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Chow–Künneth Decomposition

for Some Moduli Spaces1
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Abstract. In this paper we investigate Murre’s conjecture on the
Chow–Künneth decomposition for universal families of smooth curves
over spaces which dominate the moduli spaceMg, in genus at most 8
and show existence of a Chow–Künneth decomposition. This is done
in the setting of equivariant cohomology and equivariant Chow groups
to get equivariant Chow–Künneth decompositions.
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2 J. N. Iyer, S. Müller–Stach

1. Introduction

Suppose X is a nonsingular projective variety defined over the complex num-
bers. We consider the rational Chow group CHi(X)Q = CHi(X) ⊗ Q of
algebraic cycles of codimension i on X . The conjectures of S. Bloch and A.
Beilinson predict a finite descending filtration {F jCHi(X)Q} on CHi(X)Q and
satisfying certain compatibility conditions. A candidate for such a filtration has
been proposed by J. Murre and he has made the following conjecture [Mu2],
Murre’s conjecture: The motive (X,∆) of X has a Chow-Künneth decom-
position:

∆ =

2d∑

i=0

πi ∈ CHd(X ×X)⊗Q

such that πi are orthogonal projectors, lifting the Künneth projectors in
H2d−i(X) ⊗ Hi(X). Furthermore, these algebraic projectors act trivially on
the rational Chow groups in a certain range.
These projectors give a candidate for a filtration of the rational Chow groups,
see §2.1.
This conjecture is known to be true for curves, surfaces and a product of a curve
and surface [Mu1], [Mu3]. A variety X is known to have a Chow–Künneth de-
composition if X is an abelian variety/scheme [Sh],[De-Mu], a uniruled three-
fold [dA-Mü1], universal families over modular varieties [Go-Mu], [GHM2] and
the universal family over one Picard modular surface [MMWYK], where a par-
tial set of projectors are found. Finite group quotients (maybe singular) of
an abelian variety also satisfy the above conjecture [Ak-Jo]. Furthermore, for
some varieties with a nef tangent bundle, Murre’s conjecture is proved in [Iy].
A criterion for existence of such a decomposition is also given in [Sa]. Some
other examples are also listed in [Gu-Pe].
Gordon-Murre-Hanamura [GHM2], [Go-Mu] obtained Chow–Künneth projec-
tors for universal families over modular varieties. Hence it is natural to ask if
the universal families over the moduli space of curves of higher genus also admit
a Chow–Künneth decomposition. In this paper, we investigate the existence of
Chow–Künneth decomposition for families of smooth curves over spaces which
closely approximate the moduli spaces of curves Mg of genus at most 8, see
§5.
In this example, we take into account the non-trivial action of a linear algebraic
group G acting on the spaces. This gives rise to the equivariant cohomology
and equivariant Chow groups, which were introduced and studied by Borel, To-
taro, Edidin-Graham [Bo], [To], [Ed-Gr]. Hence it seems natural to formulate
Murre’s conjecture with respect to the cycle class maps between the rational
equivariant Chow groups and the rational equivariant cohomology, see §4.5.
Since in concrete examples, good quotients of non-compact varieties exist, it
became necessary to extend Murre’s conjecture for non-compact smooth va-
rieties, by taking only the bottom weight cohomology WiH

i(X,Q) (see [D]),
into consideration. This is weaker than the formulation done in [BE]. For
our purpose though, it suffices to look at this weaker formulation. We then
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Chow–Künneth Decompositions 3

construct a category of equivariant Chow motives, fixing an algebraic group G
(see [dB-Az], [Ak-Jo], for a category of motives of quotient varieties, under a
finite group action).
With this formalism, we show (see §5.2);

Theorem 1.1. The equivariant Chow motive of a universal family of smooth
curves X → U over spaces U which dominate the moduli space of curves Mg,
for g ≤ 8, admits an equivariant Chow–Künneth decomposition, for a suitable
linear algebraic group G acting non-trivially on X .

Whenever smooth good quotients exist under the action of G, then the equi-
variant Chow-Künneth projectors actually correspond to the absolute Chow–
Künneth projectors for the quotient varieties. In this way, we get orthogonal
projectors for universal families over spaces which closely approximate the mod-
uli spacesMg, when g is at most 8.
One would like to try to prove a Chow–Künneth decomposition for Mg and
Mg,n (which parametrizes curves with marked points) and we consider our
work a step forward. However since we only work on an open set U one has to
refine projectors after taking closures a bit in a way we don’t yet know.
Other examples that admit a Chow–Künneth decomposition are Fano vari-
eties of r-dimensional planes contained in a general complete intersection in a
projective space, see Corollary 5.3.
The proofs involve classification of curves in genus at most 8 by Mukai
[Muk],[Muk2] with respect to embeddings as complete intersections in homoge-
neous spaces. This allows us to use Lefschetz theorem and construct orthogonal
projectors.
Acknowledgements: The first named author thanks the Math Department of Mainz,

for its hospitality during the visits in 2007 and 2008, when this work was carried out. We

also thank a referee for a useful remark concerning our definition of the weight filtration.

2. Preliminaries

The category of nonsingular projective varieties over C will be denoted by V .
Let CHi(X)Q = CHi(X)⊗Q denote the rational Chow group of codimension
i algebraic cycles modulo rational equivalence.
Suppose X,Y ∈ Ob(V) and X = ∪Xi be a decomposition into connected
components Xi and di = dim Xi. Then Corrr(X,Y ) = ⊕iCHdi+r(Xi × Y )Q

is called a space of correspondences of degree r from X to Y .
A category M of Chow motives is constructed in [Mu2]. Suppose X is a
nonsingular projective variety over C of dimension d. Let ∆ ⊂ X ×X be the
diagonal. Consider the Künneth decomposition of the class of ∆ in the Betti
Cohomology:

[∆] = ⊕2d
i=0π

hom
i

where πhomi ∈ H2d−i(X,Q)⊗Hi(X,Q).

Definition 2.1. The motive of X is said to have Künneth decomposition if
each of the classes πhomi is algebraic, i.e., πhomi is the image of an algebraic
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4 J. N. Iyer, S. Müller–Stach

cycle πi under the cycle class map from the rational Chow groups to the Betti
cohomology.

Definition 2.2. The motive of X is said to have a Chow–Künneth decomposi-
tion if each of the classes πhomi is algebraic and they are orthogonal projectors,
i.e., πi ◦ πj = δi,jπi.

Lemma 2.3. If X and Y have a Chow–Künneth decomposition then X×Y also
has a Chow–Künneth decomposition.

Proof. If πXi and πYj are the Chow–Künneth components for h(X) and h(Y )
respectively then

πX×Yi =
∑

p+q=i

πXp × πYq ∈ CH∗(X × Y ×X × Y )Q

are the Chow–Künneth components for X × Y . Here the product πXp × πYq is
taken after identifying X × Y ×X × Y ≃ X ×X × Y × Y . �

2.1. Murre’s conjectures. J. Murre [Mu2], [Mu3] has made the following
conjectures for any smooth projective variety X .
(A) The motive h(X) := (X,∆X) of X has a Chow-Künneth decomposition:

∆X =
2n∑

i=0

πi ∈ CHn(X ×X)⊗Q

such that πi are orthogonal projectors.
(B) The correspondences π0, π1, ..., πj−1, π2j+1, ..., π2n act as zero on CHj(X)⊗
Q.
(C) Suppose

F rCHj(X)⊗Q = Kerπ2j ∩Kerπ2j−1 ∩ ... ∩Kerπ2j−r+1.

Then the filtration F • of CHj(X) ⊗ Q is independent of the choice of the
projectors πi.
(D) Further, F 1CHi(X) ⊗ Q = (CHi(X) ⊗ Q)hom, the cycles which are ho-
mologous to zero.

In §4, we will extend (A) in the setting of equivariant Chow groups.

3. Equivariant Chow groups and equivariant Chow motives

In this section, we recall some preliminary facts on the equivariant groups to
formulate Murre’s conjectures for a smooth variety X of dimension d, which
is equipped with an action by a linear reductive algebraic group G. The equi-
variant groups and their properties that we recall below were defined by Borel,
Totaro, Edidin-Graham, Fulton [Bo],[To],[Ed-Gr], [Fu2].

Documenta Mathematica 14 (2009) 1–18



Chow–Künneth Decompositions 5

3.1. Equivariant cohomology Hi
G(X,Z) of X. Suppose X is a variety

with an action on the left by an algebraic groupG. Borel defined the equivariant
cohomology H∗G(X) as follows. There is a contractible space EG on which G
acts freely (on the right) with quotient BG := EG/G. Then form the space

EG×G X := EG×X/(e.g, x) ∼ (e, g.x).

In other words, EG×G X represents the (topological) quotient stack [X/G].

Definition 3.1. The equivariant cohomology of X with respect to G is the
ordinary singular cohomology of EG×G X:

Hi
G(X) = Hi(EG×G X).

For the special case when X is a point, we have

Hi
G(point) = Hi(BG)

For any X , the map X → point induces a pullback map Hi(BG) → Hi
G(X).

Hence the equivariant cohomology of X has the structure of a Hi(BG)-algebra,
at least when Hi(BG) = 0 for odd i.

3.2. Equivariant Chow groups CHi
G(X) of X. [Ed-Gr]

As in the previous subsection, let X be a smooth variety of dimension n,
equipped with a left G-action. Here G is an affine algebraic group of dimension
g. Choose an l-dimensional representation V of G such that V has an open
subset U on which G acts freely and whose complement has codimension more
than n− i. The diagonal action on X ×U is also free, so there is a quotient in
the category of algebraic spaces. Denote this quotient by XG := (X × U)/G.

Definition 3.2. The i-th equivariant Chow group CHG
i (X) is the usual Chow

group CHi+l−g(XG). The codimension i equivariant Chow group CHi
G(X) is

the usual codimension i Chow group CHi(XG).

Note that if X has pure dimension n then

CHi
G(X) = CHi(XG)

= CHn+l−g−i(XG)

= CHG
n−i(X).

Proposition 3.3. The equivariant Chow group CHG
i (X) is independent of the

representation V , as long as V − U has codimension more than n− i.
Proof. See [Ed-Gr, Definition-Proposition 1]. �

If Y ⊂ X is an m-dimensional subvariety which is invariant under the G-
action, and compatible with the G-action on X , then it has a G-equivariant
fundamental class [Y ]G ∈ CHG

m(X). Indeed, we can consider the product
(Y ×U) ⊂ X×U , where U is as above and the corresponding quotient (Y ×U)/G
canonically embeds into XG. The fundamental class of (Y × U)/G defines the
class [Y ]G ∈ CHG

m(X). More generally, if V is an l-dimensional representation

Documenta Mathematica 14 (2009) 1–18



6 J. N. Iyer, S. Müller–Stach

of G and S ⊂ X × V is an m + l-dimensional subvariety which is invariant
under the G-action, then the quotient (S ∩ (X × U))/G ⊂ (X × U)/G defines
the G-equivariant fundamental class [S]G ∈ CHG

m(X) of S.

Proposition 3.4. If α ∈ CHG
m(X) then there exists a representation V such

that α =
∑
ai[Si]G, for some G-invariant subvarieties Si of X × V .

Proof. See [Ed-Gr, Proposition 1]. �

3.3. Functoriality properties. Suppose f : X → Y is a G-equivariant
morphism. Let S be one of the following properties of schemes or algebraic
spaces: proper, flat, smooth, regular embedding or l.c.i.

Proposition 3.5. If f : X → Y has property S, then the induced map fG :
XG → YG also has property S.
Proof. See [Ed-Gr, Proposition 2]. �

Proposition 3.6. Equivariant Chow groups have the same functoriality as
ordinary Chow groups for equivariant morphisms with property S.
Proof. See [Ed-Gr, Proposition 3]. �

If X and Y have G-actions then there are exterior products

CHG
i (X)⊗ CHG

j (Y )→ CHG
i+j(X × Y ).

In particular, if X is smooth then there is an intersection product on the
equivariant Chow groups which makes ⊕jCHG

j (X) into a graded ring.

3.4. Cycle class maps. [Ed-Gr, §2.8]
Suppose X is a complex algebraic variety and G is a complex algebraic group.
The equivariant Borel-Moore homology HG

BM,i(X) is the Borel-Moore homol-

ogy HBM,i(XG), for XG = X ×G U . This is independent of the representation
as long as V − U has sufficiently large codimension. This gives a cycle class
map,

cli : CHG
i (X)→ HG

BM,2i(X,Z)

compatible with usual operations on equivariant Chow groups. Suppose X is
smooth of dimension d then XG is also smooth. In this case the Borel-Moore
cohomology HG

BM,2i(X,Z) is dual to H2d−i(XG) = H2d−i(X ×G U).
This gives the cycle class maps

(1) cli : CHi
G(X)→ H2i

G (X,Z).

There are also maps from the equivariant groups to the usual groups:

(2) Hi
G(X,Z)→ Hi(X,Z)

and

(3) CHi
G(X)→ CHi(X).

Documenta Mathematica 14 (2009) 1–18



Chow–Künneth Decompositions 7

3.5. Weight filtration W. on Hi
G(X,Z). In this paper, we assign only the

bottom weight Wi of the equivariant cohomology in the simplest situation.
Consider a smooth variety X equipped with a left G action as above.
We can define

WiH
i
G(X,Q) := WiH

i((X × U)/G,Q),

for U ⊂ V an open subset with a free G-action, where codim V −U is at least
n− i.
Lemma 3.7. The group WiH

i
G(X,Q) is independent of the choice of the G-

representation V as long as codim V − U is at least n− i.
Proof. The proof of independence of V in the case of equivariant Chow groups
[Ed-Gr, Definition-Proposition 1] applies directly in the case of the bottom
weight equivariant cohomology. �

3.6. Equivariant Chow motives and the category of equivariant
Chow motives. When G is a finite group then a category of Chow motives
for (maybe singular) quotients of varieties under the G-action was constructed
in [dB-Az], [Ak-Jo]. More generally, we consider the following situation, taking
into account the equivariant cohomology and the equivariant rational Chow
groups, which does not seem to have been considered before.
Fix an affine complex algebraic group G. Let VG be the category whose objects
are complex smooth projective varieties with a G-action and the morphisms
are G-equivariant morphisms.
For any X,Y, Z ∈ Ob(VG), consider the projections

X × Y × Z pXY−→ X × Y,
X × Y × Z pY Z−→ Y × Z,
X × Y × Z pXZ−→ X × Z.

which are G-equivariant.
Let d be the dimension of X . The group of correspondences from X to Y of
degree r is defined as

CorrrG(X × Y ) := CHr+d
G (X × Y ).

Every G-equivariant morphism X → Y defines an element in Corr0G(X × Y ),
by taking the graph cycle.
For any f ∈ CorrrG(X,Y ) and g ∈ CorreG(Y, Z) define their composition

g ◦ f ∈ Corrr+eG (X,Z)

by the prescription
g ◦ f = pXZ∗(p

∗
XY (f).p∗Y Z(g)).

This gives a linear action of correspondences on the equivariant Chow groups

CorrrG(X,Y )× CHs
G(X)Q −→ CHr+s

G (Y )Q

(γ, α) 7→ pY ∗(p
∗
Xα.γ)

for the projections pX : X × Y −→ X, pY : X × Y −→ Y .

Documenta Mathematica 14 (2009) 1–18



8 J. N. Iyer, S. Müller–Stach

The category of pure equivariantG-motives with rational coefficients is denoted
by M+

G. The objects of M+
G are triples (X, p,m)G, for X ∈ Ob(VG), p ∈

Corr0G(X,X) is a projector, i.e., p ◦ p = p and m ∈ Z. The morphisms between
the objects (X, p,m)G, (Y, q, n)G inM+

G are given by the correspondences f ∈
Corrn−mG (X,Y ) such that f ◦p = q ◦f = f . The composition of the morphisms
is the composition of correspondences. This category is pseudoabelian and
Q-linear [Mu2]. Furthermore, it is a tensor category defined by

(X, p,m)G ⊗ (Y, q, n)G = (X × Y, p⊗ q,m+ n)G.

The object (Spec C, id, 0)G is the unit object and the Lefschetz motive L is the
object (Spec C, id,−1)G. Here Spec C is taken with a trivial G-action. The
Tate twist of a G-motive M is M(r) := M ⊗ L⊗−r = (X, p,m+ r)G.

Definition 3.8. The theory of equivariant Chow motives ([Sc]) provides a
functor

h : VG −→M+
G.

For each X ∈ Ob(VG) the object h(X) = (X,∆, 0)G is called the equivariant
Chow motive of X. Here ∆ is the class of the diagonal in CH∗(X × X)Q,
which is G-invariant for the diagonal action on X × X and hence lies in
Corr0

G(X,X) = CH∗G(X ×X)Q.

4. Murre’s conjectures for the equivariant Chow motives

Suppose X is a complex smooth variety of dimension d, equipped with a G-
action. Consider the product variety X ×X together with the diagonal action
of the group G.
The cycle class map

(4) cld : CHd(X ×X)Q → H2d(X ×X,Q).

actually maps to the weight 2d piece W2dH
2d(X ×X,Q) of the ordinary coho-

mology group.
Applying this to the spaces X×U , for open subset U ⊂ V as in §3.2, (4) holds
for the equivariant groups as well and there are cycle class maps:

(5) cld : CHd
G(X ×X)Q →W2dH

2d
G (X ×X,Q).

Lemma 4.1. The image of the diagonal cycle [∆X ] under the cycle class map
cld lies in the subspace

⊕

i

W2d−iH
2d−i
G (X)⊗WiH

i
G(X)

of W2dH
2d
G (X ×X,Q).

Proof. First we prove the assertion for the ordinary cohomology of non-compact
smooth varieties and next apply it to the product spaces X × U , which is
equipped with a free G-action and the quotient space XG.

Documenta Mathematica 14 (2009) 1–18



Chow–Künneth Decompositions 9

If X is a compact smooth variety then we notice that the weight 2d piece
coincides with the cohomology group H2d(X × X,Q) and by the Künneth
formula for products the statement follows in the usual cohomology. Suppose
X is not compact. Using (4), notice that the image of the diagonal cycle [∆X ]
lies in W2dH

2d(X × X,Q). Choose a smooth compactification X of X and
consider the commutative diagram:

⊕

i

H2d−i(X)⊗Hi(X)
≃→ H2d(X ×X,Q)

↓ ↓
⊕

i

W2d−iH
2d−i(X)⊗WiH

i(X)
k→ W2dH

2d(X ×X,Q).

The vertical arrows are surjective maps, defined by the localization. Hence
the map k is surjective. The injectivity follows because this is the Künneth
product map, restricted to the bottom weight cohomology. This shows that k
is an isomorphism.
In particular, the isomorphism k can be applied to the bottom weights of the
ordinary cohomology groups of the smooth variety X ×U , for any open subset
U ⊂ V of large complementary codimension and V is a G-representation. But
this is essentially the bottom weight of the equivariant cohomology group of X .
To conclude, we need to observe that the diagonal cycle [∆X ] is G-invariant.

�

Denote the decomposition of the G-invariant diagonal cycle

(6) ∆X = ⊕2d
i=0π

G
i ∈ W2dH

2d
G (X ×X,Q)

such that πGi lies in the space W2d−iH
2d−i
G (X)⊗WiH

i
G(X).

We defined the equivariant Chow motive of a smooth projective variety with a
G-action in §3.6. We extend the notion of orthogonal projectors on a smooth
variety equipped with a G-action, as follows.

Definition 4.2. Suppose X is a smooth variety equipped with a G-
action. The equivariant Chow motive (X,∆X)G of X is said to have an
equivariant Künneth decomposition if the classes πGi are algebraic, i.e.,
they have a lift in the equivariant Chow group CHd

G(X×X)Q. Furthermore, if

X admits a smooth compactification X ⊂ X such that the action of G extends
on X and the Künneth projectors extend to orthogonal projectors on X then
we say that X has an equivariant Chow–Künneth decomposition.

Remark 4.3. When G is a linear algebraic group, using the results of Sumihiro
[Su], Bierstone-Milman [Bi-Mi, Theorem 13.2], Reichstein-Youssin [Re-Yo],
one can always choose a smooth compactification X ⊃ X such that action
of G extends to X. Since any affine algebraic group is linear, we can always
find smooth G-equivariant compactifications in our set-up.

Suppose X is a smooth variety with a free G-action so that we can form the
quotient variety Y := X/G. Using [Ed-Gr], we have the identification of the

Documenta Mathematica 14 (2009) 1–18



10 J. N. Iyer, S. Müller–Stach

rational Chow groups
CH∗(Y )Q = CH∗G(X)Q

and
CH∗(Y × Y )Q = CH∗G(X ×X)Q.

Furthermore, these identifications respect the ring structure on the above ratio-
nal Chow groups. A similar identification also holds for the rational cohomology
groups. In view of this, we make the following definition.

Definition 4.4. Suppose X is a smooth variety with a G-action and G acts
freely on X. Denote the quotient space Y := X/G. The absolute Chow–
Künneth decomposition of Y is defined to be the equivariant Chow–Künneth
decomposition of X.

We can now extend Murre’s conjecture to smooth varieties with a G-action, as
follows.

Conjecture 4.5. Suppose X is a smooth variety with a G-action. Then X
has an equivariant Chow–Künneth decomposition.

In particular, if the action of G is trivial then we can extend Murre’s conjec-
ture to a (not necessarily compact) smooth variety, by taking only the bottom
weight cohomology WiH

i(X) of the ordinary cohomology. This is weaker than
obtaining projectors for the ordinary cohomology. We remark a projector π1

in the case of quasi–projective varieties has been constructed by Bloch and
Esnault [BE].

5. Families of curves

Our goal in this paper is to find an (explicit) absolute Chow–Künneth decom-
position for the universal families of curves over close approximations of the
moduli space of smooth curves of small genus. We begin with the following
situation which motivates the statements on universal curves.

Lemma 5.1. Any smooth hypersurface X ⊂ Pn of degree d has an absolute
Chow–Künneth decomposition. If L ⊂ X is any line, then the blow-up X ′ → X
also has a Chow–Künneth decomposition.

Proof. Notice that the cohomology of X is algebraic except in the middle di-
mension Hn−1(X,Q). By the Lefschetz Hyperplane section theorem, the alge-
braic cohomology H2j(X,Q), j 6= n−1, is generated by the hyperplane section
Hj . So the projectors are simply

πr :=
1

d
.Hn−1−r ×Hr ∈ CHn−1(X ×X)Q

for r 6= n− 1. We can now take πn−1 := ∆X −
∑

r,r 6=n−1 πr. This gives a com-
plete set of orthogonal projectors and a Chow–Künneth decomposition for X .
Since X ′ → X is a blow-up along a line, the new cohomology is again algebraic,
by the blow-up formula. Similarly we get a Chow–Künneth decomposition for
X ′ (see also [dA-Mü2, Lemma 2] for blow-ups). �
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The above lemma can be generalized to the following situation.

Lemma 5.2. Suppose Y is a smooth projective variety of dimension r over C
which has only algebraic cohomology groups Hi(Y ) for all 0 ≤ i ≤ m for some
m < r. Then we can construct orthogonal projectors

π0, π1, ..., πm, π2r−m, π2r−m+1, ..., π2r

in the usual Chow group CHr(Y × Y )Q, and where π2i acts as δi,p on H2p(Y )
and π2i−1 = 0. Moreover, if there is an affine complex algebraic group G
acting on Y , then we can lift the above projectors in the equivariant Chow
group CHr

G(Y × Y )Q as orthogonal projectors.

Proof. See also [dA-Mü1, dA-Mü2]. Let H2p(Y ) be generated by cohomology
classes of cycles C1, . . . , Cs and H2r−2p(Y ) be generated by cohomology classes
of cycles D1, . . . , Ds. We denote by M the intersection matrix with entries

Mij = Ci ·Dj ∈ Z.

After base change and passing to Q–coefficients we may assume that M is diag-
onal, since the cup–product H2p(Y,Q)⊗H2r−2p(Y,Q)→ Q is non–degenerate.
We define the projector π2p as

π2p =
s∑

k=1

1

Mkk
Dk × Ck.

It is easy to check that π2p ∗(Ck) = Dk. Define π2r−2p as the adjoint, i.e.,
transpose of π2p. Via the Gram–Schmidt process from linear algebra we can
successively make all projectors orthogonal. �

Suppose X ⊂ Pn is a smooth complete intersection of multidegree d1 ≤ d2 ≤
... ≤ ds. Let Fr(X) be the variety of r-dimensional planes contained in X . Let

δ := min{(r + 1)(n− r)−
(
d+r
r

)
, n− 2r − s}.

Corollary 5.3. If X is general then Fr(X) is a smooth projective variety of
dimension δ and it has an absolute Chow–Künneth decomposition.

Proof. The first assertion on the smoothness of the variety Fr(X) is well–
known, see [Al-Kl], [ELV], [De-Ma]. For the second assertion, notice that Fr(X)
is a subvariety of the Grassmanian G(r,Pn) and is the zero set of a section of
a vector bundle. Indeed, let S be the tautological bundle on G(r,Pn). Then
a section of ⊕si=1Sym

diH0(Pn,O(1)) induces a section of the vector bundle
⊕si=1Sym

diS∗ on G(r,Pn). Thus, Fr(X) is the zero locus of the section of the⊕s
i=1 Sym

diS∗ induced by the equations defining the complete intersection X .
A Lefschetz theorem is proved in [De-Ma, Theorem 3.4]:

Hi(G(r,Pn),Q)→ Hi(Fr(X),Q)

is bijective, for i ≤ δ − 1. We can apply Lemma 5.2 to get the orthogonal
projectors in all degrees except in the middle dimension. The projector cor-
responding to the middle dimension can be gotten by subtracting the sum of
these projectors from the diagonal class.
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�

Corollary 5.4. Suppose X ⊂ Pn is a smooth projective variety of dimension
d. Let r = 2d− n. Then we can construct orthogonal projectors

π0, π1, ..., πr, π2d−r, π2d−r+1, ..., π2d.

Proof. Barth [Ba] has proved a Lefschetz theorem for higher codimensional
subvarieties in projective spaces:

Hi(Pn,Q)→ Hi(X,Q)

is bijective if i ≤ 2d−n and is injective if i = 2d−n+1. The claim now follows
from Lemma 5.2. �

Remark 5.5. The above corollary says that if we can embed a variety X in a
low dimensional projective space then we get at least a partial set of orthogonal
projectors. A conjecture of Hartshorne’s says that any codimension two subva-
riety of Pn for n ≥ 6 is a complete intersection. This gives more examples for
subvarieties with several algebraic cohomology groups.

5.1. Chow–Künneth decomposition for the universal plane curve.
We want to find explicit equivariant Chow–Künneth projectors for the universal
plane curve of degree d. Let d ≥ 1 and consider the linear system P = |OP2(d)|
and the universal plane curve

C ⊂ P2 × P

↓
P.

Furthermore, we notice that the general linear group G := GL3(C) acts on P2

and hence acts on the projective space P = |OP2(d)|. This gives an action on
the product space P2×P and leaves the universal smooth plane curve C ⊂ P2×P
invariant under the G-action.

Lemma 5.6. The variety C has an absolute Chow–Künneth decomposition and
an absolute equivariant Chow–Künneth decomposition.

Proof. We observe that C ⊂ P2 × P is a smooth hypersurface of bi-degree
(d, 1) with variables in P2 whose coefficients are polynomial functions on P.
Notice that P2×P has a Chow–Künneth decomposition and Lefschetz theorems
hold for the embedding C ⊂ P2 × P, since O(d, 1) is very ample. Now we
can repeat the arguments from Lemma 5.2 to get an absolute Chow–Künneth
decomposition and absolute equivariant Chow–Künneth decomposition, for the
variety C. �
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5.2. Families of curves contained in homogeneous spaces. We notice
that when d = 3 in the previous subsection, the family of plane cubics restricted
to the loci of stable curves is a complete family of genus one stable curves. If
d ≥ 4, then the above family of plane curves is no longer a complete family
of genus g curves. Hence to find families which closely approximate over the
moduli spaces of stable curves, we need to look for curves embedded as complete
intersections in other simpler looking varieties. For this purpose, we look at
the curves embedded in special Fano varieties of small genus g ≤ 8, which was
studied by S. Mukai [Muk], [Muk2], [Muk3], [Muk5] and Ide-Mukai [IdMuk].
We recall the main result that we need.

Theorem 5.7. Suppose C is a generic curve of genus g ≤ 8. Then C is a
complete intersection in a smooth projective variety which has only algebraic
cohomology.

Proof. This is proved in [Muk], [Muk2], [Muk3], [IdMuk] and [Muk5]. The
below classification is for the generic curve.
When g ≤ 5 then it is well-known that the generic curve is a linear section of
a Grassmanian.
When g = 6 then a curve has finitely many g1

4 if and only if it is a complete
intersection of a Grassmanian and a smooth quadric , see [Muk3, Theorem 5.2].
When g = 7 then a curve is a linear section of a 10-dimensional spinor variety
X ⊂ P15 if and only if it is non-tetragonal, see [Muk3, Main theorem].
When g = 8 then it is classically known that the generic curve is a linear section
of the grassmanian G(2, 6) in its Plücker embedding.

�

Suppose P(g) is the parameter space of linear sections of a Grassmanian or of a
spinor variety, which depends on the genus, as in the proof of above Theorem
5.7. P(g) is a product of projective spaces on which an algebraic group G
(copies of PGLN) acts. Generic curves are isomorphic, if they are in the same
orbit of G.

Proposition 5.8. Suppose P(g) is as above, for g ≤ 8. Then there is a uni-
versal curve

Cg → P(g)

such that the classifying (rational) map P(g)→Mg is dominant. The smooth
projective variety Cg has an absolute Chow–Künneth decomposition and an ab-
solute equivariant Chow-Künneth decomposition for the natural G–action men-
tioned above.

Proof. The first assertion follows from Theorem 5.7. For the second assertion
notice that the universal curve, when g ≤ 8, is a complete intersection in P(g)×
V where V is either a Grassmanian or a spinor variety, which are homogeneous
varieties. In other words, Cg is a complete intersection in a space which has
only algebraic cohomology. Hence, by Lemma 5.2, Cg has orthogonal projectors
π0, π1, ..., πm, π2r−m, π2r−m+1, ..., π2r , where r := dimCg and m = dimCg − 1,
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14 J. N. Iyer, S. Müller–Stach

using Lefschetz hyplerplane section theorem. Taking πm+1 = ∆Cg−
∑
i6=m+1 πi,

gives an absolute Chow–Künneth decomposition for Cg. Now a homogeneous
variety looks like V = G/P where G is an (linear) algebraic group and P is a
parabolic subgroup. Hence the group G acts on the variety V . This induces
an action on the linear system P(g) and hence G acts on the ambient variety
P(g)×V and leaves the universal curve Cg invariant. Hence we can again apply
Lemma 5.2 to obtain absolute equivariant Chow–Künneth decomposition for
Cg. �

Consider the universal family of curves Cg → P(g) as obtained above, which
are equipped with an action of a linear algebraic group G.
Suppose there is an open subset Ug ⊂ P(g), with the universal family CUg → Ug,
on which G acts freely to form a good quotient family

Yg := CUg/G→ Sg := Ug/G.

Notice that the classifying map Sg →Mg is dominant.

Corollary 5.9. The smooth variety Yg has an absolute Chow–Künneth de-
composition.

Proof. Consider the localization sequence, for the embedding j : CUg × CUg →֒
Cg × Cg,

CHd
G(Cg × Cg)Q

j∗→ CHd
G(CUg × CUg )Q → 0.

Here d is the dimension of Cg. Then the map j∗ is an equivariant ring ho-
momorphism and transforms orthogonal projectors to orthogonal projectors.
Similarly there is a commuting diagram between the equivariant cohomologies:

⊕

i

H2d−i
G (Cg)⊗Hi

G(Cg) ≃→ H2d
G (Cg,Q)

↓ ↓⊕

i

W2d−iH
2d−i
G (CUg )⊗WiH

i
G(CUg )

≃→ W2dH
2d
G (CUg ,Q)

The vertical arrows are surjective maps mapping onto the bottom weights of
the equivariant cohomology groups. By Proposition 5.8, the variety Cg has an
absolute equivariant Chow–Künneth decomposition. Hence the images of the
equivariant Chow–Künneth projectors for the complete smooth variety Cg, un-
der the morphism j∗ give equivariant Chow–Künneth projectors for the smooth
variety CUg .
Using [Ed-Gr], we have the identification of the rational Chow groups

CH∗(Yg)Q = CH∗G(CUg )Q

and

CH∗(Yg × Yg)Q = CH∗G(CUg × CUg )Q.

Furthermore, this respects the ring structure on the above rational Chow
groups. A similar identification also holds for the rational cohomology groups.
This means that the equivariant Chow–Künneth projectors for the variety CUg
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correspond to a complete set of absolute Chow–Künneth projectors for the
quotient variety Yg. �

Remark 5.10. Since Mukai has a similar classification for the non-generic
curves in genus ≤ 8, one can obtain absolute equivariant Chow–Künneth de-
composition for these special families of smooth curves, by applying the proof
of Proposition 5.8. There is also a classification for K3-surfaces and in many
cases the generic K3-surface is obtained as a linear section of a Grassmanian
[Muk]. Hence we can apply the above results to families of K3-surfaces over
spaces which dominate the moduli space of K3-surfaces.
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Abstract. Let G be a connected reductive complex algebraic group.
This paper and its companion [GN] are devoted to the space Z of
meromorphic quasimaps from a curve into an affine spherical G-
variety X . The space Z may be thought of as an algebraic model
for the loop space of X . The theory we develop associates to X a
connected reductive complex algebraic subgroup Ȟ of the dual group
Ǧ. The construction of Ȟ is via Tannakian formalism: we identify
a certain tensor category Q(Z) of perverse sheaves on Z with the
category of finite-dimensional representations of Ȟ .

In this paper, we focus on horospherical varieties, a class of varieties
closely related to flag varieties. For an affine horospherical G-variety
Xhoro, the category Q(Zhoro) is equivalent to a category of vector
spaces graded by a lattice. Thus the associated subgroup Ȟhoro is
a torus. The case of horospherical varieties may be thought of as a
simple example, but it also plays a central role in the general theory.
To an arbitrary affine spherical G-variety X , one may associate a
horospherical variety Xhoro. Its associated subgroup Ȟhoro turns out
to be a maximal torus in the subgroup Ȟ associated to X .
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1. Introduction

Let G be a connected reductive complex algebraic group. In this paper and
its companion [GN], we study the space Z of meromorphic quasimaps from a
curve into an affine spherical G-varietyX . A G-varietyX is said to be spherical
if a Borel subgroup of G acts on X with a dense orbit. Examples include
flag varieties, symmetric spaces, and toric varieties. A meromorphic quasimap
consists of a point of the curve, a G-bundle on the curve, and a meromorphic
section of the associated X-bundle with a pole only at the distinguished point.
The space Z may be thought of as an algebraic model for the loop space of X .
The theory we develop identifies a certain tensor category Q(Z) of perverse
sheaves on Z with the category of finite-dimensional representations of a con-
nected reductive complex algebraic subgroup Ȟ of the dual group Ǧ. Our
method is to use Tannakian formalism: we endow Q(Z) with a tensor product,
a fiber functor to vector spaces, and the necessary compatibility constraints so
that it must be equivalent to the category of representations of such a group.
Under this equivalence, the fiber functor corresponds to the forgetful functor
which assigns to a representation of Ȟ its underlying vector space. In the pa-
per [GN], we define the category Q(Z), and endow it with a tensor product
and fiber functor. This paper provides a key technical result needed for the
construction of the fiber functor.
Horospherical G-varieties form a special class of G-varieties closely related to
flag varieties. A subgroup S ⊂ G is said to be horospherical if it contains
the unipotent radical of a Borel subgroup of G. A G-variety X is said to be
horospherical if for each point x ∈ X , its stabilizer Sx ⊂ G is horospherical.
When X is an affine horospherical G-variety, the subgroup Ȟ we associate to
it turns out to be a torus. To see this, we explicitly calculate the functor which
corresponds to the restriction of representations from Ǧ. Representations of Ǧ
naturally act on the category Q(Z) via the geometric Satake correspondence.
The restriction of representations is given by applying this action to the object
of Q(Z) corresponding to the trivial representation of Ȟ . The main result of
this paper describes this action in the horospherical case. The statement does
not mention Q(Z), but rather what is needed in [GN] where we define and
study Q(Z).
In the remainder of the introduction, we first describe a piece of the theory
of geometric Eisenstein series which the main result of this paper generalizes.
This may give the reader some context from which to approach the space Z
and our main result. We then define Z and state our main result. Finally, we
collect notation and preliminary results needed in what follows. Throughout
the introduction, we use the term space for objects which are strictly speaking
stacks and ind-stacks.

1.1. Background. One way to approach the results of this paper is to in-
terpret them as a generalization of a theorem of Braverman-Gaitsgory [BG,
Theorem 3.1.4] from the theory of geometric Eisenstein series. Let C be a
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smooth complete complex algebraic curve. The primary aim of the geomet-
ric Langlands program is to construct sheaves on the moduli space BunG of
G-bundles on C which are eigensheaves for Hecke operators. These are the
operators which result from modifying G-bundles at prescribed points of the
curve C. Roughly speaking, the theory of geometric Eisenstein series constructs
sheaves on BunG starting with local systems on the moduli space BunT , where
T is the universal Cartan of G. When the original local system is sufficiently
generic, the resulting sheaf is an eigensheaf for the Hecke operators.
At first glance, the link between BunT and BunG should be the moduli stack
BunB of B-bundles on C, where B ⊂ G is a Borel subgroup with unipotent rad-
ical U ⊂ B and reductive quotient T = B/U . Unfortunately, naively working
with the natural diagram

BunB → BunG
↓

BunT

leads to difficulties: the fibers of the horizontal map are not compact. The
eventual successful construction depends on V. Drinfeld’s relative compactifi-
cation of BunB along the fibers of the map to BunG. The starting point for
the compactification is the observation that BunB also classifies data

(PG ∈ BunG,PT ∈ BunT , σ : PT → PG
G
×G/U)

where σ is a T -equivariant bundle map to the PG-twist of G/U . From this
perspective, it is natural to be less restrictive and allow maps into the PG-twist
of the fundamental affine space

G/U = Spec(C[G]U ).

Here C[G] denotes the ring of regular functions on G, and C[G]U ⊂ C[G] the
(right) U -invariants. Following V. Drinfeld, we define the compactification
BunB to be that classifying quasimaps

(PG ∈ BunG,PT ∈ BunT , σ : PT → PG
G
×G/U)

where σ is a T -equivariant bundle map which factors

σ|C′ : PT |C′ → PG
G
×G/U |C′ → PG

G
×G/U |C′ ,

for some open curve C′ ⊂ C. Of course, the quasimaps that satisfy

σ : PT → PG
G
×G/U

form a subspace canonically isomorphic to BunB.
Since the Hecke operators on BunG do not lift to BunB, it is useful to introduce
a version of BunB on which they do. Following [BG, Section 4], we define the
space ∞BunB to be that classifying meromorphic quasimaps

(c ∈ C,PG ∈ BunG,PT ∈ BunT , σ : PT |C\c → PG
G
×G/U |C\c)
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where σ is a T -equivariant bundle map which factors

σ|C′ : PT |C′ → PG
G
×G/U |C′ → PG

G
×G/U |C′ ,

for some open curve C′ ⊂ C \ c. We call c ∈ C the pole point of the quasimap.
Given a meromorphic quasimap with G-bundle PG and pole point c ∈ C, we
may modify PG at c and obtain a new meromorphic quasimap. In this way,
the Hecke operators on BunG lift to ∞BunB.
Now the result we seek to generalize [BG, Theorem 3.1.4] describes how the
Hecke operators act on a distinguished object of the category P(∞BunB) of
perverse sheaves with C-coefficients on ∞BunB . Let ΛG = Hom(C×, T ) be the
coweight lattice, and let Λ+

G ⊂ Λ be the semigroup of dominant coweights of

G. For λ ∈ Λ+
G, we have the Hecke operator

Hλ
G : P(∞BunB)→ P(∞BunB)

given by convolving with the simple spherical modification of coweight λ. (See
[BG, Section 4] or Section 5 below for more details.) For µ ∈ ΛG, we have the

locally closed subspace ∞Bun
µ

B ⊂ ∞BunB that classifies data for which the
map

PT (µ · c)|C\c σ→ PG
G
×G/U |C\c

extends to a holomorphic map

PT (µ · c) σ→ PG
G
×G/U

which factors

PT (µ · c) σ→ PG
G
×G/U → PG

G
×G/U.

We write ∞Bun
≤µ
B ⊂ ∞BunB for the closure of ∞Bun

µ

B ⊂ ∞BunB, and

IC≤µ
∞BunB

∈ P(∞BunB)

for the intersection cohomology sheaf of ∞Bun
≤µ
B ⊂ ∞BunB.

Theorem 1.1.1. [BG, Theorem 3.1.4] For λ ∈ Λ+
G, there is a canonical iso-

morphism

Hλ
G(IC≤0

∞BunB
) ≃

∑

µ∈ΛT

IC≤µ
∞BunB

⊗HomŤ (V µ
Ť
, V λ
Ǧ

)

Here we write V λ
Ǧ

for the irreducible representation of the dual group Ǧ with

highest weight λ ∈ Λ+
G, and V µ

Ť
for the irreducible representation of the dual

torus Ť of weight µ ∈ ΛG.
In the same paper of Braverman-Gaitsgory [BG, Section 4], there is a general-
ization [BG, Theorem 4.1.5] of this theorem from the Borel subgroup B ⊂ G
to other parabolic subgroups P ⊂ G. We recall and use this generalization in
Section 5 below. It is the starting point for the results of this paper.
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1.2. Main result. The main result of this paper is a version of [BG, Theorem
3.1.4] for X an arbitrary affine horospherical G-variety with a dense G-orbit

X̊ ⊂ X . For any point in the dense G-orbit X̊ ⊂ X , we refer to its stabilizer
S ⊂ G as the generic stabilizer of X . All such subgroups are conjugate to each
other. By choosing such a point, we obtain an identification X̊ ≃ G/S.
To state our main theorem, we first introduce some more notation. Satz 2.1
of [Kn] states that the normalizer of a horospherical subgroup S ⊂ G is a
parabolic subgroup P ⊂ G with the same derived group [P, P ] = [S, S]. We
write A for the quotient torus P/S, and ΛA = Hom(C×, A) for its coweight
lattice. Similarly, for the identity component S0 ⊂ S, we write A0 for the
quotient torus P/S0, and ΛA0 = Hom(C×, A0) for its coweight lattice. The
natural maps T → A0 → A induce maps of coweight lattices

ΛT
q→ ΛA0

i→ ΛA,

where q is a surjection, and i is an injection. For a conjugate of S, the associated
tori are canonically isomorphic to those associated to S. Thus when S is the
generic stabilizer of a horospherical G-variety X , the above tori, lattices and
maps are canonically associated to X .
For an affine horospherical G-variety X with dense G-orbit X̊ ⊂ X , we define
the space Z to be that classifying mermorphic quasimaps into X . Such a
quasimap consists of data

(c ∈ C,PG ∈ BunG, σ : C \ c→ PG
G
×X |C\c)

where σ is a section which factors

σ|C′ : C′ → PG
G
×X̊|C′ → PG

G
×X |C′ ,

for some open curve C′ ⊂ C \ c.
Given a meromorphic quasimap intoX with G-bundle PG and pole point c ∈ C,
we may modify PG at c and obtain a new meromorphic quasimap. But in this
context the resulting Hecke operators on Z do not in general preserve the
category of perverse sheaves. Instead, we must consider the bounded derived
category Sh(Z) of sheaves of C-modules on Z. For λ ∈ Λ+

G, we have the Hecke
operator

Hλ
G : Sh(Z)→ Sh(Z)

given by convolving with the simple spherical modification of coweight λ. (See
Section 5 below for more details.) For κ ∈ ΛA0 , we have a locally closed
subspace Zκ ⊂ Z consisting of meromorphic quasimaps that factor

σ : C \ c→ PG
G
×X̊ |C\c → PG

G
×X |C\c

and have a singularity of type κ at c ∈ C. (See Section 3.5 below for more
details.) We write Z≤κ ⊂ Z for the closure of Zκ ⊂ Z, and

IC≤κZ ∈ Sh(Z)

for its intersection cohomology sheaf.
Our main result is the following.
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Theorem 1.2.1. For λ ∈ Λ+
G, there is an isomorphism

Hλ
G(IC≤0

Z ) ≃
∑

κ∈ΛA0

∑

µ∈ΛT ,q(µ)=κ

IC≤κZ ⊗HomŤ (V µ
Ť
, V λ
Ǧ

)[〈2ρ̌M , µ〉].

Here the torus A0 and its coweight lattice ΛA0 are those associated to the
generic stabilizer S ⊂ G. We write M for the Levi quotient of the normalizer
P ⊂ G of the generic stabilizer S ⊂ G, and 2ρ̌M for the sum of the positive
roots of M .
In the context of the companion paper [GN], the theorem translates into
the following fundamental statement. The tensor category Q(Z) associated
to X is the category of semisimple perverse sheaves with simple summands

IC≤κZ , for κ ∈ ΛA0 , and the dual subgroup Ȟ associated to X is the subtorus

Spec C[ΛA0 ] ⊂ Ť .

1.3. Notation. Throughout this paper, let G be a connected reductive com-
plex algebraic group, let B ⊂ G be a Borel subgroup with unipotent radical
U(B), and let T = B/U(B) be the abstract Cartan.
Let Λ̌G denote the weight lattice Hom(T,C×), and Λ̌+

G ⊂ Λ̌G the semigroup of

dominant weights. For λ ∈ Λ̌+
G, we write V λG for the irreducible representation

of G of highest weight λ.
Let ΛG denote the coweight lattice Hom(C×, T ), and Λ+

G ⊂ ΛG the semigroup of

dominant coweights. For λ ∈ Λ+
G, let V λ

Ǧ
denote the irreducible representation

of the dual group Ǧ of highest weight λ.
Let Λpos

G ⊂ ΛG denote the semigroup of coweights in ΛG which are non-negative

on Λ̌+
G, and let Rpos

G ⊂ Λpos
G denote the semigroup of positive coroots.

Let P ⊂ G be a parabolic subgroup with unipotent radical U(P ), and let M
be the Levi factor P/U(P ).
We have the natural map

ř : Λ̌M/[M,M ] → Λ̌G

of weights, and the dual map

r : ΛG → ΛM/[M,M ]

of coweights.
Let Λ̌+

G,P ⊂ Λ̌M/[M,M ] denote the inverse image ř−1(Λ̌+
G). Let Λpos

G,P ⊂
ΛM/[M,M ] denote the semigroup of coweights in ΛM/[M,M ] which are non-

negative on Λ̌+
G,P . Let Rpos

G,P ⊂ Λpos
G,P denote the image r(Rpos

G ).

Let WM denote the Weyl group of M , and let WM Λ̌+
G ⊂ Λ̌G denote the union

of the translates of Λ̌+
G by WM . Let Λ̃pos

G,P ⊂ Λ+
M denote the semigroup of

dominant coweights of M which are nonnegative on WM Λ̌+
G.

Finally, let 〈·, ·〉 : Λ̌G × ΛG → Z denote the natural pairing, and let ρ̌M ∈ Λ̌G
denote half the sum of the positive roots of M .
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1.4. Bundles and Hecke correspondences. Let C be a smooth complete
complex algebraic curve.
For a connected complex algebraic group H , let BunH be the moduli stack of
H-bundles on C. Objects of BunH will be denoted by PH .
Let HH be the Hecke ind-stack that classifies data

(c ∈ C,P1
H ,P

2
H ∈ BunH , α : P1

H |C\c
∼→ P2

H |C\c)
where α is an isomorphism of H-bundles. We have the maps

BunH
h←H← HH

h→H→ BunH

defined by

h←H (c,P1
H ,P

2
H , α) = P1

H h→H (c,P1
H ,P

2
H , α) = P2

H ,

and the map

π : HH → C

defined by

π(c,P1
H ,P

2
H , α) = c.

It is useful to have another description of the Hecke ind-stack HH for which we
introduce some more notation. Let O be the ring of formal power series C[[t]],
let K be the field of formal Laurent series C((t)), and let D be the formal disk
Spec(O). For a point c ∈ C, let Oc be the completed local ring of C at c,
and let Dc be the formal disk Spec(Oc). Let Aut(O) be the group-scheme of
automorphisms of the ring O. Let H(O) be the group of O-valued points of H ,
and let H(K) be the group of K-valued points of H . Let GrH be the affine
Grassmannian of H . It is an ind-scheme whose set of C-points is the quotient
H(K)/H(O).
Now consider the (H(O) ⋊ Aut(O))-torsor

̂BunH ×C → BunH ×C
that classifies data

(c ∈ C,PH ∈ BunH , β : D ×H ∼→ PH |Dc , γ : D
∼→ Dc)

where β is an isomorphism of H-bundles, and γ is an identification of formal
disks. We have an identification

HH ≃ ̂BunH ×C
(H(O)⋊Aut(O))

× GrH

such that the projection h→H corresponds to the obvious projection from the
twisted product to BunH .
For H reductive, the (H(O) ⋊ Aut(O))-orbits GrλH ⊂ GrH are indexed by
λ ∈ Λ+

H . For λ ∈ Λ+
H , we write Hλ

H ⊂ HH for the substack

Hλ
H ≃ ̂BunH ×C

(H(O)⋊Aut(O))
× GrλH .
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For a parabolic subgroup P ⊂ H , the connected components SP,θ ⊂ GrP are
indexed by θ ∈ ΛP /Λ[P,P ]sc, where [P, P ]sc denotes the simply connected cover
of [P, P ]. For θ ∈ ΛP /Λ[P,P ]sc , we write SP,θ ⊂ HP for the ind-substack

SP,θ ≃ ̂BunP ×C
(P (O)⋊Aut(O))

× SP,θ.

For θ ∈ ΛP /Λ[P,P ]sc , and λ ∈ Λ+
H , we write SλP,θ ⊂ HP for the ind-substack

SλP,θ ≃ ̂BunP ×C
(P (O)⋊Aut(O))

× SλP,θ

where SλP,θ denotes the intersection SP,θ ∩GrλH .

For any ind-stack Z over BunH ×C, we have the (H(O) ⋊ Aut(O))-torsor

Ẑ→ Z

obtained by pulling back the (H(O) ⋊ Aut(O))-torsor

̂BunH ×C → BunH ×C.
We also have the Cartesian diagram

HH ×
BunH ×C

Z
h→H→ Z

↓ ↓
HH

h→H→ BunH

and an identification

HH ×
BunH ×C

Z ≃ Ẑ
(H(O)⋊Aut(O))

× GrH

such that the projection h→H corresponds to the obvious projection from the
twisted product to Z. For F ∈ Sh(Z), and P ∈ P(H(O)⋊Aut(O))(GrH), we may
form the twisted product

(F⊠̃P)r ∈ Sh(HH ×
BunH ×C

Z).

with respect to the map h→H . In particular, for λ ∈ Λ+
H , we may take P to

be the intersection cohomology sheaf Aλ
G of the closure Gr

λ

H ⊂ GrH of the

(H(O) ⋊ Aut(O))-orbit GrλH ⊂ GrH .

2. Affine horospherical G-varieties

A subgroup S ⊂ G is said to be horospherical if it contains the unipotent
radical of a Borel subgroup of G. A G-variety X is said to be horospherical if
for each point x ∈ X , its stabilizer Sx ⊂ G is horospherical. A G-variety X
is said to be spherical if a Borel subgroup of G acts on X with a dense orbit.
Note that a horospherical G-variety contains a dense G-orbit if and only if it
is spherical.
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Let X be an affine G-variety. As a representation of G, the ring of regular
functions C[X ] decomposes into isotypic components

C[X ] ≃
∑

λ∈Λ̌+
G

C[X ]λ.

We say that C[X ] is graded if

C[X ]λC[X ]µ ⊂ C[X ]λ+µ,

for all λ, µ ∈ Λ̌+
G. We say that C[X ] is simple if the irreducible representation

V λ of highest weight λ occurs in C[X ]λ with multiplicity 0 or 1, for all λ ∈ Λ̌+
G.

Proposition 2.0.1. Let X be an affine G-variety.
(1) [Pop, Proposition 8, (3)] X is horospherical if and only if C[X ] is graded.
(2) [Pop, Theorem 1] X is spherical if and only if C[X ] is simple.

We see by the proposition that affine horospherical G-varieties containing a
dense G-orbit are classified by finitely-generated subsemigroups of Λ̌+

G. To
such a variety X , one associates the subsemigroup

Λ̌+
X ⊂ Λ̌+

G

of dominant weights λ with dim C[X ]λ > 0.

2.1. Structure of generic stabilizer.

Theorem 2.1.1. [Kn, Satz 2.2] If X is an irreducible horospherical G-variety,
then there is an open G-invariant subset W ⊂ X, and a G-equivariant isomor-
phism W ≃ G/S × Y , where S ⊂ G is a horospherical subgroup, and Y is a
variety on which G acts trivially.

Note that for any two such open subsets W ⊂ X and isomorphisms W ≃
G/S × Y , the subgroups S ⊂ G are conjugate. We refer to such a subgroup
S ⊂ G as the generic stabilizer of X .

Lemma 2.1.2. [Kn, Satz 2.1] If S ⊂ G is a horospherical subgroup, then its
normalizer is a parabolic subgroup P ⊂ G with the same derived group [P, P ] =
[S, S] and unipotent radical U(P ) = U(S).

Note that the identity component S0 ⊂ S is also horospherical with the same
derived group [S0, S0] = [S, S] and unipotent radical U(S0) = U(S).
Let S ⊂ G be a horospherical subgroup with identity component S0 ⊂ S, and
normalizer P ⊂ G. We write A for the quotient torus P/S, and ΛA for its
coweight lattice Hom(C×, A). Similarly, we write A0 for the quotient torus
P/S0, and ΛA0 for its coweight lattice Hom(C×, A0). The natural maps

T → A0 → A

induce maps of coweight lattices

ΛT
q→ ΛA0

i→ ΛA,

where q is a surjection, and i is an injection. For a conjugate of S, the associated
tori, lattices, and maps are canonically isomorphic to those associated to S.
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Thus when S is the generic stabilizer of a horospherical G-variety X , the tori,
lattices and maps are canonically associated to X .
We shall need the following finer description of which subgroups S ⊂ G may
appear as the generic stabilizer of an affine horospherical G-variety. To state it,
we introduce some more notation used throughout the paper. For a horospher-
ical subgroup S ⊂ G with identity component S0 ⊂ S, and normalizer P ⊂ G,
let M be the Levi quotient P/U(P ), let MS be the Levi quotient S/U(S), and
let M0

S be the identity component of MS . The natural maps

S0 → S → P

induce isomorphisms of derived groups

[M0
S,M

0
S ]
∼→ [MS ,MS]

∼→ [M,M ].

We write ΛM/[M,M ] for the coweight lattice of the torus M/[M,M ], and

ΛM0
S/[MS ,MS ] for the coweight lattice of the torus M0

S/[MS ,MS]. The natu-
ral maps

M0
S/[MS,MS ]→M/[M,M ]→ A0

induce a short exact sequence of coweight lattices

0→ ΛM0
S/[MS ,MS ] → ΛM/[M,M ] → ΛA0 → 0.

Proposition 2.1.3. Let S ⊂ G be a horospherical subgroup. Then S is the
generic stabilizer of an affine horospherical G-variety containing a dense G-
orbit if and only if

ΛM0
S/[MS ,MS ] ∩ Λpos

G,P = 〈0〉.

Proof. The proof of the proposition relies on the following lemma. Let V̌ be a
finite-dimensional real vector space, and let V̌ + be an open set in V̌ which is
preserved by the action of R>0. Let V be the dual of V̌ , and let V pos be the
closed cone of covectors in V that are nonnegative on all vectors in V̌ +. For a
linear subspace W̌ ⊂ V̌ , we write W̌⊥ ⊂ V for its orthogonal.

Lemma 2.1.4. The map W̌ 7→ W̌⊥ provides a bijection from the set of all
linear subspaces W̌ ⊂ V̌ such that W̌ ∩ V̌ + 6= ∅ to the set of all linear subspaces
W ⊂ V such that W ∩ V pos = 〈0〉.
Proof. If W̌ ∩V̌ + 6= ∅, then clearly W̌⊥∩V pos = 〈0〉. Conversely, if W ∩V pos =
〈0〉, then since V̌ + is open, there is a hyperplane H ⊂ V such that W ⊂ H , and
H∩V pos = 〈0〉. Thus H⊥ ⊂W⊥, and H⊥∩ V̌ + 6= ∅, and so W⊥∩ V̌ + 6= ∅. �

Now suppose X is an affine horospherical G-variety with an open G-orbit and
generic stabilizer S ⊂ G with normalizer P ⊂ G. Then we have Λ̌+

X ⊂ Λ̌+
G,P ,

since otherwise [S, S] would be smaller. We also have that Λ̌+
X intersects the

interior of Λ̌+
G,P , since otherwise [S, S] would be larger. Applying Lemma 2.1.4,

we conclude
ΛM0

S/[MS ,MS ] ∩ Λpos
G,P = 〈0〉.

Conversely, suppose S ⊂ G is a horospherical subgroup with normalizer P ⊂ G.
We define X to be the spectrum of the ring C[X ] of (right) S-invariants in the
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ring of regular functions C[G]. Then C[X ] is finitely-generated, since S contains
the unipotent radical of a Borel subgroup of G. We have Λ̌+

X ⊂ Λ̌+
G,P , since

otherwise [S, S] would be smaller. Suppose

ΛM0
S/[MS ,MS ] ∩ Λpos

G,P = 〈0〉.

Applying Lemma 2.1.4, we conclude that Λ̌+
X intersects the interior of Λ̌+

G,P .

Therefore S/[S, S] consists of exactly those elements of P/[P, P ] annhilated by
Λ̌+
X , and so S is the generic stabilizer of X . �

2.2. Canonical affine closure. Let S ⊂ G be the generic stabilizer of an
affine horospherical G-variety X containing a dense G-orbit. Let C[G] be the
ring of regular functions onG, and let C[G]S ⊂ C[G] be the (right) S-invariants.
We call the affine variety

G/S = Spec(C[G]S)

the canonical affine closure of G/U . We have the natural map

G/S → X

corresponding to the restriction map

C[X ]→ C[G/S] ≃ C[G]S .

Since S is horospherical, the ring C[G]S is simple and graded, and so the affine

variety G/S is spherical and horospherical.
Although we do not use the following, it clarifies the relation between X and
the canonical affine closure G/S.

Proposition 2.2.1. Let X be an affine horospherical G-variety containing a
dense G-orbit and generic stabilizer S ⊂ G. The semigroup Λ̌+

G/S
⊂ Λ̌G is the

intersection of the dominant weights Λ̌+
G ⊂ Λ̌G with the group generated by the

semigroup Λ̌+
X ⊂ Λ̌G.

Proof. Let P ⊂ G be the normalizer of S ⊂ G. The intersection of Λ̌+
G and the

group generated by Λ̌+
X consists of exactly those weights in Λ̌+

G,P that annhilate

S/[S, S]. �

3. Ind-stacks

As usual, let C be a smooth complete complex algebraic curve.

3.1. Labellings. Fix a pair (Λ,Λpos) of a lattice Λ and a semigroup Λpos ⊂ Λ.
We shall apply the following to the pair (ΛM/[M,M ],Λ

pos
G,P ).

For θpos ∈ Λpos, we write U(θpos) for a decomposition

θpos =
∑

m

nmθ
pos
m

where θpos
m ∈ Λpos \ {0} are pairwise distinct and nm are positive integers.
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For θpos ∈ Λpos, and a decomposition U(θpos), we write CU(θpos) for the partially

symmetrized power
∏
mC

(nm) of the curve C. We write C
U(θpos)
0 ⊂ CU(θpos)

for the complement of the diagonal divisor.
For Θ a pair (θ,U(θpos)) consisting of θ ∈ Λ, and U(θpos) a decomposition of
θpos ∈ Λpos, we write CΘ for the product C ×CU(θpos). We write CΘ

0 ⊂ CΘ for
the complement of the diagonal divisor. Although CΘ is independent of θ, it
is notationally convenient to denote it as we do.

3.2. Ind-stack associated to parabolic subgroup. Fix a parabolic sub-
group P ⊂ G, and let M be its Levi quotient P/U(P ). For our application, P
will be the normalizer of the generic stabilizer S ⊂ G of an irreducible affine
horospherical G-variety.
Let ∞BunP be the ind-stack that classifies data

(c ∈ C,PG ∈ BunG,PM/[M,M ] ∈ BunM/[M,M ],

σ : PM/[M,M ]|C\c → PG
G
×G/[P, P ]|C\c)

where σ is an M/[M,M ]-equivariant section which factors

σ|C′ : PM/[M,M ]|C′ → PG
G
×G/[P, P ]|C′ → PG

G
×G/[P, P ]|C′

for some open curve C′ ⊂ C \ c.

3.2.1. Stratification. Let Θ be a pair (θ,U(θpos)), with θ ∈ ΛM/[M,M ], and
θpos ∈ Λpos

G,P . We recall that we have a locally closed embedding

jΘ : BunP ×CΘ
0 → ∞BunP

defined by

jΘ(PP , (c,
∑

m,n

θpos
m · cm,n)) = (c,PP

P
×G,PP

P
× [P, P ](−θ · c−

∑

m,n

θpos
m · cm,n), σ)

where σ is the natural map

PP
P
× [P, P ](−θ · c−

∑

m,n

θpos
m · cm,n)|C\c → PP

P
×G

G
×G/[P, P ]|C\c

induced by the inclusion

PP
P
× P/[P, P ] ⊂ PP

P
×G/[P, P ] ≃ PP

P
×G

G
×G/[P, P ].

The following is an ind-version of [BG, Propositions 6.1.2 & 6.1.3], or [BFGM,
Proposition 1.5], and we leave the proof to the reader.

Proposition 3.2.2. Let Θ be a pair (θ,U(θpos)), with θ ∈ ΛM/[M,M ], and
θpos ∈ Λpos

G,P .

Every closed point of ∞BunP belongs to the image of a unique jΘ.
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For Θ a pair (θ,U(θpos)), with θ ∈ ΛM/[M,M ], and θpos ∈ Λpos
G,P , we write

∞Bun
Θ

P ⊂ ∞BunP for the image of jΘ, and ∞Bun
≤Θ

P ⊂ ∞BunP for the closure

of ∞Bun
Θ

P ⊂ ∞BunP .

For Θ a pair (θ,U(0)), with θ ∈ ΛM/[M,M ], the substack ∞Bun
Θ

P ⊂ ∞BunP
classifies data (c,PG,PM/[M,M ], σ) for which the map

PM/[M,M ](θ · c)|C\c σ→ PG
G
×G/[P, P ]|C\c

extends to a holomorphic map

PM/[M,M ](θ · c) σ→ PG
G
×G/[P, P ]

which factors

PM/[M,M ](θ · c) σ→ PG
G
×G/[P, P ]→ PG

G
×G/[P, P ].

In this case, we write jθ in place of jΘ, ∞Bun
θ

P in place of ∞Bun
Θ

P , and∞Bun
≤θ
P

in place of ∞Bun
≤Θ

P . For example, ∞Bun
≤0

P ⊂ ∞BunP is the closure of the
canonical embedding

j0 : BunP ×C → ∞BunP .

3.3. ˜Ind-stack associated to parabolic subgroup. Fix a parabolic sub-
group P ⊂ G, and let M be its Levi quotient P/U(P ). As usual, for our
application, P will be the normalizer of the generic stabilizer S ⊂ G of an
irreducible affine horospherical G-variety.

Let ∞B̃unP be the ind-stack that classifies data

(c ∈ C,PG ∈ BunG,PM ∈ BunM , σ : PM |C\c → PG
G
×G/U(P )|C\c)

where σ is an M -equivariant section which factors

σ|C′ : PM |C′ → PG
G
×G/U(P )|C′ → PG

G
×G/U(P )|C′

for some open curve C′ ⊂ C \ c.

3.3.1. Stratification. For θpos ∈ Λpos
G,P , we write Ũ(θpos) for a collection of (not

necessarily distinct) elements θ̃pos
m ∈ Λ̃pos

G,P \ {0} such that

θpos =
∑

m

r(θ̃pos
m ).

We write r(Ũ(θpos)) for the decomposition such a collection defines.

Let Θ̃ be a pair (θ̃, Ũ(θpos)) with θ̃ ∈ Λ+
M , and θpos ∈ Λpos

G,P , and let Θ be the

associated pair (r(θ̃), r(Ũ(θpos))). We define the Hecke ind-stack

HΘ̃
M,0 → CΘ

0
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to be that with fiber over (c, cU(θpos)) ∈ CΘ
0 , where cU(θpos) =

∑
m r(θ̃

pos
m ) · cm,

the fiber product

Hθ̃
M |c ×

BunM

∏

BunM

H
θ̃pos

m

M |cm .

The following is an ind-version of [BG, Proposition 6.2.5], or [BFGM, Propo-
sition 1.9], and we leave the proof to the reader.

Proposition 3.3.2. Let Θ̃ be a pair (θ̃, Ũ(θpos)) with θ̃ ∈ Λ+
M , and θpos ∈ Λpos

G,P .
On the level of reduced ind-stacks, there is a locally closed embedding

jΘ̃ : BunP ×
BunM

HΘ̃
M,0 → ∞B̃unP .

Every closed point of ∞B̃unP belongs to the image of a unique jΘ̃.

For Θ̃ a pair (θ̃, Ũ(θpos)), with θ̃ ∈ Λ+
M , and θpos ∈ Λpos

G,P , we write ∞B̃un
Θ̃

P ⊂

∞B̃unP for the image of jΘ̃, and ∞B̃un
≤Θ̃

P ⊂ ∞B̃unP for the closure of

∞B̃un
Θ̃

P ⊂ ∞B̃unP .

For Θ̃ a pair (θ̃, Ũ(0)), with θ̃ ∈ Λ+
M , we write jθ̃ in place of jΘ̃, ∞B̃un

θ̃

P in

place of ∞B̃un
Θ̃

P , and ∞B̃un
≤θ̃

P in place of ∞B̃un
≤Θ̃

P For example, ∞B̃un
≤0

P is
the closure of the canonical embedding

j0̃ : BunP ×C → ∞B̃unP .

3.4. Ind-stack associated to generic stabilizer. Let X be an irreducible
affine horospherical G-variety with generic stabilizer S ⊂ G. Recall that the
normalizer of S is a parabolic subgroup P ⊂ G with the same derived group
[P, P ] = [S, S] and unipotent radical U(P ) = U(S). Let M be the Levi quotient
P/U(P ), and let MS be the Levi quotient S/U(S).
Let Zcan be the ind-stack that classifies data

(c ∈ C,PG ∈ BunG,PMS/[MS ,MS ] ∈ BunMS/[MS ,MS ],

σ : PMS/[MS ,MS ]|C\c → PG
G
×G/[S, S]|C\c)

where σ is an MS/[MS,MS ]-equivariant section which factors

σ|C′ : PMS/[MS ,MS ]|C′ → PG
G
×G/[S, S]|C′ → PG

G
×G/[S, S]|C′

for some open curve C′ ⊂ C \ c.
The following is immediate from the definitions.

Proposition 3.4.1. The diagram

Zcan → ∞BunP
↓ ↓

BunMS/[MS ,MS ] → BunM/[M,M ]

is Cartesian.
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3.4.2. Stratification. Let Θ be a pair (θ,U(θpos)), with θ ∈ ΛM/[M,M ], and
θpos ∈ Λpos

G,P .

We write Z
Θ

can ⊂ Zcan for the substack which completes the Cartesian diagram

Z
Θ

can → ∞Bun
Θ

P

↓ ↓
BunMS/[MS ,MS] → BunM/[M,M ],

and Z
≤Θ

can ⊂ Zcan for the closure of Z
Θ

can ⊂ Zcan.

For Θ a pair (θ,U(0)), with θ ∈ ΛM/[M,M ], we write Z
θ

can in place of Z
Θ

can,

and Z
≤θ
can in place of Z

≤Θ

can . For example, Z
≤0

can is the closure of the canonical
embedding

BunS ×C ⊂ Zcan.

3.5. Naive ind-stack associated to X. Let X be an affine horospherical

G-variety with dense G-orbit X̊ ⊂ X and generic stabilizer S ⊂ G.
Let Z be the ind-stack that classifies data

(c ∈ C,PG ∈ BunG, σ : C \ c→ PG
G
×X |C\c)

where σ is a section which factors

σ|C′ : C′ → PG
G
×X̊|C′ → PG

G
×X |C′

for some open curve C′ ⊂ C \ c.
For the canonical affine closure G/S, we write Zcan for the corresponding ind-
stack.
We call the ind-stack Z naive, since there is no auxilliary bundle in its definition:
it classifies honest sections. Let ⋆Z be the ind-stack that classifies data

(c ∈ C,PG ∈ BunG,PM/MS
∈ BunM/MS

, σ : PM/MS
|C\c → PG

G
×X |C\c)

where σ is an M/MS-equivariant section which factors

σ|C′ : PM/MS
|C′ → PG

G
×X̊ |C′ → PG

G
×X |C′

for some open curve C′ ⊂ C\c. Here as usual, we write M for the Levi quotient
P/U(P ) of the normalizer P ⊂ G of the generic stabilizer S ⊂ G, and MS for
the Levi quotient S/U(S).

For the canonical affine closure G/S, we write ⋆Zcan for the corresponding
ind-stack.
The following analogue of Proposition 3.4.1 is immediate from the definitions.

Proposition 3.5.1. The diagram

Z → ⋆Z
↓ ↓

Bun〈1〉 → BunM/MS

is Cartesian.
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3.5.2. Stratification. We shall content ourselves here with defining the sub-
stacks of the naive ind-stack Z which appear in our main theorem. (See [GN]
for a different perspective involving a completely local definition.) Recall that
we write A for the quotient torus P/S, and ΛA for its coweight lattice. Sim-
ilarly, for the identity component S0 ⊂ S, we write A0 for the quotient torus
P/S0, and ΛA0 for its coweight lattice. The natural map A0 → A provides an
inclusion of coweight lattices ΛA0 → ΛA. For κ ∈ ΛA, we shall define a closed
substack Z≤κ ⊂ Z. When κ ∈ ΛA0 , the closed substack Z≤κ ⊂ Z appears in
our main theorem.
For κ ∈ ΛA, let ⋆Zκ ⊂ ⋆Z be the locally closed substack that classifies data
(c,PG,PM/MS

, σ) for which the natural map

PM/MS
(κ · c)|C\c σ→ PG

G
×X |C\c

extends to a holomorphic map

PM/MS
(κ · c) σ→ PG

G
×X

which factors

PM/MS
(κ · c) σ→ PG

G
×X̊ → PG

G
×X.

We write ⋆Z≤κ ⊂ ⋆Z for the closure of ⋆Zκ ⊂ ⋆Z.
For κ ∈ ΛA, let Zκ ⊂ Z be the locally closed substack completing the Cartesian
diagram

Zκ → ⋆Zκ

↓ ↓
Bun〈1〉 → BunM/MS

.

We write Z≤κ ⊂ Z for the closure of Zκ ⊂ Z.

4. Maps

4.1. The map r : ∞B̃unP → ∞BunP . Let Θ be a pair (θ,U(θpos)), with θ ∈
ΛM/[M,M ], and θpos ∈ Λpos

G,P . and U(θpos) a decomposition θpos =
∑

m nmθ
pos
m .

Let ∞B̃un
Θ

P ⊂ ∞B̃unP be the inverse image of ∞Bun
Θ

P ⊂ ∞BunP under the
natural map

r : ∞B̃unP → ∞BunP .

We would like to describe the fibers of the restriction of r to the substack

∞B̃un
Θ

P ⊂ ∞B̃unP .
First, we define the Hecke ind-substack

H
♭(θ)
M ⊂ HM

to be the union of the spherical Hecke substacks

H
µ
M ⊂ HM ,

for µ ∈ Λ+
M such that r(µ) = θ.
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Second, if there exists µ̃pos ∈ Λ̃pos
G,P such that r(µ̃pos) = θpos, we define the

Hecke substack
H
♭(θpos)
M ⊂ HM

to be the union of the spherical Hecke substacks

H
µ̃pos

M ⊂ HM ,

for µ̃pos ∈ Λ̃pos
G,P such that r(µ̃pos) = θpos

m .
Finally, we define the Hecke ind-stack

H
♭(Θ)
M,0 → CΘ

0

to be that with fiber over (c, cU(θpos)) ∈ CΘ
0 , where cU(θpos) =

∑
m,n θ

pos
m · cm,n,

the fiber product

H
♭(θ)
M |c ×

BunM

∏

BunM

H
♭(θpos

m )
M |cm,n .

The following is an ind-version of [BG, Proposition 6.2.5], or [BFGM, Proposi-
tion 1.9], and we leave the proof to the reader. It is also immediately implied
by Proposition 3.3.2.

Proposition 4.1.1. Let Θ be a pair (θ,U(θpos)), with θ ∈ ΛM/[M,M ], θ
pos ∈

Λpos
G,P , and U(θpos) a decomposition θpos =

∑
m nmθ

pos
m .

If for all m there exists µ̃pos
m ∈ Λ̃pos

G,P such that r(µ̃pos
m ) = θpos

m , then on the level
of reduced stacks there is a canonical isomorphism

∞B̃un
Θ

P ≃ BunP ×
BunM

H
♭(Θ)
M,0

such that the following diagram commutes

∞B̃un
Θ

P ≃ BunP ×
BunM

H
♭(Θ)
M,0

↓ ↓
∞Bun

Θ

P ≃ BunP ×CΘ
0

where the right hand side is the obvious projection.
If there is an m such that θpos

m is not equal to r(µ̃pos), for any µ̃pos ∈ Λ̃pos
G,P ,

then ∞B̃un
Θ

P is empty.

4.2. The map p : Zcan → Zcan. Let X be an irreducible affine horospherical
G-variety with generic stabilizer S ⊂ G. Recall that the normalizer of a horo-
spherical subgroup S ⊂ G is a parabolic subgroup P ⊂ G with the same derived
group [P, P ] = [S, S] and unipotent radical U(P ) = U(S). We write M for the
Levi quotient P/U(P ), MS for the Levi quotient S/U(S), and M0

S for the iden-
tity component of MS . We write A for the quotient torus P/S, and ΛA for its
coweight lattice. Similarly, for the identity component S0 ⊂ S, we write A0 for
the quotient torus P/S0, and ΛA0 for its coweight lattice. The natural map
M/[M,M ] → A0 induces a surjection of coweight lattices ΛM/[M,M ] → ΛA0

which we denote by p. The kernel of p is the coweight lattice ΛM0
S/[MS ,MS ].

(Note that the component group of MS is abelian.)
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Associated to the canonical affine closure G/S, we have a Cartesian diagram
of ind-stacks

Zcan → ∞BunP
p ↓ ↓ p

Zcan → ⋆Zcan

We would like to describe some properties of the vertical maps.

Proposition 4.2.1. The map p : ∞BunP → ⋆Zcan is ind-finite.

For θ ∈ ΛM/[M,M ], its restriction to ∞Bun
θ

P is an embedding with image ⋆Zp(θ)can ,

and its restriction to ∞Bun
≤θ
P is finite with image ⋆Z≤p(θ)can .

Proof. For a point (c,PG,PM/[M,M ], σ) ∈ ∞BunP , we write
(c,PG,PM/MS

, σ) ∈ ⋆Zcan for its image under p. Observe that for

θ ∈ ΛM/[M,M ], the point (c,PG,PM/[M,M ](θ · c), σ) ∈ ∞BunP maps to
(c,PG,PM/MS

(p(θ) · c), σ) ∈ ⋆Zcan under p. Therefore to prove the proposi-
tion, it suffices to show that the restriction of p to the canonical embedding
BunP ⊂ ∞BunP is an embedding with image the canonical embedding

BunP ⊂ ⋆Zcan, and its restriction to ∞Bun
≤0

P is a finite map with image ⋆Z≤0
can.

The first assertion is immediate from the definitions. To prove the second,
recall that by [BG, Proposition 1.3.6], ∞BunP is proper over BunG, and so the
map p is proper since it respects the projection to BunG. Therefore it suffices

to check that the fibers over closed points of the restriction of p to ∞Bun
≤0

P

are finite.
Let Θ be a pair (0,U(θpos)), with θpos ∈ Λpos

G,P . The stack ∞Bun
Θ

P classifies
data

(c,PP , cΘ,PM/[M,M ])

together with an isomorphism

α : PP
P
× P/[P, P ] ≃ PM/[M,M ](cΘ).

The fiber of p through such a point classifies data

(PP , c
′
Θ′ ,P

′
M/[M,M ])

together with an isomorphism

α′ : PP
P
× P/[P, P ] ≃ P′M/[M,M ](c

′
Θ′)

such that the labelling cΦ = cΘ − c′Θ′ takes values in ΛM0
S/[MS ,MS ]. Therefore

we need only check that for θpos ∈ Λpos
G,P , there are only a finite number of

φ ∈ ΛM0
S/[MS ,MS ] such that θpos + φ ∈ Λpos

G,P . By Proposition 2.1.3, the lattice

ΛM0
S/[MS ,MS ] intersects the semigroup Λpos

G,P only at 0. Since Λpos
G,P is finitely-

generated, this implies that for θpos ∈ ΛM/[M,M ], the coset θpos +ΛM0
S/[MS ,MS ]

intersects Λpos
G,P in a finite set. �
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Corollary 4.2.2. The map p : Zcan → Zcan is ind-finite.

For θ ∈ ΛM/[M,M ], its restriction to Z
θ

can is an embedding with image Z
p(θ)
can ,

and its restriction to Z
≤θ
can is finite with image Z

≤p(θ)
can .

4.3. The map s : Zcan → Z. Let X be an affine horospherical variety with
dense G-orbit X̊ ⊂ X and generic stabilizer S ⊂ G.

Associated to the natural map G/S → X , we have a Cartesian diagram of
ind-stacks

Zcan → ⋆Zcan

s ↓ ↓ s

Z → ⋆Z.

We would like to describe some properties of the vertical maps.

Proposition 4.3.1. The map s : ⋆Zcan → ⋆Z is a closed embedding.
For κ ∈ ΛA, its restriction to ⋆Zκcan is an embedding with image ⋆Zκ, and its

restriction to ⋆Z≤κcan is a closed embedding with image ⋆Z≤κ.

Proof. First note that s is injective on scheme-valued points since for
(c,PG,PM/MS

σ) ∈ ⋆Zcan, the map

σ : PM/MS
|C\c → PG

G
× G/S|C\c

factors

σ|C′ : PM/MS
|C′ → PG

G
× G/S|C′ → PG

G
× G/S|C′ ,

for some open curve C′ ⊂ C \ c, and the map G/S → X restricted to G/S is
an embedding.
Now to see s is a closed embedding, it suffices to check that s satisfies the
valuative criterion of properness. Let D = Spec C[[t]] be the disk, and D× =
Spec C((t)) the punctured disk. Let f : D → Z be a map with a partial lift

F× : D× → Zcan. Let P
f
G be the D-family of G-bundles defined by f , and let

P
f
M/MS

be the D-family of M/MS-bundles defined by f . We must check that

any partial lift

Σ× : P
f
M/MS

|(C\c)×D× → P
f
G

G
× G/S|(C\c)×D×

of a map

σ : P
f
M/MS

|(C\c)×D → P
f
G

G
× X |(C\c)×D

which factors

σ|C′×D : P
f
M/MS

|C′×D → P
f
G

G
× G/S|C′×D → P

f
G

G
× X |C′×D,

for some open curve C′ ⊂ C \ c, extends to (C \ c) × D. Since G/S → X
restricted to G/S is an embedding with image G/S, we may lift σ|C′×D to

extend Σ× to C′ ×D. But then Σ× extends completely since P
f
M/MS

|(C\c)×D
is normal and the complement of P

f
M/MS

|C′×D is of codimension 2.
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Finally, for a point (c,PG,PM/MS
, σcan) ∈ ⋆Zcan, we write (c,PG,PM/MS

, σ) ∈
⋆Z for its image under s. Observe that for κ ∈ ΛA, the point (c,PG,PM/MS

(κ ·
c), σcan) ∈ ⋆Zcan maps to (c,PG,PM/MS

(κ · c), σ) ∈ ⋆Z under s. Therefore to
complete the proof of the proposition, it suffices to show that the restriction
of s to the canonical embedding BunS ×C ⊂ ⋆Zcan has image the canonical
embedding BunS ×C ⊂ ⋆Z. This is immediate from the definitions. �

Corollary 4.3.2. The map s : Zcan → Z is a closed embedding.
For κ ∈ ΛA, its restriction to Zκcan is an embedding with image Zκ, and its
restriction to Z≤κcan is a closed embedding with image Z≤κ.

5. Convolution

Let X be an affine horospherical G-variety with dense G-orbit X̊ ⊂ X and
generic stabilizer S ⊂ G.
The following diagram summarizes the ind-stacks and maps under considera-
tion

∞B̃unP
r→ ∞BunP

p→ ⋆Zcan

↑ k ↑ k

Zcan
p→ Zcan

s→ Z.

Each of the ind-stacks of the diagram projects to C × BunG, and the maps of
the diagram commute with the projections.
Let Z be any one of the ind-stacks from the diagram, and form the diagram

Z
h←G← HG ×

BunG×C
Z

h→G→ Z

↓ ↓ ↓
BunG

h←G← HG
h→G→ BunG

in which each square is Cartesian.
For λ ∈ Λ+

G, we define the convolution functor

Hλ
G : Sh(Z)→ Sh(Z)

on an object F ∈ Sh(Z) to be

Hλ
G(F) = h←G !(A

λ
G⊠̃F)r

where (Aλ
G⊠̃F)r is the twisted product defined with respect to h→G , and Aλ

G

is the simple spherical sheaf on the fibers of h→G corresponding to λ. (See
Section 1.4 for more on the twisted product and spherical sheaf.)

5.1. Convolution on ∞B̃unP . Recall that for a reductive group H , and
λ ∈ Λ+

H , we write V λ
Ȟ

for the irreducible representation of the dual group Ȟ of
highest weight λ.
We shall deduce our results from the following.
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Theorem 5.1.1. [BG, Theorem 4.1.5]. For λ ∈ Λ+
G, there is a canonical iso-

morphism

Hλ
G(IC≤0

∞
gBunP

) ≃
∑

µ∈Λ+
M

IC≤µ
∞

gBunP

⊗HomM̌ (V µ
M̌
, V λ
Ǧ

).

5.2. Convolution on ∞BunP . Recall that r : ΛM → ΛM/[M,M ] denotes the
natural projection, 2ρ̌M the sum of the positive roots of M , and 〈2ρ̌M , µ〉 the
natural pairing, for µ ∈ ΛM .

Theorem 5.2.1. For λ ∈ Λ+
G, there is an isomorphism

Hλ
G(IC≤0

∞BunP
) ≃

∑

θ∈ΛM/[M,M]

∑

µ∈ΛM ,r(µ)=θ

IC≤θ
∞BunP

⊗HomŤ (V µ
Ť
, V λ
Ǧ

)[〈2ρ̌M , µ〉].

Proof. Step 1. For the projection

r : ∞B̃unP → ∞BunP ,

we clearly have

(1) Hλ
G(r! IC

≤0

∞
gBunP

) ≃ r!H
λ
G(IC≤0

∞
gBunP

).

Let us first analyze the left hand side of equation 1. We may write the push-
forward r! IC

≤0

∞
gBunP

in the form

r! IC
≤0

∞
gBunP

≃ IC≤0

∞BunP
⊕I≤0

where I≤0 ∈ Sh(∞BunP ) is isomorphic to a direct sum of shifts of sheaves of
the form

IC≤Θ

∞BunP
, for pairs Θ = (0,U(θpos)), with θpos ∈ Λpos

G,P \ {0}.

The asserted form of I≤0 follows from the Decomposition Theorem, the fact

that the restrictions of IC≤0

∞
gBunP

to the strata of ∞B̃unP are constant [BFGM,

Theorem 1.12], and the structure of the map r described in Proposition 4.1.1.
For any ηpos ∈ Λpos

G,P \ {0}, and decomposition U(ηpos), we have the finite map

τU(ηpos) : CU(ηpos) ×∞BunP → ∞BunP

defined by

τU(ηpos)(
∑

m,n

ηpos
m · cm,n, (c,PG,PM/[M,M ], σ))

= (c,PG,PM/[M,M ](−
∑

m,n

ηpos
m · cm,n), σ).

Note that for η ∈ ΛM/[M,M ], and Θ the pair (η,U(ηpos)), the restriction of
τU(ηpos) provides an isomorphism

τU(ηpos) : (CU(ηpos) ×∞Bun
η

P )0
∼→ ∞Bun

Θ

P
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where the domain completes the Cartesian square

(CU(ηpos) ×∞Bun
η

P )0 → CU(ηpos) ×∞Bun
η

P

↓ ↓
(CU(ηpos) × C)0 → CU(ηpos) × C

where as usual

(CU(ηpos) × C)0 ⊂ CU(ηpos) × C
denotes the complement to the diagonal divisor.
We define the strict full triangulated subcategory of irrelevant sheaves

IrrelSh(∞BunP ) ⊂ Sh(∞BunP )

to be that generated by sheaves of the form

τU(ηpos)!
(IC

U(ηpos)
C ⊠F)

where ηpos runs through Λpos
G,P \ {0}, U(ηpos) runs through decompositions of

ηpos, IC
U(ηpos)
C denotes the intersection cohomology sheaf of CU(ηpos), and F

runs through objects of Sh(∞BunP ).

Lemma 5.2.2. The sheaf I≤0 is irrelevant.

Proof. Let Θ be a pair (θ,U(θpos)), with θ ∈ ΛM/[M,M ], and θpos ∈ Λpos
G,P \ {0}.

Then we may realize the sheaf IC≤Θ

∞BunP
as the pushforward

IC≤Θ

∞BunP
≃ τU(θpos)!

(IC
U(θpos)
C ⊠ ICθ

∞BunP
)

To see this, we use the isomorphism

τU(θpos) : (CU(θpos) ×∞Bun
θ

P )0
∼→ ∞Bun

Θ

P ,

and the fact that τU(θpos) is finite. �

Lemma 5.2.3. If E is an irrelevant sheaf, then Hλ
G(E) is an irrelevant sheaf.

Proof. Clearly we have a canonical isomorphism

Hλ
G(τU(ηpos)!

(IC
U(ηpos)
C ⊠F)) ≃ τU(ηpos)!

(IC
U(ηpos)
C ⊠Hλ

G(F)).

�

By the preceding lemmas, we may write the left hand side of equation 1 in the
form

(2) Hλ
G(r! IC

≤0

∞
gBunP

) ≃ Hλ
G(IC≤0

∞BunP
)⊕Hλ

G(I≤0)

where Hλ
G(I≤0) is an irrelevant sheaf.

Let us next analyze the right hand side of equation 1. By Theorem 5.1.1, we
have

r!H
λ
G(IC≤0

∞
gBunP

) ≃
∑

µ∈Λ+
M

r! IC
≤µ

∞
gBunP

⊗HomM̌ (V µ
M̌
, V λ
Ǧ

).
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Lemma 5.2.4. For µ ∈ Λ+
M , we have

r! IC
≤µ

∞
gBunP

≃
∑

ν∈ΛM

(IC
≤r(µ)

∞BunP
⊕I≤µ)⊗HomŤ (V ν

Ť
, V µ
M̌

)[〈2ρ̌M , ν〉].

where I≤µ is isomorphic to a direct sum of shifts of sheaves of the form

IC≤Θ

∞BunP
, for pairs Θ = (θ,U(θpos)).

Proof. We may form the diagram

∞B̃unP
h←M← HM ×

BunM ×C
∞B̃unP

h→M→ ∞B̃unP

↓ ↓ ↓
BunG

h←M← HG
h→M→ BunG

in which each square is Cartesian. We define the convolution functor

Hµ
M : Sh(∞B̃unP )→ Sh(∞B̃unP )

on an object F ∈ Sh(∞B̃unP ) to be

Hµ
M (F) = h←M !(A

µ
M ⊠̃F)r

where (Aµ
M ⊠̃F)r is the twisted product defined with respect to h→M , and A

µ
M

is the simple spherical sheaf on the fibers of h→M corresponding to µ. Theorem
4.1.3 of [BG] provides a canonical isomorphism

Hµ
M (IC≤0

∞
gBunP

) ≃ IC≤µ
∞

gBunP

.

We also have a commutative diagram

∞B̃unP
h←M← HM ×

BunM ×C
∞B̃unP

r ↓ ↓ r′

∞BunP
h←M/[M,M]← HM/[M,M ] ×

BunM/[M,M]×C
∞BunP

where the modification map h←M/[M,M ] is given by

h←M/[M,M ](θ, (c,PG,PM/[M,M ], σ)) = (c,PG,PM/[M,M ](−θ · c), σ).

We conclude that there is an isomorphism

r! IC
≤µ

∞
gBunP

≃ h←M/[M,M ]!r
′
!(A

µ
M ⊠̃ IC≤0

∞
gBunP

)r.

Now the map r′ factors into the projection of the left hand factor

HM ×
BunM ×C

∞B̃unP → HM/[M,M ] ×
BunM/[M,M]×C

∞B̃unP

followed by the projection of the right hand factor

HM/[M,M ] ×
BunM/[M,M]×C

∞B̃unP
r→ HM/[M,M ] ×

BunM/[M,M]×C
∞BunP .
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Thus we have an isomorphism

r′!(A
µ
M ⊠̃ IC≤0

∞
gBunP

)r ≃
∑

ν∈ΛM

(IC≤0

∞BunP
⊕I≤0)⊗HomŤ (V ν

Ť
, V µ
M̌

)[〈2ρ̌M , ν〉]

where as before

r! IC
≤0

∞
gBunP

≃ IC≤0

∞BunP
⊕I≤0

where I≤0 is isomorphic to a direct sum of shifts of sheaves of the form

IC≤Θ

∞BunP
, for pairs Θ = (0,U(θpos)), with θpos ∈ Λpos

G,P \ {0}.

Finally, applying the modification h←M/[M,M ]! with twist r(µ) to the above iso-

morphism, we obtain an isomorphism

r! IC
≤µ

∞
gBunP

≃
∑

ν∈ΛM

(IC
≤r(µ)

∞BunP
⊕I≤µ)⊗HomŤ (V ν

Ť
, V µ
M̌

)[〈2ρ̌M , ν〉].

Here we write I≤µ for the result of applying the modification h←M/[M,M ]! with

twist r(µ) to I≤0. Clearly the modification h←M/[M,M ]! takes strata to strata so

we conclude that I≤µ is isomorphic to a direct sum of shifts of sheaves of the
form

IC≤Θ

∞BunP
, for pairs Θ = (θ,U(θpos)).

�

Note that the proof actually shows that I≤µ is isomorphic to a direct sum of
shifts of sheaves of the form

IC≤Θ

∞BunP
, for pairs Θ = (0,U(θpos)), with θpos ∈ Λpos

G,P \ {0},

and so in particular is irrelevant, but we shall have no need for this.
Combining the formulas given by Theorem 5.1.1 and the preceding lemma, we
may write the right hand side of equation 1 in the form
(3)

r!H
λ
G(IC≤0

∞
gBunP

) ≃
∑

θ∈ΛM/[M,M]

∑

µ∈ΛM ,r(µ)=θ

IC≤θ
∞BunP

⊗HomŤ (V µ
Ť
, V λ
Ǧ

)[〈2ρ̌M , µ〉]⊕J

where J is isomorphic to a direct sum of shifts of sheaves of the form

IC≤Θ

∞BunP
, for pairs Θ = (θ,U(θpos)).

Finally, comparing the left hand side (equation 2) and the right hand side

(equation 3), and noting that IC≤θ
∞BunP

is not irrelevant, we conclude that

Hλ
G(IC≤0

∞BunP
) ≃

∑

θ∈ΛM/[M,M]

∑

µ∈ΛM ,r(µ)=θ

IC≤θ
∞BunP

⊗HomŤ (V µ
Ť
, V λ
Ǧ

)[〈2ρ̌M , µ〉]⊕M

where M is is isomorphic to a direct sum of shifts of sheaves of the form

IC≤Θ

∞BunP
, for pairs Θ = (θ,U(θpos)).
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Step 2. Now we shall show that M is in fact zero. To do this, we shall show
that its restriction to each stratum of ∞BunP is zero.
Let Φ be a pair (φ,U(φpos)), with φ ∈ ΛM/[M,M ], and φpos ∈ Λpos

G,P . Let

Hλ
G(IC≤0

∞BunP
)Φ be the restriction of Hλ

G(IC≤0

∞BunP
) to the stratum ∞Bun

Φ

P . For

θ ∈ ΛM/[M,M ], let Aθ
Φ be the restriction of IC≤θ

∞BunP
to the stratum ∞Bun

Φ

P ,

and let MΦ be the restriction of M. Note that by step 1, [BFGM, Theorem
7.3] and Lemma 5.2.5 below, all of the restrictions are locally constant.

We shall calculate Hλ
G(IC≤0

∞BunP
)Φ in two different ways and compare the re-

sults.
On the one hand, by Step 1, we have
(4)

Hλ
G(IC≤0

∞BunP
)Φ ≃

∑

θ∈ΛM/[M,M]

∑

µ∈ΛM ,r(µ)=θ

Aθ
Φ⊗HomŤ (V µ

Ť
, V λ
Ǧ

)[〈2ρ̌M , µ〉]⊕MΦ

On the other hand, let us return to the definition of the convolution, and
consider the diagram

∞BunP
h←G← HG ×

BunG ×C
∞Bun

≤0

P

h→G→ ∞Bun
≤0

P

↓ ↓ ↓
BunG

h←G← HG
h→G→ BunG

Recall that by definition

Hλ
G(IC≤0

∞BunP
) = h←G !(A

λ
G⊠̃ IC≤0

∞BunP
)r

where (Aλ
G⊠̃ IC≤0

∞BunP
)r is the twisted product defined with respect to h→G , and

Aλ
G is the simple spherical sheaf on the fibers of h→G corresponding to λ.

To calculate Hλ
G(IC≤0

∞BunP
)Φ, consider the inverse image h←G

−1(∞Bun
Φ

P ). Pro-

jecting along h→G , we may decompose the inverse image into a union of locally
closed substacks

h←G
−1(∞Bun

Φ

P ) ≃
⊔

ξ∈Rpos
G,P

SλP,φ−ξ ×
BunP

∞Bun
(ξ,U(φpos))

P .

Projecting each piece back along h←G , we arrive at a spectral sequence for

Hλ
G(IC≤0

∞BunP
)Φ with E2 term

∑

ξ∈Rpos
G,P

∑

µ∈ΛM ,r(µ)=φ−ξ

A0
(ξ,U(φpos)) ⊗HomŤ (V µ

Ť
, V λ
Ǧ

)[〈2ρ̌M , µ〉]

In fact, the spectral sequence degenerates here for reasons of parity, but we
shall not need this. What we do need is the following cyclicity.

Lemma 5.2.5. Let Ψ be a pair (ψ,U(ψpos)), with ψ ∈ ΛM/[M,M ], and ψpos ∈
Λpos
G,P . Let θ ∈ ΛM/[M,M ]. Then A0

(ψ,U(ψpos)) ≃ Aθ
(ψ+θ,U(ψpos)).
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Proof. The modification

(c,PG,PM/[M,M ], σ) 7→ (c,PG,PM/[M,M ](θ · c), σ).

defines an isomorphism ∞BunP
∼→ ∞BunP which restricts to an isomorphism

∞Bun
(ψ,U(ψpos))

P
∼→ ∞Bun

(ψ+θ,U(ψpos))

P .

�

We apply the lemma with ψ = ξ, ψpos = φpos, and make the substitution
θ = φ− ξ, to write the E2 term

(5)
∑

φ−θ∈Rpos
G,P

∑

µ∈ΛM ,r(µ)=θ

Aθ
(φ,U(φpos)) ⊗HomŤ (V µ

Ť
, V λ
Ǧ

)[〈2ρ̌M , µ〉]

Comparing our two calculations (equations 4 and 5), we conclude by a dimen-
sion count that MΦ must be zero. �

5.3. Convolution on Zcan.

Theorem 5.3.1. For λ ∈ Λ+
G, there is an isomorphism

Hλ
G(IC≤0

Zcan
) ≃

∑

θ∈ΛM/[M,M]

∑

µ∈ΛM ,r(µ)=θ

IC≤θ
Zcan
⊗HomŤ (V µ

Ť
, V λ
Ǧ

)[〈2ρ̌M , µ〉].

Proof. By Proposition 3.4.1, for θ ∈ ΛM/[M,M ], we have

k∗ IC≤θ
∞BunP

≃ IC≤θ
Zcan

,

Clearly the pullback k∗ commutes with convolution

Hλ
G(k∗ IC≤θ

∞BunP
) ≃ k∗Hλ

G(IC≤θ
∞BunP

).

Thus by Theorem 5.2.1, we conclude

Hλ
G(IC≤0

Zcan
)

≃ Hλ
G(k∗ IC≤0

∞BunP
)

≃ k∗Hλ
G(IC≤0

∞BunP
)

≃
∑

θ∈ΛM/[M,M]

∑

µ∈ΛM ,r(µ)=θ

k∗ IC≤θ
∞BunP

⊗HomŤ (V µ
Ť
, V λ
Ǧ

)[〈2ρ̌M , µ〉]

≃
∑

θ∈ΛM/[M,M]

∑

µ∈ΛM ,r(µ)=θ

IC≤θ
Zcan
⊗HomŤ (V µ

Ť
, V λ
Ť

)[〈2ρ̌M , µ〉].

�
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5.4. Convolution on Z. Recall the map of coweight lattices

q : ΛM
r→ ΛM/[M,M ]

p→ ΛA0 .

Theorem 5.4.1. For λ ∈ Λ+
G, there is an isomorphism

Hλ
G(IC≤0

Z ) ≃
∑

κ∈ΛA0

∑

µ∈ΛT ,q(µ)=κ

IC≤κZ ⊗HomŤ (V µ
Ť
, V λ
Ǧ

)[〈2ρ̌M , µ〉].

Proof. By Corollary 4.2.2, for θ ∈ ΛM/[M,M ], we have

p! IC
≤θ

Zcan
≃ IC

≤p(θ)
Zcan

,

By Corollary 4.3.2, for κ ∈ ΛA0 , we have

s! IC
≤κ
Zcan
≃ IC≤κZ .

Clearly the pushforwards p! and s! commute with convolution

Hλ
G(s!p! ICZ≤0

can

) ≃ s!p!H
λ
G(IC

Z
≤0
can

).

Thus by Theorem 5.3.1, we conclude

Hλ
G(IC≤0

Z )

≃ Hλ
G(s!p! IC

≤0

Zcan
)

≃ s!p!H
λ
G(IC≤0

Zcan
)

≃
∑

θ∈ΛM/[M,M]

∑

µ∈ΛM ,r(µ)=θ

s!p! IC
≤θ

Zcan
⊗HomŤ (V µ

Ť
, V λ
Ǧ

)[〈2ρ̌M , µ〉]

≃
∑

κ∈ΛA0

∑

µ∈ΛT ,q(µ)=κ

IC≤κZ ⊗HomŤ (V µ
Ť
, V λ
Ǧ

)[〈2ρ̌M , µ〉].

�

6. Complements

For our application [GN], we need a slight modification of our main result. As

usual, let X be an affine horospherical G-variety with dense G-orbit X̊ ⊂ X
and generic stabilizer S ⊂ G. Let S0 be the identity component of S, and let
π0(S) be the component group S/S0.
For a scheme S, we write CS for the product S× C. For an S-point (c,PG, σ)
of the ind-stack Z, the section σ defines a reduction of the G-bundle PG to
an S-bundle P′S over an open subscheme C′

S
⊂ CS which is the complement

CS \D of a subscheme D ⊂ CS which is finite and flat over S. By induction,
the S-bundle P′S defines a π0(S)-bundle over C′

S
. We call this the generic

π0(S)-bundle associated to the point (c,PG, σ).
We define ′Z ⊂ Z to be the ind-substack whose S-points (c,PG, σ) have the
property that for every geometric point s ∈ S, the restriction of the associated
generic π0(S)-bundle to {s} × C ⊂ CS is trivial. It is not difficult (see [GN])
to show that ′Z is closed in Z. Observe that we have a short exact sequence

0→ ΛA0 → ΛA → S/S0 → 0.

Documenta Mathematica 14 (2009) 19–46



46 Gaitsgory and Nadler

Thus for κ ∈ ΛA0 , it makes sense to consider the locally closed substack ′Zκ ⊂
′Z and its closure ′Z≤κ ⊂ ′Z. Observe as well that from the fibration S →
G→ G/S, we have an exact sequence

π1(G)→ π1(X̊)→ π0(S).

Thus for λ ∈ Λ+
G, we have the convolution functor

Hλ
G : Sh(′Z)→ Sh(′Z).

The same arguments show that our main result holds equally well in this con-
text.

Theorem 6.0.2. For λ ∈ Λ+
G, there is an isomorphism

Hλ
G(IC≤0

′Z ) ≃
∑

κ∈ΛA0

∑

µ∈ΛT ,q(µ)=κ

IC≤κ′Z ⊗HomŤ (V µ
Ť
, V λ
Ǧ

)[〈2ρ̌M , µ〉].
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Abstract. We will consider an explicit birational map between a
quadric and the projective varietyX(J) of traceless rank one elements
in a simple reduced Jordan algebra J . X(J) is a homogeneous G-
variety for the automorphism group G = Aut(J). We will show that
the birational map is a blow up followed by a blow down. This will
allow us to use the blow up formula for motives together with Vishik’s
work on the motives of quadrics to give a motivic decomposition of
X(J).
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Recently Totaro has solved the birational classification problem for a large class
of quadrics [To08]. In particular, let φ be an r-Pfister form over a field k of
characteristic not 2, and b = 〈b1, · · · bn〉 be a non-degenerate quadratic form
with n ≥ 2.

Proposition 0.1. [To08, Thm. 6.3] The birational class of the quadric defined
by

q = φ⊗ 〈b1, · · · , bn−1〉 ⊥ 〈bn〉
only depends on the isometry classes of φ and φ ⊗ b, and not on the choice of
diagonalization of b.

The Sarkisov program [Co94] predicts that any birational map between
quadrics (in fact between any two Mori fibre spaces) factors as a chain of
composites of “elementary links”. In 2.16 we will explicitly factor many of
Totaro’s birational maps into chains of elementary links, and also prove the
following theorem.
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Theorem 0.2. For r = 0, 1, 2 and n ≥ 3, or r = 3 and n = 3, for each of the
birational equivalences from Prop. 0.1, there is a birational map which factors
into two elementary links, each of which is the blow up of a reduced subscheme
followed by a blow down. Furthermore, if r 6= 1 or φ is not hyperbolic, then
the intermediate Mori fibre space of this factorization will be the projective
homogeneous variety X(J) of traceless rank one elements in a Jordan algebra
J .

The birational map from a quadric toX(J) will be the codimension 1 restriction
of a birational map between projective space and the projective variety VJ of
rank one elements of J , first written down by Jacobson [Ja85, 4.26].

0.3 Motivic decompositions. Let G a semisimple linear algebraic group of
inner type, and X a projective homogeneous G-variety such that G splits over
the function field of X , which is to say, X is generically split (see [PSZ08, 3.6]
for a convenient table). Then [PSZ08] gives a direct sum decomposition of the
Chow motive M(X ; Z/pZ) of X . They show that it is the direct sum of some
Tate twists of a single indecomposable motive Rp(G), which generalizes the
Rost motive. This work unified much of what was previously known about
motivic decompositions of anisotropic projective homogeneous varieties.
In the non-generically split cases less is known. Quadrics are in general not
generically split, but much is known by the work of Vishik and others, especially
in low dimensions [Vi04].

Theorem 0.4. (See Thm. 3.6) The motive of the projective quadric defined by
the quadratic forms in Prop. 0.1 may be decomposed into the sum, up to Tate
twists, of Rost motives and higher forms of Rost motives.

In the present paper we will use this knowledge of motives of quadrics to pro-
duce motivic decompositions for the non-generically split projective homoge-
neous G-varieties X(J) which appear in Thm. 0.2. The algebraic groups G are
of Lie type 2An−1, Cn and F4, and are automorphism groups of simple reduced
Jordan algebras of degree ≥ 3. These varieties X(J) come in four different
types which we label r = 0, 1, 2 or 3, corresponding to the 2r dimensional com-
position algebra of the simple Jordan algebra J (see Thm. 2.4 for a description
of X(J) as G/P for a parabolic subgroup P ).

Theorem 0.5. (See Thm. 3.12) The motive of X(J) is the direct sum of a
higher form of a Rost motive, F rn , together with several Tate twisted copies of
the Rost motive Rr.

The r = 1 case of this theorem provides an alternate proof of Krashen’s motivic
equivalence [Kr07, Thm. 3.3]. On the other hand, the r = 1 case of this theorem
is shown in [SZ08, Thm. (C)] by using Krashen’s result (See Remark 3.14).

0.6 Notational conventions. We will fix a base field k of characteristic 0
(unless stated otherwise), and an algebraically closed (equivalently, a separably
closed) field extension k̄ of k. We only use the characteristic 0 assumption to
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show the varieties X(J) and Z1 are homogeneous. We will assume a scheme
over k is a separated scheme of finite type over k, and a variety will be an
irreducible reduced scheme.
For a scheme X over k, X = X ×k k̄.
G denotes an algebraic group over k.
ai are coefficients of the r-Pfister form φ over k.
bi are coefficients of the n-dimensional quadratic form b over k.
q denotes a quadratic form over k, and Q is the associated projective quadric.
iW (q) is the Witt index of the quadratic form q.
C is a composition algebra (not to be confused with the Lie type Cn), and ci
are elements of C.
J is a Jordan algebra, x is an element of J , and u is an idempotent in J .
X(J), Q(J, u), Z1 and Z2 are complete schemes over k defined in Section 2.
F rn and Rr are motives defined in Section 3.1 (not to be confused with the Lie
type F4).
M(X) denotes the motive of a smooth complete scheme X , and M{i} denotes
the ith Tate twist of the motive M .
The paper is organized as follows. In Section 1 we will recall the terminology
and classification of reduced simple Jordan algebras. In Section 2 we describe
the varietyX(J) and show it is homogeneous. Also we will define the birational
map v2 from a quadric to X(J) and show that it is a Sarkisov link by analyzing
its scheme of base points. In Section 3 we deduce motivic decompositions for
a class of quadrics, as well as for the indeterminacy locus of v2 introduced
in Section 2. Finally we put these decompositions together to give a motivic
decomposition of X(J).

1 Jordan algebras

A Jordan algebra over k is a commutative, unital (not necessarily associative)
k-algebra J whose elements obey the identity

x2(xy) = x(x2y) for all x, y ∈ J.

A simple Jordan algebra is one with no proper ideals. An idempotent in J is
an element u2 = u 6= 0 ∈ J . Two idempotents are orthogonal if they multiply
to zero, and an idempotent is primitive if it is not the sum of two orthogonal
idempotents in J . For any field extension l/k, we can extend scalars to l by
taking Jl = J ⊗k l, for example J̄ = J ⊗ k̄. A Jordan algebra has degree n if
the identity in J̄ decomposes into n pairwise orthogonal primitive idempotents
over k̄. A degree n Jordan algebra is reduced if the identity decomposes into n
orthogonal primitive idempotents over k.
The classification of reduced simple Jordan algebras of degree ≥ 3 is closely
related to the classification of composition algebras. A composition algebra
over k is a unital k-algebra C together with a non-degenerate quadratic form
φ on C (called the norm form) such that for any c1, c2 ∈ C we have that

Documenta Mathematica 14 (2009) 47–66



50 Mark L. MacDonald

φ(c1c2) = φ(c1)φ(c2). Two composition algebras are isomorphic as k-algebra
iff their norm forms are isometric. Every norm form is an r-fold Pfister form,
which is to say

φ = 〈〈a1, · · · , ar〉〉 := 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−ar〉.

Furthermore, r must be 0, 1, 2 or 3, and for any such r-fold Pfister form φ, there
is a composition algebra with φ as its norm form and a canonical conjugation
map − : C → C.

Let C be a composition algebra with norm form φ = 〈〈a1, · · · , ar〉〉, and let
b = 〈b1, · · · , bn〉 be a non-degenerate quadratic form. Then we can define a
reduced Jordan algebra in the following way. Let Γ = diag(b1, · · · , bn), and
let σb(x) := Γ−1x̄tΓ define a map from Mn(C) to Mn(C). Then σb is an
involution (i.e. an anti-homomorphism such that σ2

b = σb), so we can define
Sym(Mn(C), σb) to be the commutative algebra of symmetric elements (i.e.
elements x such that σb(x) = x). The product structure is defined by x ◦ y =
1
2 (xy + yx), using the multiplication in C. When C is associative (i.e. r = 0, 1
or 2) we know Sym(Mn(C), σb) is Jordan. For r = 3, it is only Jordan when
n ≤ 3, so in what follows we will always impose this condition in the r = 3
case.

The Jordan algebra isomorphism class of Sym(Mn(C), σb) only depends on the
isomorphism classes of b and C, and not on the diagonalization we have chosen
for b. The following theorem states that in degrees ≥ 3 these make up all of
the reduced Jordan algebras up to isomorphism.

Theorem 1.1. (Coordinatization [Mc04, 17],[Ja68, p.137]) Let J be a re-
duced simple Jordan algebra of degree n ≥ 3. Then there exists a composition al-
gebra C and an n-dimensional quadratic form b such that J ∼= Sym(Mn(C), σb).

2 The Sarkisov link

We will define a birational map from a projective quadric to a projective homo-
geneous variety, X(J), and show it is an elementary link in terms of Sarkisov
(see 2.17).

Let r = 0, 1, 2, 3 and n ≥ 3, and if r = 3 then n = 3. Throughout we
will fix a composition algebra C of dimension 2r over k, and elements bi ∈
k∗ such that b = 〈b1, · · · , bn〉 is a non-degenerate quadratic form. Let J =
Sym(Mn(C), σb) (see Section 1). Then J is a central simple reduced Jordan
algebra. Jacobson defined the closed subset VJ ⊂ PJ of rank 1 elements of J
(he used the terminology reduced elements) and showed it is a variety defined
over k [Ja85, §4].

2.1 The Veronese map. The following rational map is a generalization of the
r = 0 case where it is the degree 2 Veronese morphism [Ch06, 3] [Za93, Last
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page].

v2 : P(Cn) 99K PJ

[c1, · · · , cn] 7→ [bicic̄j ].

If the composition algebra is associative (so r 6= 3), then the set-theoretic image
of v2 (where it is defined) is precisely VJ . If r = 3, then the set-theoretic image
of v2 isn’t closed, but its closure is VJ [Ch06, Prop. 4.2]. Note that this map
specifies a choice of n orthogonal primitive idempotents, v2([0, · · · , 1, · · · , 0]),
so it depends on more than just the isomorphism class of J .
Let us restrict the map v2 to the projective space defined by cn ∈ k1, and abuse
notation by sometimes considering v2 as a rational map from P(Cn−1 × k) 99K

VJ . This map is an isomorphism on the open subset U = (cn 6= 0) ⊂ P(Cn−1×
k) [Ja85, Thm. 4.26], and hence birational. The projective homogeneous variety
we will be interested in is X(J) ⊂ VJ the hyperplane of traceless matrices,
which has dimension 2r(n− 1)− 1.

2.2 The quadric Q(J, u). Define the quadric Q(J, u) ⊂ P(Cn−1 × k) by

φ⊗ 〈b1, · · · bn−1〉 ⊥ 〈bn〉 = (

n−1∑

i=1

bicic̄i) + bnc
2
n = 0.

Here φ is the norm form of C. The right hand side is simply the trace in VJ ,
so the restriction of the birational map v2 to Q(J, u) has image in X(J). We
will often further abuse notation and consider v2 to be the birational map from
Q(J, u) to X(J).
Although the definition of Q(J, u) depends on the diagonalization of b, the
isomorphism class of Q(J, u) depends only on the isomorphism class of J to-
gether with a choice of primitive idempotent u, which we will usually take to
be u = diag(0, · · · , 0, 1) ∈ J , as we have done above.

Remark 2.3. Since the birational class of Q(J, u) is independent of u ∈ J , we
have another proof of Prop. 0.1 when r ≤ 3, and if r = 3 then n = 3. For more
on this, see 2.16.

For connected algebraic groups G over k̄, projective homogeneous G-varieties
G/P are classified by conjugacy classes of parabolic subgroups P in G. Further-
more, the conjugacy classes of parabolics are classified by specifying subsets θ
of the set ∆ of nodes of the Dynkin diagram of G, as in [Ti65, 1.6]. In fact we
will use the complement to his notation, so that θ = ∆ corresponds to a Borel
subgroup P∆ = B, and θ = ∅ corresponds to P∅ = G. We use the Bourbaki
root numberings. G0 denotes the connected component of the identity in G.

Theorem 2.4. VJ is the union of two Aut(J)-orbits: X(J) and VJ − X(J).
Furthermore, we have:
(r=0): X(J) ∼= G/Pθ, for G = Aut(J̄) ∼= SO(n), if n 6= 4 then θ = {1}, and
if n = 4 then the Dynkin diagram is two disjoint nodes, where θ is both nodes.
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In all cases, these varieties are quadrics.
(r=1): X(J) ∼= G0/Pθ, for G = Aut(J̄) ∼= Z/2 ⋉ PGL(n) and θ = {1, n− 1},
this is the variety of flags of dimension 1 and codimension 1 linear subspaces
in a vector space.
(r=2): X(J) ∼= G/Pθ, for G = Aut(J̄) ∼= PSp(2n) and θ = {2}, this is the
second symplectic Grassmannian.
(r=3): X(J) ∼= G/Pθ, for G = Aut(J̄) ∼= F4 and θ = {4}, this may be viewed
as a hyperplane section of the Cayley plane.

Proof. Aut(J) acts on VJ , since the rank is preserved by automorphisms. So it
is sufficient to prove this theorem for k = k̄. Every element of VJ −X(J) is [u]
for some rank one idempotent u [Ch06, Prop. 3.8], and Aut(J) is transitive on
rank one idempotents by Jacobson’s coordinatization theorem, since the field
is algebraically closed [Mc04, 17].
Clearly X(J) is preserved by Aut(J), since the trace is preserved by automor-
phisms. All that remains is to show that Aut(J) is transitive on X(J), which
we will do in cases. Consider the 2r−1n(n− 1) + n dimensional Aut(J) repre-
sentation J = k ⊕ J0, where J0 is the subrepresentation of traceless elements
in J . In all cases we will show that J0 is an irreducible Aut(J) representation,
find the highest weight, and show that there is a closed orbit in P(J0) which is
contained in X(J) and is of the same dimension. Therefore, by uniqueness of
the closed orbit, which follows from the irreducibility of J0, X(J) is the closed
orbit.

Case r = 0: For simplicity, we will modify the definition of J . Instead
of taking n × n matrices such that xt = x, we will take matrices such that
M−1xtM = x where

M =

[
0 Im
Im 0

]
for n = 2m, and M =




0 Im 0
Im 0 0
0 0 1


 for n = 2m+ 1.

This change is justified by recalling that any two orthogonal involutions in the
same matrix algebra over an algebraically closed field are isomorphic. Now
the Lie algebra of derivations Der(J) ∼= so(n) is in the more standard form,
and we can choose elements of the Cartan subalgebra h as diagonal matrices
Hi = Ei,i − Em+i,m+i as in [FH91, 18]. Following the conventions of [FH91],
we have a dual basis Li(Hj) = δij of h∗, and we wish to find the highest weight
of the representation J0.
For n = 2m, the roots of so(2m) are ±Li ± Lj for 1 ≤ i 6= j ≤ m. One can
check that the non-zero weights of J0 are ±Li ± Lj for all i, j. In particu-
lar, the element E1,m+1 is a weight vector in J0 for the weight 2L1, and the
irreducible representation with highest weight 2L1 is of the same dimension
as J0. Therefore J0 is the irreducible representation with highest weight 2L1,
and since Aut(J) is simple, there is a unique closed orbit in P(J0), and it is
the orbit of E1,m+1. To determine the dimension of the orbit, we ask which
root spaces g−αi in the Lie algebra for the negative simple roots −αi, kill the
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weight space of 2L1. For n = 4, neither root space, for −α1 = −L1 − L2 nor
α2 = −L1 +L2, kills this weight space. For any n ≥ 6 even, all of the negative
simple root spaces kill the weight space 2L1 except for the one for −L1 + L2.
In either case the dimension of the parabolic fixing E1,m+1 is 2m2− 3m+2, so
the dimension of the orbit is n−2. This is the dimension of the closed invariant
subset X(J), which must contain a closed orbit. Since there is only one closed
orbit, X(J) must be the entire orbit.
A similar analysis may be carried out in the n = 2m + 1 case, where again
E1,m+1 is a weight vector for the highest weight 2L1.

Case r = 1: We have the action of the connected component Aut(J)0 =
PGL(n) on J ∼= Mn(k), acting by conjugation. The induced action of the
Lie algebra of derivations Der(J) ∼= sl(n) on J0 is just the adjoint action on
sl(n). With the standard diagonal Cartan subalgebra, and choice of positive
roots dual to Hi = Ei,i − Ei+1,i+1, the highest weight is in the representation
J0 is 2L1 + L2 + · · · + Ln−1 with multiplicity 1. A dimension count shows
this representation is irreducible, and the dimension of the parabolic fixing a
highest weight vector is n2 − 2n + 2. So the dimension of the unique closed
orbit is 2n− 3, which is the dimension of X(J). Therefore X(J) is the closed
orbit.

Case r = 2: As in the r = 0 case, we will change our symplectic involution
σ(x) = x̄t to σM (x) = M−1xtM for

M =

[
0 In
−In 0

]
.

Then the Lie algebra of derivations Der(J) ∼= sp(2n) is in the standard form, by
choosing a Cartan subalgebra of diagonal matrices, with Hi = Ei,i − En+i,n+i

and dual basis Li ∈ h∗. The roots of sp(2n) are ±Li ± Lj for all i, j, and
the non-zero weights of J0 are ±Li ± Lj for i 6= j. In particular, the highest
weight is L1 +L2 in the standard weight ordering of [FH91, p.257]. Comparing
dimensions shows that J0 is irreducible, and the parabolic fixing a highest
weight vector is of dimension 2n2− 3n+5. So the unique closed orbit in P(J0)
is of dimension 4n− 5, which is the same as the dimension of X(J). Therefore
X(J) is the unique closed orbit.

Case r = 3: First notice that J0 is a 26-dimensional non-trivial represen-
tation of F4 = Aut(J). It is well-known that such a representation is unique,
and has a 15-dimensional unique closed orbit in P(J0). Since X(J) is a 15-
dimensional closed invariant subset, it must be equal to the closed orbit.

Remark 2.5. Over the complex numbers the varieties with exactly two G-
orbits for some semisimple algebraic group G, one of which is of codimension
one, have been classified by [Ah86]. The varieties VJ account for most of these.

2.6 Blowing up the base loci

Any birational map of projective varieties over a field can be expressed as a
blow up followed a blow down of closed subschemes (Prop. 2.7). In this section
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we will show that these closed subschemes, for our birational map from Q(J, u)
to X(J), are (usually) smooth varieties, and hence see that the map is an
elementary link in terms of Sarkisov.
Given a rational map between projective varieties f : Y 99K X , we can define
the scheme of base points of f as a closed subscheme of Y [Ha77, II. Example
7.17.3].

Proposition 2.7. Let f : Y 99K X be a birational map of projective varieties
over a field k with g : X 99K Y the inverse birational map. Let ZY and ZX be
the schemes of base points of f and g respectively. Then the blow up Ỹ of Y
along ZY is isomorphic to the blow up X̃ of X along ZX .

Proof. Let U ⊂ Y be the open subset on which f is an isomorphism. Then
the graph Γf of f |U is a subset of U × f(U) ⊂ Y × X . The closure of Γf in

Y × X , given the structure of a closed reduced subscheme, is the blow up Ỹ
[EH00, Prop. IV.22]1.
Similarly, X̃ is the closure of Γg ⊂ U × f(U). Since the inverse of f on U is

g, we have that X̃ and Ỹ are both closures in Y × X of the same subset of
U × f(U). So they have the same structure as reduced schemes, and hence
X̃ ∼= Ỹ .

2.8 Indeterminacy locus of v2. Let Z1 be the closed reduced subscheme
associated to the scheme of base points in Q(J, u) of the birational map v2. We
will show that Z1 is isomorphic to the scheme of base points. We denote by
Aut(J, u) the subgroup of automorphisms of J that fix the primitive idempotent
u.

Theorem 2.9. Z1 is homogeneous under an action of Aut(J, u).

Proof. To describe the action we will use the vector space isomorphism Cn−1 ∼=
J 1

2
(u) = {x ∈ J |x · u = 1

2x}. Here, as above, we take u = diag(0, · · · , 0, 1) =

En,n. This isomorphism is given by sending an element c ∈ Cn−1 to the matrix
element in J 1

2
(u) ⊂Mn(C) with nth row equal to [c, 0].

So we have an Aut(J, u) action on P(Cn−1). By considering the defining equa-
tions, one see that Z1 is isomorphic to the reduced subscheme of P(J 1

2
(u))

defined by the matrix equation x2 = 0. So it is clear that the underlying closed
subset is stable under Aut(J, u).
Finally, to show the action is transitive, it is enough to show it after extending
scalars to an algebraically closed field k̄. We will use similar arguments as in
the proof of Thm. 2.4.

Case r = 2: Using the notation from the proof of Thm. 2.4, the roots
of the Lie algebra of Aut(J, u) are ±Li ± Lj for i, j ≤ n − 1 together with
±2Ln. One can check that the non-zero weights of the representation J 1

2
(u)

are ±Li ± Ln for i ≤ n− 1. A dimension count reveals that J 1
2
(u) is therefore

1They assume Y is affine, but we can drop this assumption since the blow up is determined
locally.

Documenta Mathematica 14 (2009) 47–66



Projective Homogeneous Varieties Birational to Quadrics 55

an irreducible representation with highest weight L1 + Ln. The only negative
simple roots that don’t kill a highest weight vector are L2 − L1 and −2Ln, so
the dimension of the parabolic subgroup that fixes a point in the unique closed
orbit in P(J 1

2
(u)) is 2n2 − 5n+ 6. So the dimension of this orbit is 2n− 2.

To see this is the same as the dimension of Z1, consider the affine cone Z̃1 over
Z1 inside J 1

2
(u). Then consider the Jacobian matrix of the equations given

by {xix̄j = 0} with respect to the 4(n − 1) variables: 4 variables for each
coordinate xi ∈ C. The rank of this matrix at any point in the affine cone over
Z1 is ≤ dim(J 1

2
(u))−dim(Z̃1), where equality holds if the ideal spanned by the

polynomials {xix̄j} is radical. By choosing a convenient point, we see that the
dimension of Z1 is at most 2n−2, which is the dimension of the closed orbit. So
if Z1 contained another Aut(J, u)-orbit, then it would contain another closed
orbit. But the closed orbit is unique, and therefore Z1 is the closed orbit.

Case r = 3: It is well known that the Aut(J, u) ∼= Spin(9) representation
given by J 1

2
(u) for u = E3,3 is the 16-dimensional spin representation. The

unique closed orbit in P(J 1
2
(u)) is therefore the 10-dimensional spinor variety.

Using a similar argument to the r = 2 case, we can show the dimension of Z1

is at most 10, so by the uniqueness of the closed orbit we can conclude that Z1

is the closed orbit.

Case r = 1: This case is slightly different from the other two because
Aut(J, u) ∼= Z/2 ⋉ GL(n − 1) is a disconnected group, and the connected
component has two closed orbits in P(J 1

2
(u)). The argument is similar to the

r = 2 case, except we find that the sl(n− 1)-representation J 1
2
(u) is the direct

sum of the standard representation V with its dual V ∗. So the two closed
orbits in P(J 1

2
(u)) are the orbits of weight vectors for the weights L1−Ln and

Ln−L1, which are the respective closed orbits in PV and PV ∗. Each sl(n−1)-
orbit has dimension n− 2. Furthermore, the Z/2 part of Aut(J, u) swaps these
two representations, since it acts on matrices as the transpose. So there is a
unique closed Aut(J, u)-orbit, and it is of dimension n− 2.

As in the r = 2 case, by considering the rank of the Jacobian at a closed
point in Z̃1, we see that the dimension of Z1 is at most n − 2. Since Z1 is
Aut(J, u)-stable, we can conclude that it is the closed orbit.

Corollary 2.10. The reduced scheme Z1 is isomorphic to the scheme of base
points of v2 in Q(J, u).

Proof. The r = 0 case is trivial, since v2 is a morphism and hence Z1 is empty.
It is sufficient to assume k is algebraically closed.

The other cases follow from the proof of Thm. 2.9, as follows. We can choose a
convenient closed point in the scheme of base points, and show that the rank of
the Jacobian of the defining polynomials given by {v2(x) = 0} is equal to the
codimension. This implies the scheme is smooth at that point (and therefore
at all points), so in particular, it is reduced.

Documenta Mathematica 14 (2009) 47–66



56 Mark L. MacDonald

Corollary 2.11. Over k̄, the smooth subscheme Z1 is isomorphic to the fol-
lowing.
(r = 0) : ∅
(r = 1) : Pn−2 ⊔ Pn−2

(r = 2) : P1 × P2n−3

(r = 3) : The 10-dimensional spinor variety

Proof. This follows from our representation theoretic understanding of Z1 from
the proof of Thm. 2.9.
There are much more explicit ways of understanding the r 6= 3 cases. For
example, in the r = 2 case, if c = [c1, · · · , cn−1] ∈ P(M2(k̄)

n−1) is in Z1,
then the ci’s are rank 1 matrices that have a common non-zero vector in their
kernels. This can be used to get an explicit isomorphism with P1 × P2n−3.

Remark 2.12. These varieties are written in [Za93, Final pages], where it is
implicitly suggested that they are the base locus of the rational map v2.

Remark 2.13. It is shown in [Kr07] that Z1
∼= Spec(k(

√
a1)) ×k Pn−2, where

〈〈a1〉〉 is the norm form associated to C. So the above corollary shows that Z1

is irreducible over k except for the single case when r = 1 and C is split.

2.14 Indeterminacy locus of v−1
2 . Let Z2 be the scheme of base points of

the inverse birational map v−1
2 : X(Jn) 99K Q(J, u). We have that v−1

2 ([xij ]) =
[xn,1, · · · , xn,n], where this is defined.
We will use the notation Jn−1 = Sym(Mn−1(C), σ〈b1,··· ,bn−1〉), and sometimes
Jn = J for emphasis. The isomorphism class of Jn−1 depends on the choice
of primitive idempotent u = En,n ∈ J , but is otherwise independent of the
diagonalization of 〈b1, · · · , bn−1〉.

Lemma 2.15. The scheme of base points Z2 is isomorphic to the smooth sub-
variety X(Jn−1).

Proof. The indeterminacy locus of v−1
2 is simply the closed subset of matrices

in X(Jn) whose bottom row (and therefore right-most column) is zero. In other
words, Z2 is defined by linear polynomials. The ideal of these polynomials is
radical, and therefore the scheme Z2 is reduced. For n ≥ 4, one sees that Z2 is
isomorphic to X(Jn−1). For n = 3, by considering the matrix equation x2 = 0,
we see that the base locus of Z2 is the quadric defined by φ ⊗ 〈b1〉 ⊥ 〈b2〉 = 0.
We will define X(J2) to be this quadric.

2.16 The chain between two quadrics

The Sarkisov program [Co94] predicts that any birational map between two
Mori fibre spaces X and Y factors into a chain of elementary links between
intermediate Mori fibre spaces. An example of such a link (of type II [Co94,
3.4.2]) would be X ← W → V where both morphisms are blow ups of smooth
subvarieties, and X and V are projective homogeneous varieties with Picard
number 1 (and hence Mori fibre spaces).
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Theorem 2.17. For r 6= 1 or C non-split, the birational map v2 from Q(J, u)
to X(J) is an elementary link of type II.

Proof. We have that Z1 is irreducible (see Remark 2.13). The blow up of an
irreducible smooth subscheme increases the Picard number by 1, and a blow
down decreases it by 1. So in this situation, by Lemma 2.15 and Lemma 2.10 we
see that X(J) has Picard number 1. So by Prop. 2.7 we have that v2 is a blow
up of a smooth subvariety followed by a blow down to a smooth subvariety,
and therefore it is an elementary link of type II.

Let b′ = 〈b′1, · · · , b′n〉, and q′ = φ ⊗ 〈b′1, · · · , b′n−1〉 ⊥ 〈b′n〉. Then Totaro’s
Prop. 0.1 states that if φ ⊗ b ∼= φ ⊗ b′, then the quadrics defined by q and q′

are birational. By defining the Jordan algebra J ′ using φ and b′, we have a
birational map v′2 from Q(J ′, u′) to X(J ′).

Proof of Thm. 0.2. If φ ⊗ b ∼= φ ⊗ b′, then the Jordan algebras J ∼= J ′ are
isomorphic as algebras ([KMRT98, Prop. 4.2, p. 43], [Ja68, Ch. V.7, p. 210]),
and therefore the varieties X(J) ∼= X(J ′) are also isomorphic. So, as noted in
Remark 2.3, Q(J, u) is birational to Q(J ′, u′), and moreover by Thm. 2.17 this
map is the composition of two elementary links, with intermediate varietyX(J).
Notice that if C is a split composition algebra (equivalently, φ is hyperbolic)
then Q(J, u) and Q(J ′, u′) are already isomorphic.

2.18 Transposition maps. Now we will explicitly factor the birational maps
of Roussey ([Ro05]) and Totaro ([To08]), which in general have more than
two elementary links. The most basic case they consider, though, is that of
transposition. This corresponds to finding a birational map between quadrics
q and q′, where b′i = bi for 1 ≤ i ≤ n− 2, and b′n−1 = bn, b

′
n = bn−1. So b and

b′ differ by transposing the last two entries. Totaro proves Prop. 0.1 by finding
a suitable chain of such transposition maps.

Proposition 2.19. For r = 0, 1, 2 and n ≥ 3, and if r = 3 then n = 3, Totaro’s
transposition map factors as the composite of two elementary links.

Proof. Let q and q′ be as above, and let J = Sym(Mn(Cφ), σb). Then the
quadric (q = 0) = Q(J, u) is defined using the idempotent u = diag(0, · · · 0, 1) ∈
J (see 2.2). General rational points on this quadric are elements in P(Cn−1×k)
such that v2([c1, · · · , cn]) ∈ PJ has trace zero. Here ci ∈ C for i 6= n, and
cn ∈ k. The inverse birational map v−1

2 simply takes the nth row of the matrix
in J .
Then the quadric for (q′ = 0) = Q(J, u′) can be defined using the idempotent
u′ = diag(0, · · · , 1, 0) ∈ J . General rational points on this quadric are elements
in P(Cn−2 × k × C) such that v′2([c

′
1, · · · , c′n]) ∈ PJ has trace zero, where we

use the same Jordan algebra J . Here c′i ∈ C for i 6= n− 1, and c′n−1 ∈ k. The
inverse birational map (v′2)

−1 takes the n− 1th row of the matrix in J .
So the composition (v′2)

−1◦v2 defines a birational map from Q(J, u) to Q(J, u′).
From Thm. 2.17 this is the composite of two elementary links. So it remains
to show this composite is the same as Totaro’s transposition map.
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To see this, consider the map (v′2)
−1 ◦ v2 over k̄, and observe where it sends

a general point from Q(J, u). Recall that v2 sends [c1, · · · , cn] to the matrix
[bicicj ] ∈ X(J), and then taking the n− 1th row of this matrix gives us

[bn−1cn−1c1, · · · , bn−1cn−1cn−1, bn−1cn−1cn] ∈ Q(J, u′) ⊂ P(Cn−2 × k̄ × C).

After using the isomorphism P(Cn−2 × k×C) ∼= P(Cn−1 × k) to swap the last
two coordinates, we can now recognize that this is exactly a map from [To08,
Lemma 5.1], where the “multiplication” of elements in C, is x ∗ y := xȳ.

Remark 2.20. We may also view this chain of birational maps as a “weak
factorization” in the sense of [AKMW02]. They prove that any birational map
between smooth projective varieties can be factored into a sequence of blow
ups and blow downs of smooth subvarieties. But a chain of Sarkisov links (of
type II) is stronger, because then each blow up is immediately followed by a
blow down, and the intermediate varieties are Mori fibre spaces.

3 Motives

For a smooth complete scheme X defined over k, we will denote the Chow
motive of X with coefficients in a ring Λ byM(X ; Λ), following [EKM08] (see
also [Vi04], [Ma68]). We will briefly recall the definition of the category of
graded Chow motives with coefficients in Λ.
Let us define the category C(k,Λ). The objects will be pairs (X, i) for X
a smooth complete scheme over k, and i ∈ Z, and the morphisms will be
correspondences :

HomC(k,Λ)((X, i), (Y, j)) =
⊔

m

CHdim(Xm)+i−j(Xm ×k Y,Λ).

Here {Xm} is the set of irreducible components of X . If f : X →
Y is a morphism of k-schemes, then the graph of f is an element of
HomC(k,Λ)((X, 0), (Y, 0)). There is a natural composition on correspondences
that generalizes the composition of morphisms of schemes.
We denote the additive completion of this pre-additive category by CR(k,Λ).
Its objects are finite direct sums of objects in C(k,Λ), and the morphisms are
matrices of morphisms in C(k,Λ). Then CR(k,Λ) is the category of graded
correspondences over k with coefficients in Λ.
Finally, we let CM(k,Λ) be the idempotent completion of CR(k,Λ). Here
the objects are pairs (A, e), where A is an object in CR(k,Λ) and e ∈
HomCR(k,Λ)(A,A) such that e ◦ e = e. Then the morphisms are

HomCM(k,Λ)((A, e), (B, f)) = f ◦HomCR(k,Λ)(A,B) ◦ e.

This is the category of graded Chow motives over k with coefficients in Λ. For
any smooth complete scheme X over k, we denote M(X) = ((X, 0), idX) its
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Chow motive, and M(X){i} = ((X, i), idX) its ith Tate twist. Any object in
CM(k,Λ) is the direct summand of a finite sum of motivesM(X){i}.
In this section we will describe direct sum motivic decompositions ofQ(J, u), Z1

and finally X(J). A non-degenerate quadratic form q of dimension ≥ 2 defines
a smooth projective quadric Q, and we will sometimes writeM(q) =M(Q).

3.1 Motives of neighbours of multiples of Pfister quadrics

In this section until 3.8 we can assume our base field k is of any characteristic
other than 2, and r ≥ 1 may be arbitrarily large. Given an r-fold Pfister form
φ and an n-dimensional non-degenerate quadratic form b = 〈b1, · · · , bn〉 over k
we will describe the motivic decomposition of the projective quadric Q defined
by

q = φ⊗ 〈b1, · · · , bn−1〉 ⊥ 〈bn〉.
This quadric is dependent on the choice of diagonalization of b. The following
is Vishik’s motivic decomposition of the quadric defined by φ⊗ b.
Theorem 3.2. ([Vi04, 6.1])
For n ≥ 1, there exists a motive F rn such that

M(φ⊗ b) =

2r−1⊕

i=0

F rn{i} ⊕
{
∅ if n is even
M(φ){2r−1(n− 1)} if n is odd.

Vishik uses the notation Fφ(M(b)) for F rn , and calls it a higher form of M(b).
It only depends on the isometry classes of φ and b.
If φ is anisotropic, Rost defined an indecomposable motive Rr such thatM(φ)
is the direct sum of Tate twists of Rr. This is called the Rost motive of φ. If
φ is split, then this motive is no longer indecomposable, but we will still call
Rr = Z⊕ Z{2r−1 − 1} the Rost motive. In fact, F r2 is just the Rost motive of
φ⊗ b (which is similar to a Pfister form). Also note that F r1 = 0.
In particular, for n ≥ 1, by counting Tate motives one sees that

F rn |k̄ =

⌊n
2 ⌋−1⊕

i=0

(Z{2ri} ⊕ Z{2r(n− 1)− 2ri− 1}).

So the summand has 2⌊n2 ⌋ Tate motives, which is the same number thatM(b)|k̄
has.
A summand M is said to start at d if d = min{i|Z{i} is a summand of Mk̄}.
Similarly, a summand M ends at d if d = max{i|Z{i} is a summand of Mk̄}.
We will use the following theorem of Vishik. Here iW (q) denotes the Witt index
of the quadratic form q. This is the number of hyperbolic plane summands in
q.

Theorem 3.3. ([Vi04, 4.15]) Let P,Q be smooth projective quadrics over k,
and d ≥ 0. Assume that for every field extension E/k, we have that

iW (p|E) > d⇔ iW (q|E) > m.
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Then there is an indecomposable summand in M(P ) starting at d, and it is
isomorphic to a (Tate twisted) indecomposable summand in M(Q) starting at
m.

With this theorem, it becomes straight forward to prove the following motivic
decomposition (Thm. 3.6), by translating it into some elementary facts about
multiples of Pfister forms. First we will state two lemmas for convenience.

Lemma 3.4. Let φ be an r-fold Pfister form (r ≥ 1) and let b be an n-
dimensional non-degenerate quadratic form (n ≥ 2). For any 0 ≤ d ≤ ⌊n2 ⌋− 1,
we have iW (φ ⊗ b) > 2rd implies iW (φ⊗ b) > 2r(d+ 1)− 1.

Proof. This follows from the fact that if φ is anisotropic then 2r divides iW (φ⊗
b) [Vi04, Lemma 6.2] or [WS77, Thm. 2(c)].

Lemma 3.5. If Q is a smooth projective quadric of dimension N , then for any
0 ≤ d ≤ N , an indecomposable summand of M(Q) starting at d is isomorphic
(up to Tate twist) to an indecomposable summand of M(Q) ending at N − d.
The same is true for indecomposable summands of F rn for any r ≥ 1 and n ≥ 1.

Proof. This is proved in [Vi04, Thm. 4.19] for anisotropic Q, but it is also true
for isotropic Q by using [Vi04, Prop. 2.1] to reduce to the anisotropic case. The
statement for the motive F rn follows easily from its construction.

Theorem 3.6. Let φ be an r-fold Pfister form (r ≥ 1), and for non-zero bi
and n ≥ 2 we let q = φ ⊗ 〈b1, · · · , bn−1〉 ⊥ 〈bn〉 over k of characteristic not 2.
Then we have the following motivic decomposition.

M(q) = F rn⊕
2r−1⊕

i=1

F rn−1{i}⊕
{
∅ if n is odd⊕2r−1−1

j=1 Rr{2r−1(n− 1)− j} if n is even.

Proof. We will split the proof into steps, including one step for each of the three
summands. We will use the notation b′ = 〈b1, · · · , bn−1〉 and b = b′ ⊥ 〈bn〉.
Note that we can assume that φ is anisotropic, because when it is isotropic both
sides split into Tate motives, and we get the isomorphism by checking that on
the right hand side there is exactly one copy of Z{i} for each 0 ≤ i < 2r(n−1).

Step 1: The first summand. To show that F rn is isomorphic to a summand of
M(q), we need to show that given an indecomposable summand in F rn starting
at d, then there is an isomorphic indecomposable summand in M(q) starting
at d. In fact, by Lemma 3.5 it is enough to only consider indecomposable
summands starting in the ‘first half’, which is to say starting at i < 2r−1(n−1).
Since the only Tate motives in the first half of F rn |k̄ are Z{2rd} for some 0 ≤
d ≤ ⌊n2 ⌋ − 1, by Thm. 3.3 it is enough to show that for each such d and E/k
field extension we have iW (φ⊗ b|E) > 2rd iff iW (φ ⊗ b′ ⊥ 〈bn〉|E) > 2rd.
The “if” part is clear. So assume iW (φ ⊗ b|E) > 2rd. Then by Lemma 3.4 we
know iW (φ ⊗ b|E) ≥ 2r(d + 1). So the 2r(d + 1)-dimensional totally isotropic
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subspace must intersect the 2r−1-codimensional subform φ⊗ b′ ⊥ 〈bn〉 ⊂ φ⊗ b
in dimension at least 2rd+ 1. In other words, iW (φ⊗ b′ ⊥ 〈bn〉|E) > 2rd.

Step 2: The second summand. Fix a 1 ≤ i ≤ 2r − 1. As argued in Step 1,
we want to show that if 0 ≤ d ≤ ⌊n2 ⌋ − 1, and if there is an indecomposable
summand of F rn−1 starting at 2rd, then there is an isomorphic indecomposable
summand ofM(q) starting at 2rd+ i. By Thm. 3.3 it is enough to show that
for any E/k we have iW (φ⊗ b′|E) > 2rd iff iW (φ⊗ b′ ⊥ 〈bn〉|E) > 2rd+ i.

iW (φ⊗ b′|E) > 2rd⇒ iW (φ⊗ b′ ⊥ 〈bn〉|E) > 2r(d+ 1)− 1 Lemma 3.4

⇒ iW (φ⊗ b′ ⊥ 〈bn〉|E) > 2rd+ i

⇒ iW (φ⊗ b′) > 2rd See below

The last implication follows since the ≥ 2rd + 2 dimensional totally isotropic
subspace must intersect the codimension 1 subform in dimension at least 2rd+1.
So, by Lemma 3.5, we have shown that F rn−1{i} is isomorphic to a summand
ofM(q) for 1 ≤ i ≤ 2r − 1.

Step 3: The third summand. Assume n is even. Since the summand is
empty for r = 1, we can assume r ≥ 2. Fix an 2r−1(n− 2) < i < 2r−1(n− 1).

iW (φ) > 0⇒ iW (φ) = 2r−1 Property of Pfister forms

⇒ iW (φ⊗ b′ ⊥ 〈bn〉) > i

⇒ iW (φ) > 0 See below

For the last implication, we have that the hyperbolic part of φ⊗ b′ ⊥ 〈bn〉 is of
dimension≥ 2r(n−2)+4. So the anisotropic part is of dimension≤ 2r−2. So by
the Arason-Pfister hauptsatz, φ ⊗ b′ is hyperbolic. Now if φ were anisotropic,
then 2dim(φ) would divide dim(φ ⊗ b′) [WS77, Thm. 2(c)]. But this says
2r+1|2r(n− 1), which is impossible for n even. Therefore φ is isotropic.

To finish Step 3, we use Thm. 3.3 to get the isomorphism of motivic summands.

Step 4: Counting Tate motives. To finish the proof, one needs to show
that the summands we have described in these three steps are all possible
summands. This can easily be checked by counting the Tate motives over k̄.
For a visualization of this, see Example 3.7 below.

We have implicitly used [Vi04, Cor. 4.4] here. Note also that for the n = 2 case
the second summand is zero.

Example 3.7. As an illustration of the counting argument in Step 4 above,
consider r = 2 and n = 4. Then Thm. 3.6 says thatM(〈〈a1, a2〉〉⊗〈b1, b2, b3〉 ⊥
〈b4〉) has 5 motivic (possibly decomposable) summands in this decomposition.
We can visualize this decomposition, as in [Vi04], with a node for each of the
12 Tate motives over k̄, and a line between the nodes if they are in the same
summand. Then the motive of the 11-dimensional quadric,M(q), is as follows,
with each summand labelled:
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R2{5}

F 2

4

F 2

3
{1}

F 2

3
{2}

F 2

3
{3}

Notice that these summands might be decomposable, for example if the Pfister
form 〈〈a1, a2〉〉 is split. So this differs slightly from Vishik’s diagrams, since
he used solid lines to denote indecomposable summands, and dotted lines for
possibly decomposable ones.

3.8 The motive of the base locus Z1

Now we will use our understanding of Z1 from Thm. 2.9 and its proof, to
decompose its motive into the direct sum of Tate twisted Rost motives.

Proposition 3.9. (1) For r = 1, we have that M(Z1,Z/2) ∼= ⊕n−1
i=0 R

1{i}
(2) For r = 2, we have that M(Z1,Z/2) ∼= ⊕2n−3

i=0 R2{i}.
(3) For r = 3, we have that M(Z1,Z/2) ∼= ⊕7

i=0R
3{i}.

Proof. For r = 1, it is shown in [Kr07] that Z1
∼= Pn−2 ×k Spec(k

√
a1). We

know thatM(Spec(k[
√
a1])) ∼= R1, so the result follows because the motive of

projective space splits into Tate motives.

We have seen that in all cases Z1 is a smooth scheme that is homogeneous for
Aut(J, u). Moreover, for r = 2 or 3, we know that Z1 is a generically split
variety in the sense of [PSZ08]. So by their theorem [PSZ08, 5.17] we have
that M(Z1,Z/2) is isomorphic to a direct sum of Tate twisted copies of an
indecomposable motive R2(Aut(J, u)).

Now let V be the projective quadric defined by the r-Pfister form φ, the norm
form of the composition algebra C. It is a homogeneous SO(φ) variety. Since
C splits over the function field k(V ), by Jacobson’s coordinatization theorem
J must also split over k(V ), and therefore so does the group Aut(J, u). Fur-
thermore, over k(Z1), we have a rational point in Z1. Then for any non-zero
coordinate ci ∈ C of such a point, there exists 0 6= y ∈ C such that ciy = 0 in
C. But then φ(ci)y = (c̄ici)y = c̄i(ciy) = 0, and so C has an isotropic vector,
and is therefore split. Therefore SO(φ) splits over k(Z1).

Now we may apply [PSZ08, Prop. 5.18(iii)] to conclude that R2(Aut(J, u)) ∼=
R2(SO(φ)). Finally, observe that R2(SO(φ)) is isomorphic to the Rost motive
of φ ([PSZ08, Last example in 7]), which is the motive Rr. The proposition
can be deduced now by counting the Betti numbers of Z1 (see [Kö91]).

3.10 Motivic decomposition of X(J)

We are ready to decompose the motiveM(X(J)) for any reduced simple Jordan
algebra J . Recall that X(J) is a homogeneous space for Aut(J) (Lemma 2.4).
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Proposition 3.11. Let r = 0, 1, 2 or 3 and n ≥ 3, and if r = 3 then n = 3.
We have the following isomorphism of motives with coefficients in Z.

M(Q(Jn, u))⊕
d1−1⊕

i=1

M(Z1){i} ∼=M(X(Jn))⊕
d2−1⊕

i=1

M(X(Jn−1)){i}.

Here di are the respective codimensions of the subschemes Zi. In particular,
for r 6= 0, d1 = 2r−1n− 2 and d2 = 2r.

Proof. If n is the degree of Jn, we have by Section 2.6 that the blow up of
X(Jn) along the smooth subvariety X(Jn−1) is isomorphic to the blow up of
Q(Jn, u) along the smooth subscheme Z1. So by applying the blow up formula
for motives [Ma68, p.463], we get the above isomorphism.

Theorem 3.12. Let r = 0, 1, 2 or 3, and n ≥ 3 (and if r = 3 then n = 3). And
let J = Sym(Mn(C), σb) where C is a 2r-dimensional composition algebra over
k, and b = 〈b1, · · · , bn〉 is a non-degenerate quadratic form over k. Then
(r = 0) :

M(X(J)) ∼= F 0
n =M(b),

(r = 1) :

M(X(J),Z/2) ∼= F 1
n ⊕

⌊n−3
2 ⌋⊕

j=0




2⌊n
2 ⌋⊕

i=1

R1{i+ 2j}


 ,

(r = 2) :

M(X(J),Z/2) ∼= F 2
n ⊕

⌊n−2
2 ⌋⊕

j=0




4⌊n−1
2 ⌋+1⊕

i=1

R2{i+ 4j}


 ,

(r = 3) :

M(X(J),Z/2) ∼= F 3
3 ⊕

11⊕

i=1

R3{i}.

Proof. The motive of Q(J, u) may be decomposed in terms of the motives F rn ,
F rn−1 and Rr (Thm. 3.6). The motive of Z1 with Z/2 coefficients may be
decomposed in terms of Rr (Prop. 3.9). The subvariety X(J2) is isomorphic to
the quadric defined by φ ⊗ 〈b1〉 ⊥ 〈b2〉 (see proof of Lemma 2.15), so we have
already decomposed its motive in terms of F r2 and Rr (Thm. 3.6).
So the last ingredient we need is the cancellation theorem. It gives conditions
for when it is true that an isomorphism of motives A ⊕ B ∼= A ⊕ C implies
an isomorphism of motives B ∼= C. This does not hold in general; there are
counter-examples when Λ = Z [CPSZ06, Remark 2.8]. But if we take Λ to be
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any field, then the stronger Krull-Schmidt theorem holds, which says that any
motivic decomposition into indecomposables is unique [CM06, Thm. 34]2.
When we put these pieces into the isomorphism from Prop. 3.11, we may pro-
ceed by induction on n. One sees that we can cancel the F rn−1 terms in the
decomposition, leaving us with the motive M(X(J)) on the right hand side,
F rn on the left hand side, and several Tate twisted copies of Rr on both sides.
To finish the proof one just needs to count the number of copies of Rr remain-
ing after the cancellation theorem, and verify that the given expressions are
correct. We leave this induction argument to the reader.

Remark 3.13. When φ is isotropic, the above motives split. When φ is
anisotropic, Rr is indecomposable, but the motive F rn could still be decom-
posable, depending on the quadratic form b.

Remark 3.14. The r = 1 case of the above theorem may be used to prove
Krashen’s motivic equivalence [Kr07, Thm. 3.3]. To see this, notice that a
1−Pfister form φ defines a quadratic étale extension l/k, and any hermitian
form h over l/k is defined by a quadratic form b over k. So in Krashen’s
notation, V (h) = X(J). Furthermore, his V (qh) is the projective quadric
defined by φ⊗ b, and his PL(N) is isomorphic to the base locus Z1. So in the
notation of this paper, his motivic equivalence is

M(φ⊗ b)⊕
n−2⊕

i=1

M(Z1){i} ∼=M(X(J))⊕M(X(J)){1}.

Since we have motivic decompositions of all of these summands in terms of F 1
n

and R1 (see Thm. 3.2, Prop. 3.9 and Thm. 3.12), it is easy to verify his motivic
equivalence, at least for Z/2 coefficients.
On the other hand, the r = 1 case of Thm. 3.12 follows from Krashen’s motivic
equivalence, together with the r = 1 cases of Thm. 3.2 and Prop. 3.9; this is
pointed out in [SZ08, Thm. (C)].
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