agic(fx) for k satisfying the condition that kg(h') # 0, without
assuming L(f.,k —1) # 0.
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